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Impedance Matrix Compression Using Adaptively
Constructed Basis Functions

Zachi Baharav and Yehuda Leviatan, Senior Member, IEEE

Abstract— Wavelet expansions have been employed recently
in numerical solutions of commonly used frequency-domain in-
tegral equations. In this paper, we propose a novel method
for integrating wavelet-based transforms into existing numerical
solvers. The newly proposed method differs from the presently
used ones in two ways. First, the transformation is affected by
means of a digital filtering approach. This approach renders
the transform algorithm adaptive and facilitates the derivation
of a basis which best suits the problem at hand. Second, the
conventional thresholding procedure applied to the impedance
matrix is substituted for by a compression process in which
only the significant terms in the expansion of the (yet unknown)
current are retained and subsequently derived. Numerical results
for a few TM scattering problems are included to demonstrate the
advantages of the proposed method over the presently used ones.

to perform the transform adaptively. We also use a new method
in which the conventional thresholding procedure applied to
the impedance matrix is substituted for by a compression
process. In the compression, process only the significant terms
in the expansion of the (yet unknown). current are retained
and subsequently derived by solving a reduced-size matrix
equation. This implies that we no longer view the impedance
matrix and the excitation vector as arrays of numbers, but
rather exploit the understanding of the physics behind these
numbers.

The organization of the paper is as follows. In the following
section, we discuss a method to transform a conventional
impedance matrix, obtained by using regular pulse- ba51s func-
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To transform the pulse basis functions into wavelet basis
functions, one introduces a transformation matrix [T'] which is
assumed to be real and orthogonal. The rows of [T] describe
the new wavelet basis functions in terms of the puises. The
basis transformation is effected by

A=[TT ©)

where the elements of A are the coefficients of a new series-
expansion for J,. In this new series expansion, the basis
functions are piecewise constant wavelet functions.

Subsequently, a similar procedure is applied to the rows
of the impedance matrix. This transformation is effected by
multiplying the impedance matrix on the right by [7], the
transpose of [T]. We have

[Z4] = [Z)[T]. @

Substituting (3) and (4) into the system (2), and using the
fact that [T'] is orthogonal, leads to the matrix equation

[Z4A=V. 6)

It is important to note that as far as the result for the
unknown current J, is concerned, the solution will be the
same regardless of whether one uses (2) or (5). Information is
neither gained nor lost in this process of basis transformation.

‘When a Galerkin method is used, it is customary to apply
the same transformation used for the basis functions to the
testing procedure. Along these lines, we obtain

B=[V (6)

where B is the new excitation vector. Then, we define a matrix
[Z] as the column transformation of [Z 4]

(2] = [T11Z4] = [T)[Z)[T) o
and arrive at the matrix equation
[Z]4 = B. ®)

This matrix equation is also equivalent, in terms of J,, to the
two previous matrix equations given by (2) and (5). However,
in (8), both the sources and testing functions are given in
terms of the new basis functions.

A similar idea of basis transformation has been explored
in [4], where the transformation has been used to obtain a
windowed Fourier transform of the signal. Other related works
include those of Canning (Impedance Matrix Localization) [5],
[6] and Wagner et al. [7].

III. DISCRETE SIGNAL WAVELET
TRANSFORM: MATRICES AND FILTERS

In this section, instead of using a transformation matrix, the
basis transformation from pulses to wavelets is affected by
using a cascade of filters [8]. An extensive literature on the
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equivalence between these two ways of computing the wavelet
transform can be found in [9] and [10]. Here, we only show
this equivalence by means of an example. In this example,
the Haar wavelets are used and we apply the transform to a
four-element signal.

