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Abstract— In this paper we investigate the achievable rate
of a system that includes a nomadic transmitter with several
antennas, which is received by multiple agents, each with a single
antenna, suffering independent channel coefficients and additive
Gaussian noises. Since the transmitter is nomadic, the agents do
not have any decoding ability. These agents process their channel
observations and forward it to the final destination through
lossless links with a fixed given capacity. Assuming Gaussian
signalling, we get lower and upper bounds on the achievable
rates, and demonstrate the achievability of the full multiplexing
gain. We also extend the model to address multi-user systems.
The asymptotic setting with numbers of agents and transmitter’s
antennas taken to infinity is examined, and the incompetence of
the simple compression when compared to a Wyner-Ziv scheme
is demonstrated. For finite setting, an upper-bound is derived,
which turns out to be quite tight when compared to the Wyner-
Ziv achievable rate, even for a rather small 4 × 4 system.

I. INTRODUCTION

In this paper we deal with a network setting in which a no-
madic transmitter has several antennas and is communicating
to a remote destination, where no direct link exists between
the transmitter and the final destination. The final destination
receives all of its inputs from several separated agents, which
are connected to it through lossless links with a given capacity.
The channel between the transmitting antennas and the agents
is the standard ergodic Rayleigh fast fading channel with
independent fading. The channel state is known to the agents
and the final destination, but not to the transmitter. Since the
transmitter is nomadic, the agents do not possess the codebook
in use, and thus do not have any decoding ability [1]. This
setting is closely related to the setting of the Multiple input
multiple output (MIMO) channel, which is thoroughly treated
in the literature, see [2] and others. We focus here on the
multiplexing gain [3], which is a typical characterizing feature
for MIMO systems. The results here have also implications on
more complicated channels that include MIMO, such as the
MIMO broadcast channel [4], the MIMO relay channel [5],
and ad-hoc network [6]. All these works deal with situations
where multiple antennas are transmitting and are received in
a distributed fashion, either by relays, destinations or any
combination of the above. In addition, results regarding ad-
hoc networks [7], relay channels [8], and joint processing [9]
are closely related, providing another aspect of the achievable
rates in wireless networks, where relays form, in a distributed
manner the required spacial dimensions. This paper is also
linked to source coding problems, since we limit the agents to
process only source related algorithms, such as compression.
Relevant works are e.g. [10], who deals with the multiple
Wyner-Ziv problem, the Gaussian CEO solution by [11] and

many others.
This paper is organized as follows, in section II the setting
is described and the basic definitions and notations are given.
Section III describes the simple compression approach and
gives several results about the achievable rates when using this
approach. Section IV improves upon the approach taken in sec-
tion III by including Wyner-Ziv compression in the agents and
the final destination. An upper bound to the achievable rate,
when using nomadic transmitter and non-decoding agents, is
given in section V, and then demonstrated by some numeric
example, to be rather close to the achievable rate when using
the Wyner-Ziv compression. Concluding remarks are presented
in section VI.

II. SETTING AND MODEL DEFINITION

We consider a system with a transmitter S which has t
transmitting antennas and which transmits during n channel
uses. In each channel use, the transmitter sends a vector
X ∈ C

[t×1] to the channel, where E[X∗X] ≤ P 1. By
restricting E[XX∗] = Q to be diagonal, the setting is extended
also to multi-user, where each user has a single antenna.
Such restriction would not limit the achievable rate, as will
become evident, we let Q = P

t It. The transmitter uses
Gaussian signalling, which are known to be optimal for various
problems involving Gaussian channel, although there is no
proof of optimality in our setting. The communication rate is
R. In addition, we have r agents A1, . . . , Ar, each receiving
the scalar channel outputs:

