
to the substrate by galvanic contacts at a large number of
points.

For this structure, the geometric and electric parameters
are given as follows: thickness of the semiconducting sub-

Ž . Ž .strate Si and insulator SiO , h s 500 mm and d s 0.582
mm, respectively; thickness of the signal line and ground line
conductor, t s 0.52 mm. The width of the signal and ground
line are W s 9.6 mm and W s 20 mm, respectively, and the0 1
width of the space between the signal and ground line is
S s 100 mm. The relative dielectric constants of the insulator
Ž . Ž .SiO and the semiconducting substrate Si are « s 3.92 r1
and « s 11.8, respectively; the substrate conductivity of Sir2
is s s 15.5 Srm.

Under the consideration of structural symmetry, magnetic
wall conditions are adapted at the y s 0 plane, and a half
space y ) 0 is considered in the calculations. Space and time
discretization lengths D x, D y, D z, and D t are taken to be 0.5
mm, 1 mm, 2 mm, and 8.33 = 10y16 s, respectively, in which
D t was determined to satisfy the Courant stability condition.

Ž .The computation domain is a box with sides n D x =1
Ž . Ž .n D y = n D z , which is usually determined by the avail-2 3
able computer memory. For the current calculation, n , n ,1 2
and n are 100, 80, and 100, respectively.3

Ž .By using lossy absorbing boundary conditions ABCs and
an excitation source in the FDTD procedure for lossy struc-
tures, we obtain the field distribution in the time domain.

Ž .After Fourier transforming, the propagation constant g and
Ž .characteristic impedance Z can be obtained. Finally, with0

these data, we could calculate the frequency-dependent
Žequivalent-circuit parameters per unit length of line R, L,

.G, and C . Figure 3 shows the calculated line parameters by
using the FDTD in this letter and the well-known spectral

w xdomain method in 7 ; it can be seen that very good agree-
ment has been obtained for all line parameters except the G
and C parameter at very low frequency.

IV. CONCLUSIONS

A full-wave analysis of transmission lines on doped semicon-
ductor substrates is carried out by means of a finite-

Ž .difference time-domain FDTD approach. By using lossy
Ž .absorbing boundary conditions ABCs and an efficient calcu-

lation procedure for lossy structures, line parameters are
obtained over a wide frequency range involving a slow-wave
and dielectric quasi-TEM mode. The results agree well with
available data.
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ABSTRACT: When analyzing electromagnetic scattering by three-dimen-
sional perfectly conducting bodies of arbitrary shape, the surface model-
ing is often affected by triangulation, and in turn, triangular-patch basis
functions are used for expanding the unknown surface current. In this
paper, we apply a wa¨elet transformation to transform the triangular-patch
basis functions to a new set of basis functions, which can be interpreted
as wa¨elet combinations of the original basis functions. The new basis
functions can lead to a matrix representation of the operator equation
that is more localized and which, by proper thresholding, can be rendered
sparse. Alternatï ely, they can lead, ¨ia an impedance matrix compres-
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( ) (sion IMC approach, to a matrix equation that is compressed rank
)reduced . The solution of either the sparse or the compressed matrix

equation can yield fairly accurate results with less computational effort.
The dependence of the results on ordering of the original triangular-patch
basis functions prior to the transformation is discussed. Q 1999 John
Wiley & Sons, Inc. Microwave Opt Technol Lett 21: 359]365, 1999.

Key words: electromagnetic scattering; wa¨elet transformation;
numerical method

1. INTRODUCTION

This paper considers wavelet-based solutions to problems
involving scattering by three-dimensional perfectly conduct-
ing bodies of general shape. In such problems, owing to

Ž .advances in computer-aided design CAD tools, the surface
is often not given explicitly in parametric form, but rather
modeled using surface triangulation. This makes the use of
conventional two-dimensional wavelet basis functions inappli-
cable. However, the surface triangulation readily lends itself
to the use of the triangular-patch basis functions proposed in
w x1, 2 . The wavelet-based solution proposed in this paper is as
follows. First, we expand the surface current in terms of
triangular-patch basis functions. Then we order the unknown
coefficients of these functions according to their indexes.
Finally, we apply a wavelet transform to these indexes, thereby
forming new basis functions that are wavelet-like linear com-
binations of the original ones.