Fig. 1(a), illustrates how the basic signal T is transformed
by [T] into the new vector A. Note that the rows of [T]
describe the new basis functions. The fact that the new basis is
orthonormal can be verified by computing [7][77]. In Fig. 1(b),
we write explicitly the series expansion in term of the new
basis functions. Fig. 1(c)—(d) are related to the computation
of the transform by the use of a hierarchical filter structure.
Fig. 1(c) illustrates this hierarchical structure. The input signal,
described as a discrete sequence, undergoes filtering and down-
sampling to produce two output sequences. One sequence
contains the high-band (rapidly varying or detailed) parts of the
signal while the other contains the low-band (slowly varying
or smooth) parts of the signal. The filters denoted by G and
H are low-pass and high-pass filters, respectively. They are
determined by the wavelet transform one intends to achieve.
In the case of the Haar wavelets, their impulse responses are
given by g = T}?[l’ 1] and h = \}E[——L 1], respectively. The
down-sampling operation implies taking every other sample at
the output of the filters. For the wavelet decomposition, this
process of band splitting is applied recursively to the low-
band portion of the signal. The resulting hierarchical structure
is described as a tree, as shown in Fig. 1(d), where each node
and its associated two branches represent the basic building -
block. The reconstruction process is similar in both cases, that
is, by multiplying with the transpose matrix, or by reversing
the graph.

Note that in the implementation of the transform, the fact
that the input signal is of finite extent should be accounted
for and indeed several approaches to this problem have been
suggested [10]. Here, we have resorted to the use of a cyclic
convolution while taking only the even-indexed samples at
the output of the down sampler.

IV. WAVE PACKETS

While the two ways of accomplishing the basis transforma-
tion (either by matrix multiplication or by digital filters) are
mathematically equivalent, the digital filter approach allows
the use of many ideas from the signal-processing discipline.
These ideas often provide better insight into the choice of
basis transformation, but one should recall that any kind of
transformation which can be achieved by digital filters can
also be attained, though usually with more effort, by a matrix
multiplication.

First, the digital filters suggest a fast way for performing
the transform [11]. This is owing to the hierarchical structure
previously described. Moreover, the tree-structure dictated
by the wavelets can be. altered and this can very well be
done adaptively, as will be discussed later on [12], [13].
In this section, we discuss only two tree-structures (which
may be viewed as two extreme cases): wavelet-transform and
windowed Fourier transform trees. The windowed Fourier
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Fig. 1. Wavelet transform in different representations. (a) Matrix representa-
tion. (b) Pictorial description of the series expansion in terms of the different
basis functions. (c) Filter representation. (d) Tree representation.

transform tree, as well as its associated transformation matrix,
are shown in Fig. 2.

In the wavelet transform tree structure, shown in Fig. 1(d),
only the slowly varying part of the signal is decomposed at
each stage. In contrast, in the windowed Fourier transform
tree structure, shown in Fig. 2(c), borh the slowly and rapidly
varying components of the signal are decomposed at each
stage. We will not examine in what way the partitions of the
combined space of location and spatial variation to which these
two methods lead are different. We will only point out the fact
that windowed Fourier transform basis functions are all of the
same length [see Fig. 2(b)]. This is in contrast to the wavelet
basis functions, in which the rapidly varying basis functions
are of shorter length (see Fig. 1(b), lower part). This suggests
that the windowed Fourier transform basis functions, unlike the
wavelet basis functions are, in essence, global basis functions.
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Fig. 2. An example of a wave-packet described by means of (a) a transfor-
mation matrix, (b) a sum of series of basis functions, and (c) a tree-structure.

V. ADAPTIVE CONSTRUCTION OF BASIS FUNCTIONS

As has been pointed out, there are many possible tree
structures and, correspondingly, many transformations, each
producing a different set of basis functions. Our objective is
to determine a basis which best suits the problem at hand.
The quality criterion that will serve as a measure of what
is best for our purposes is the extent to which the boundary
condition is satisfied for a given level of compression of the
transformed matrix equation. Thus, we search for a basis that
yields minimum boundary condition etrror for a given matrix
size ot, equivalently, one that allows maximum reduction in
size for a prescribed boundary condition error.