Yi(k) = hi(k)X(k)+Ni(k), i = 1, . . . , r, k = 1, . . . , n (1)

where hi(k) ∈ C
[1×t] is the vector of the channel transfer

coefficients, which are either ergodic (fast fading) or block fad-
ing, and distributed independently from each other, and from
any other variable, according to complex Gaussian distribution
CN (0, 1). Ni are the additive complex Gaussian noises, with
variance of 1. Some of the results which are reported here
can be easily extended by including other fading distributions,
such as Ricean, invoking the results of [12]. For the sake of
brevity, we drop in the sequel the k index. The r agents
are connected to a remote destination with lossless links,
each with capacity C bits per channel use. The transmitter
has no information regarding H = [h1, . . . , hr], while the
final destination is fully informed about H = [h1, . . . , hr].
By default, each agent has the full channel information H .
However, many of the presented schemes require each agent

1The statistical mean is denoted by E and ∗ denotes the transpose conjugate.
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Fig. 1. A system that includes a transmitter with t = 2 and two agents A1

and A2 (r = 2), connected to the final destination with capacities of C1 and
C2, respectively. The channel fading coefficients H are designated by {hi,j}.

to know only its own channel coefficients hi, as is stated in
the text. We define Vj to be the message sent from Aj after
receiving n channel outputs. This setting is depicted in figure
1. The transmitter (or the multi-users) is nomadic [1], that
is the codebook that is used is unknown to the agents, but
is fully known to the final destination. This way the agents
treat input signals not accounting for the coded transmission,
in a multiple Wyner-Ziv approach, which is solved for two
agents in [10]. Here however, we are interested in the total
communication rate given H rather than the minimum capacity
to allow some quadratic distortions on Yi. So we are interested
in the distortions of Xi rather than Yi, thus making our result
not tight. Because the decoding ability of each agent decreases
as the number of users increases, we expect the effect of the
nomadic limitation to decrease, in a multiuser system.

III. SIMPLE COMPRESSION SCHEME

In this section, a scheme that includes simple compression
at the agents site is analyzed. By simple compression, we
mean compression process that does not use the correlations
between {Yi}, and thus does not requires the agents to have
full knowledge of H . In addition, the implementation of
such compression is rather simple and it is realized with low
complexity algorithms at both agents and final destination.

A. Multiplexing gain

An analysis for the multiplexing gain is given next, which
shows that the simple compression approach is sufficient to
maintain to the full multiplexing gain.

Proposition 1: The links capacity must be C ∼ log2(P ) to
achieve the full multiplexing gain [3] for r ≤ t.
Proof sketch:

• Proof that C � log2(P ) is necessary to achieve the full
multiplexing gain:
From the cut-set upper bound (R is the rate used by the
transmitter),

R ≤ rC. (2)

On the other hand, since the full multiplexing gain is r,

r = lim
P→∞

R

log2(P )
≤ lim

P→∞
rC

log2(P )
. (3)

So that
C � log2(P ). (4)

• Proof that C ∼ log2(P ) is sufficient to achieve the full-
multiplexing gain r:

Each agent employs a simple compression scheme which
can be described as adding independent quantization
noise, unlike standard rate-distortion compression. The
quantization noise variance depends on hi according to
2:

PDi
=

|hi|2P + 1
2C − 1

∼ |hi|2P + 1
P − 1

. (5)

The resulting rate (RSC , for simple-compression) which
is supported by this scheme can be calculated because the
distortion is independent of the signal. Using the mutual
information expressions of [2]:

RSC = EH{RSC(H)}, (6)

RSC(H) �

log2 det

⎛
⎜⎜⎝Ir +

⎛
⎜⎜⎝

1
1+PD1

. . .
1

1+PDr

⎞
⎟⎟⎠HQH∗

⎞
⎟⎟⎠

(7)

where E[XX∗] = Q and trace(Q) = P . Signalling
with Q = P

t It maximizes (6), since the channel is
unknown to the transmitter, since V H is distributed
as H for unitary V (eigenvectors of Q) and since
log2 det(I +diag( 1

1+PD1,...,r
)HQH∗) is a concave func-

tion of Q. This means that the achievable rate applies also
to the multi-user communication, see [12]. Notice that
this achievable rate (6) is calculated for the fast fading
channel, where the averaged rate when the channel is
block fading, is calculated the same way. To the end
of examining the multiplexing gain, we can now take
a lower bound by considering only the maximum i∗ =
argmaxPDi