It is important to note that there is a substantial differ-
ence between applying the wavelet transform to one-dimen-
sional signals and applying it to two-dimensional signals, as is
done in this paper. In the former case, there is a natural
consecutive ordering of the original basis functions, whereas
in the latter case, there are many possible orderings of the
original triangular-patch basis functions. Moreover, the char-
acteristics of the various basis functions obtained upon apply-
ing the wavelet transform in the latter case and their ability
to facilitate the computational solution depend quite crucially
on the specific ordering chosen. It should be remarked that
we do not claim that we fully address the subject of using
wavelets for the description of surface currents. Rather, we
describe a solution that yields a reasonable performance, and
discuss the above-mentioned inherent ordering problem. It is
also argued that the suggested solution can be incorporated
into the solution of large-scale problems, where it would be
applied to certain parts of the scatterer.

The paper is organized as follows. In Section 2, we outline
the method-of-moments formulation using the triangular-
patch expansion functions, and in Section 3, we discuss the
wavelet transform applied. A brief overview of the IMC
method is presented in Section 4. The inherent ordering
problem is discussed in Section 5. A numerical example is
given in Section 6. Finally, a few concluding remarks close
the paper.

2. MOMENT-METHOD FORMULATION AND
TRIANGULAR-PATCH BASIS FUNCTIONS

Given a problem of scattering by a three-dimensional per-
fectly conducting body of general shape, we first set up an
electric field integral equation for the unknown induced
surface current. This is readily effected by subjecting the total
tangential electric field over the surface of the body to zero.
Assuming that a triangulation of the surface is given, it is
convenient to reduce the integral equation to matrix form via
the method of moments using triangular-patch basis func-

tions for expanding the unknown surface current, and in turn
w xemploying a Galerkin technique for testing 1, 2 .

To understand how these functions are defined, consider
the pair of triangles, which are part of the surface triangula-
tion, shown in Figure 1. Let r denote the position vector with

Žreference to some arbitrary origin. In the following, boldface
Ž .r will denote spatial vectors, namely, vectors with three
coordinates corresponding to some Cartesian system, whereas

ªŽ .the usual notation I will be used to denote any other
. Ž . qvector. The triangles are denoted arbitrarily by T andn

Ty, with respective areas Aq and Ay. The two trianglesn n n
Ž . qhave a common edge r , r . Next, we let r s r y rn2 n3 n n1

and ry s r y r denote the local position vectors of pointsn n4
within triangles Tq and Ty, respectively. We also denote then n

Ž .length of the common edge r , r by l , that is, l sn2 n3 n n
5 5r y r . With these notations, the vector basis functionn3 n2

Ž .associated with the edge r , r can be readily expressed asn2 n3

l¡ n q qr , r g Tn nq2 An~Ž . Ž .f r s 1ln n y yr , r g Tn ny2 An¢
0, otherwise.

Note that there are no basis functions associated with bound-
Ž .ary edges which are not shared by two triangles . The trian-

gular-patch basis functions possess the following attributes
which make them useful for expanding the unknown surface
current.

1. The current has a nonzero normal-to-the-edge compo-
nent only along the edge common to the two triangles.
Hence, no line charges exit along any of the other
edges.

2. The normal component of the current crossing the nth
edge is continuous. Hence, no line charge exits on this
edge either.

Ž3. The surface divergence of each basis function which is
.proportional to the surface charge density is

l¡ n q, r g TnqAn~Ž . Ž .= ? f r s 2ls n n y, r g TnyAn¢
0, otherwise.

It follows that the charge density is constant within
each triangle, and the total charge associated with each
triangle pair is zero.

Ž .Figure 1 Basis function associated with the edge r , r , basedn2 n3
on a triangulation of the surface
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