The new approach of basis selection to best address the
problem at hand is effected in two steps. In the first step,
we construct a vector V which is a modified version of the
vector V. This modified version takes into account the shadow
region cast by the scatterer, as predicted by geometrical optics.
Specifically, the elements of the vector V that correspond to
testing points in the lit region remain unchanged while those
that correspond to testing points in the shadow region are
gradually set to zero using a cosine windowing which allows
for a smooth transition between the lit and shadow regions. In
the second step, a tree is constructed in the following adaptive
manner. Starting from the finest resolution level of the vector
V at the input node, a decision whether to go on decomposing
any given node, and stepping down to a coarser resolution
level, is made based on a nodal minimum coefficient-spread
criterion. The decision concerning further decomposition of
a given node is made independently of any other node, and
further decomposition is carried out if and only if it renders the
number of coefficients required for an adequate representation
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Fig. 3. Scattering problem of a circular conducting cylinder excited by a TM incident plane wave.
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Fig. 4. Magnitude of current density J, along the circular perimeter of the
scatterer for the scattering problem illustrated in Fig. 3.

of the signal smaller. This procedure can be classified as “top-
down near-best basis algorithm, with an additive cost function”
(see [14], for example). The cost function we employ in this
paper is given by

c(z) 2 — Z lng?, &= {z} ©)
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where Z is a vector whose elements are the signal coefficients
related to the node under consideration. Note that there are
two such vectors associated with each node, corresponding
respectively to the signal coefficients before and after the
decomposition. The length of ¥ is N/2", where N is the
length of the input signal and » 0 < 7 < logy(IN) is an
integer designating the number of decomposition stages the
signal goes through until it reaches the node. Once the desired
tree structure has been determined, which means that a basis
has been selected, we apply the same transformation to [Z],
to the sources, and to the excitation vector V to obtain a
transformed system. However, instead of thresholding the
impedance matrix in a conventional manner, it is compressed
to a reduced-size form. This is effected by singling out a small
number of basis functions which correspond to large values in
the decomposition of V. It is then assumed that these basis
functions are sufficient to accurately represent the unknown
and, hence, we keep only the matrix elements needed for
finding out the coefficients of these basis functions. The result
is a reduced-size matrix equation which is by far easier to
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Fig. 5. Boundary condition error versus compression level of the impedance

matrix for the scattering problem illustrated in Fig. 3. Cases considered are
for wavelet transform basis functions (&)} windowed Fourier transform basis
function (&) and adaptively constructed basis functions (%)

Fig. 6. Tree structure representation for the basis functions adaptively con-
structed for the scattering problem illustrated in Fig. 3.

solve. Its solution gives the coefficients of the dominant terms
in the series expansion of the current. The dominant terms are
expected to approximate the true current close enough for all
practical purposes.

To measure the reduction in the size of the impedance
matrix, we define a scalar quantity <, which is referred to
hereafter as the compression level. The compression level is
defined as the ratio between the number of elements omitted,
while casting the impedance matrix into the compressed form
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Fig. 7. Scattering problem of a circular-conducting cylinder, excited by a
surrounding array of filamentary sources.
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Fig. 8. Magnitude of current density J. along the circular perimeter of the
scatterer for the scattering problem illustrated in Fig. 7.

and the number of elements in the original matrix. To describe
the compression level mathematically, assume that the size of
the original matrix is N x N and that the size of the reduced
matrix is M x M. Then, the relation between o and M is
given by

N? — M?
or written alternatively as
M =N+V1-a. 11

Note that in the above method, the prevailing assumption
is that there is a resemblance between the modified excitation
vector V, which reflects both the geometry of the scatterer and
the excitation and the resultant solution vector. One may argue
that instead of using V, we could have used the approximate
physical optics current. This might have been preferable, but
would definitely require much more computations than those
needed for just modifying V. It should be also added that the
inherent dependence of the method on the excitation vector
implies that with each change in the excitation one may have
to follow the basis selection procedure from the start. Hence,
when a problem ought to be solved for various excitations,
" as in the case of RCS computations, the method might be

somewhat less attractive. :

VI. NUMERICAL EXAMPLE

In this section, we present four numerical examples. In the
first three examples the same scatterer is considered for various
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Fig. 9. Boundary condition error versus compression level of the impedance
matrix for the scattering problem illustrated in Fig. 7. Cases considered are
for wavelet transform basis functions () windowed Fourier transform basis
functions (E) and adaptively constructed basis functions ()

Fig. 10. Tree structure representation for the basis functions adaptively
constructed for the scattering problem illustrated in Fig. 7.

excitations and, hence, the basis functions constructed in each
case are different. In the fourth example, a different scatterer is
considered for the same excitation taken in the first example.