, P ∗
D � PDi∗ :

RSC(H) ≥ log2 det
(

Ir +
P

t

1
1 + P ∗

D

diag(λ1, . . . , λr)
)

=

r∑
i=1

log2

(
1 +

Pλi/t

1 + P ∗
D

)
∼

r∑
i=1

log2

(
1 +

Pλi/t

1 + |hi∗ |2P+1
P−1

)
,

(8)

where {λi} are the eigenvalues of HH∗. Now since

lim
P→∞

log2

(
1 + Pλi/t

1+
|hi∗ |2P+1

P−1

)
log2(P )

= 1 (9)

we have that

lim
P→∞

RSC

log2(P )
= EH

{
lim

P→∞
RSC(H)
log2(P )

}
= r. (10)

Remark 1: Despite the name simple compression, it re-
quires an infinite number of codebooks at the agents and the

2From C = log2

(
1 + |hi|2 P

PDi
+1

)
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final destination, since they should correspond to infinitely
many fading coefficients. This can be circumvented by using
amplify & compress at the agents.

Remark 2: For the case where r > t, when each agent uses
its own compression, we can achieve the full multiplexing
gain of t only if C ∼ log2(P ). Thus an overhead of
(r− t) log2(P ) is wasted due to the simple compression. The
necessity of C ∼ log2(P ) is evident by repeating (8) and
taking i∗ = argmin1≤i≤rPDi

, which changes the inequality
direction and proves the claim. This overhead is waved when
the agents apply time sharing or, as seen in the sequel, Wyner-
Ziv compression.
The above proposition has several implications. From the
implementation perspective, the case when r ≤ t is common,
for example, in a cellular system which encompasses some
form of joint decoding and where few base stations serve
many users. The above result quantifies the required capacities
between the base stations as to maintain the full multiplexing
gain.
Another implication of the result stems from the MIMO
broadcast channel, where for an effective linear log2(P )
MIMO scaling, the transmitter is required to have full channel
knowledge [4]. Here, a simple compression scheme, with
limited cooperation between the destinations achieves the full
multiplexing gain without channel state knowledge at the
transmitter (which usually requires some feedback). Such a
cooperation is usually easier to obtain when the destinations
are co-located.

B. Achievable rate when r, t → ∞
Let us consider the case where r = τt, constant total

capacity from the agents to the final destination (C = Ct/r),
and constant total power P of all the transmitting antennas.
Such scheme accounts for bottleneck effects in the channel
between the agents and the final destination. Let us take
r → ∞, and find the limiting rate which is reliably supported
by the scheme (τ̃ � min{1, 1/τ}).

lim
r→∞RSC ≤ τ̃ lim

r→∞ rEH

[
log2

(
1 +

τPλ/r

1 + PD∗

)]

= τ̃ lim
r→∞ rEν,ζ

[
log2

(
1 +

Pν

1 + ζrP+1
2C/r−1

)]
(11)

where ν � λ
t , ζ � |hi∗ |2

r are two random variables with some
finite mean. We can exchange the order of the expectation and
the limit due to dominant convergence, to get that:

lim
r→∞RSC ≤ τ̃Eν,ζ

[
lim

r→∞ r log2

(
1 +

Pν

1 + ζrP+1
2C/r−1

)]
= 0.

(12)
Proposition 2: The achievable rate using simple compres-

sion is zero when r, t → ∞.
Using simple compression severely degrades the performance
of the network, and different approaches, such as Wyner-Ziv
compression, should be used.