The purpose of presenting these examples is threefold.
First, we demonstrate that the adaptively-constructed basis
functions can excel both the commonly used wavelet transform
basis functions as well as the windowed Fourier transform
basis functions. Second, we show that the resulting basis
functions conform to both the geometry of the scatterer and
the excitation. Finally, we make a point that by using the
above described method of matrix compression, one gains an
insight into the basis selection process. This suggests that by
inspecting the geometry of the scatterer and the excitation one
can foresee whether the adaptively-constructed basis functions
are going to be more or less like one of the above mentioned
two bases, or better than both of them.

In the first three examples, we consider scattering by a
perfectly conducting cylinder of circular cross section. The
current over the cylinder is expanded in terms of 64 equally
spaced pulse basis functions, and we use twice this number
of equally spaced pulse functions for testing. The maximum
depth of the tree structure of digital filters is taken to be five.
This is equivalent to letting the longest basis function be made
up of 2% = 32 pulse functions. Thus, it follows that a) all



1236

=32
=16 =48 22 -l-
° ° _l 1.1
® o @ .
/< I=0 >\
90°
Fig. 11. Scattering problem of a circular-conducting cylinder, excited by a

partially surrounding array of filamentary sources.
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Fig. 12. Magnitude of current density J, along the circular perimeter of the
scatterer for the scattering problem illustrated in Fig. 11.

the windowed Fourier transform basis functions will consist
of 32 pulse functions, b) among the wavelet transform basis
functions two and only two basis functions will consist of
32 elements, and c) the longest basis functions picked by the
adaptive basis selection process can be of length 32 but they
might as well be shorter.

In the first example, described in Fig. 3, the excitation
is a TM plane wave of unit-amplitude magnetic field. The
resulting current is shown in Fig. 4. The three cases, namely
using wavelet transform, using windowed Fourier transform,
and that of using adaptively constructed basis functions, are
compared with each other in Fig. 5. This figure shows a
plot of the boundary condition error as a function of the
compression level. The boundary condition error is defined as
the average square error on the scatterer surface normalized to
the average square incident field on the scatterer surface. The
compression level has been defined in Section V. Observing
Fig. 5, it can be readily noted that when no compression of the
matrix is taking place, the three cases yield exactly the same
result. However, when compression is applied the difference
in performance is evident. In this case, the wavelet transform
basis functions are better suited for the configuration than the
windowed Fourier transform basis functions. It is seen that
the adaptively constructed basis functions yield results similar
to those obtained with wavelet transform basis functions. In
Fig. 6, the tree structure picked in the adaptive basis selection
process is shown. This tree structure is neither that of wavelets
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Fig. 13. Boundary condition error versus compression level of the
impedance matrix for the scattering problem illustrated in Fig. 11. Cases
considered are for wavelet transform basis functions (-4} windowed Fourier
transform basis functions () and adaptively constructed basis functions ()

Fig. 14. Tree structure representation for the basis functions adaptively
constructed for the scattering problem illustrated in Fig. 11.

nor that of the windowed Fourier transform, though it more
closely resembles the wavelet tree structure. Hence, the results
are very similar, yet not identical, to those of the basis
functions of a wavelet transform tree structure of depth five.

In the second example, the same scatterer is considered,
but this time the excitation is due to eight adjacent current
filaments of 377 [mA] amplitude and alternating polarity,
arranged as illustrated in Fig. 7. The resulting current on
the scatterer is depicted in Fig. 8. The three cases, namely
using wavelet transform, using windowed Fourier transform,
and that of using adaptively constructed basis functions, are
compared with each other in Fig. 9. In this case, the windowed
Fourier transform basis functions yield better results than the
wavelet transform basis functions. This is to be anticipated
in view of the fact the current is periodic and, thus, can be
effectively expanded in terms of windowed Fourier transform
basis functions. Again, the performance of the adaptively
constructed basis functions is as expected very similar to that
of the windowed Fourier transform basis functions. The tree
structure resulting from this adaptive basis selection process
is shown in Fig. 10 and, indeed, this structure is similar to the
windowed Fourier transform tree structure. Also note that it
is completely different from the previously chosen tree shown
in Fig. 6.

The third example considered is for the excitation depicted
in Fig. 11, where again the amplitude of each of the filaments
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excited by a TM incident plane wave.
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Fig. 16. Magnitude of current density J, along the perimeter of the scatterer
for the scattering problem illustrated in Fig. 15.

is 377 [mA], and the filaments are with alternating polarity.
A plot of the resulting current on the scatterer is shown in
Fig. 12. This current is periodic only over part of the scatterer
boundary surface. A plot of the performance achieved with
the various basis functions is given in Fig. 13. In this case, it
is clearly seen that the adaptively constructed basis functions
are preferable over the two other bases. The tree structure for
the adaptively constructed basis functions is shown in Fig. 14
and appears to consist of two levels only. Thus, it is neither
similar to the wavelet transform tree nor to the windowed
Fourier transform tree, and it evidently yields better results.

The last example is perhaps the most convincing one, as
the adaptation process yields basis functions which are clearly
related to our physical understanding of the problem. In the
last example, we consider a square cylinder illuminated by
a TM plane wave, as described in Fig. 15 (again, the plain
wave is of unit-amplitude magnetic field). A plot of the current
induced on the scatterer surface is shown in Fig. 16. A plot
of the performance achieved with the various basis functions
is given in Fig. 17. The results obtained using the adaptively-
constructed basis functions are quite similar to those obtained
using the wavelet transform basis functions. This can also be
seen from the tree structure shown in Fig. 18, picked by the
adaptive basis selection process. This tree structure is a wavelet
transform tree structure of depth four. Thus, the longest basis
function is made up of 2* = 16 pulse functions which is
exactly the number of pulse functions needed for covering
each side of the rectangular.

More understanding of the process can be gained from
Fig. 19 where the resulting current, under certain compression
terms of the matrix, is shown for the adaptively constructed
basis functions and for the windowed Fourier transform basis
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Fig. 17. Boundary condition error versus compression level of the
impedance matrix for the scattering problem illustrated in Fig. 15. Cases
considered are for wavelet transform basis function (£} windowed Fourier
transform basis functions (&) and adaptively constructed basis functions ()

Fig. 18 Tree structure representation for the basis functions adaptively
constructed for the scattering problem illustrated in Fig. 15.

functions. The fact that the latter are, in essence, global basis
functions is evident from the fact that the changes introduced
with each additional term are felt everywhere. This is in
contrast to the current obtained for the adaptively constructed
basis functions which are not necessarily long and, hence, the
changes introduced with each additional term are localized.

VII. SUMMARY AND CONCLUSION

In this paper, we have described a new method for the
incorporation of the wavelet transform into existing numerical
solvers. This incorporation involves the use of digital filters to
obtain transformation of the regular pulse-based impedance
matrix. The idea of wave packets has been presented to
demonstrate the flexibility in the choice of basis functions
offered by the new approach; its application to a scattering
problem has been shown to yield better results than those
obtained using regular wavelets. Many of the ideas presented
still need further furnishing, such as the possibility of choosing
different filters type, better approximation of the current (not
merely by using the modified excitation vector), and others. It
is believed that in an analogous way, other techniques based
on the theory of digital filters can be put into use for solving
electromagnetic scattering problems.
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Fig. 19. Magnitude of current density J. along the square perimeter of the
scatteser obtained by taking partial sums from the 64-term series expansion.
Cases considered are for (a)-(d) windowed Fourier transform basis functions
and (e)—(h) adaptively constructed basis functions. The number of dominant
terms is indicated in each figure in a box. |
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