IV. ACHIEVABLE RATE FOR THE NOMADIC SETTING USING

WYNER-ZIV

We consider the same setting as in the previous section, but
use the technique from [13], that is Wyner-Ziv compression for
reduced quantization noise. We again refer to the quantization
noise which is independent of the signal. Define PDj as the
power of the additive Gaussian noise plus the quantization
noise. Let rj be calculated through:

1
PDj(H)

=
1 − 2−rj(H)

PN
. (13)

As in [13], rj stands for the rate wasted on the compression
of the additive noise. Then for the fast fading channel, using
[13] and channel ergodicity, the achievable rate turns out to
be:

RWZ = EH

[
max

{0≤ri(H)}r
i=1

min
S⊆{1,...,r}

{ ∑
i∈SC

[Ci − ri(H)]+

log2 det
(

I|S| +
P

t
diag

(
1

PDi(ri(H))

)
i∈S

HSH∗
S

)}]
.

(14)

Remark 3: Notice that the above problem is convex and
thus can be efficiently solved. The optimization should be
performed for every channel use, and requires the complete
knowledge of H in the final destination and in all the agents.
However, this does not impose severe limitations, since the
channel can be assumed to change relatively slowly. In ad-
dition, at the agents, the knowledge of H is used only to
determine the binning resolution and as r → ∞, the channel
coefficients matrix hardens, and so are the binning resolutions,
so that the specific H is required only at the final destination.

Remark 4: For the non-ergodic block fading channel, equa-
tion (14), stands for the averaged rate, that is the achievable
rate, averaged over many instances of communications that
feature independent fading coefficients.
Consider now a sub-optimal scheme where rj = r∗, 0 < j ≤
r, 0 < k ≤ n. Because this sub-optimal approach is limited by
a predetermined r∗, each agent Ai is required to know only its
own channel coefficients hi, and there is no need to perform
the per channel use optimization.

A. Multiplexing gain

For the multiplexing gain (where P → ∞) take C =
x log2(P ), where x is some positive real, and for all j =
[1, . . . , r], fix rj = r∗ = εC. We get the following achievable
rate:

RWZ = m log2(P ) + o(log2(P )), (15)

where m = min{r, t} and limP→∞
o(log2(P ))
log2(P ) = 0. This is

since

m log2(P )+ o(log2(P )) ≤ min
S⊆{1,...,r}

{
|S|(1− ε)x log2(P )

+ min{r − |S|, m} log2(P )
}

(16)
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is fulfilled, as long as x ≥ m
r(1−ε) . The following is thus

evident:
Proposition 3: C ∼ m

r(1−ε) log2(P ) is sufficient to achieve
the full multiplexing gain m.
Notice that here, unlike simple compression, we get the full
multiplexing gain with no excess capacity on the links to the
final destination.

B. Achievable rate when r, t → ∞
For the case where r/t = τ , C = Ct/r and r → ∞, we

repeat the suboptimal approach and again fix r∗ = εC.
By considering the results of [2] on the asymp-
totic eigenvalue distribution, and the fact that
||any collection of raws of A||2 ≤ ||A||2 =

√
max λ(A∗A)

(max λ(A) is the maximal eigenvalue of A), almost surly,
the maximum eigenvalue of HS grows at most linearly with
r, for when r → ∞, for all S. Namely, with probability 1:

lim
r→∞

{
max

S,j∈[1,...,|S|∨t]

λj(HS)
t

}
≤ (τ ∨ 1)ν+

= (τ ∨ 1)

(√
r ∧ t

r ∨ t
+ 1

)2

= (
√

τ + 1)2 (17)

Where ∨ and ∧ denote min and max respectively. Then for r
sufficiently large, there exist ε > 0 sufficiently small such that
the minimum in (14) is obtained by taking S = {1, . . . , r}.
This is since

Pr
{

lim
r→∞

{
log2

(
1 + P

λj(HS)
t

(1 − 2−εCt/r)
)

− Ct/r(1 − ε)
}

< 0
}

≥ Pr
{

lim
r→∞

{
max

S,j∈[1,...,m]
log2

(
1 + P

λj(HS)
t

(1 − 2−εCt/r)
)

− Ct/r(1 − ε)
}

< 0
}

= Pr
{

lim
r→∞

{
r log2

(
1 + P (

√
τ + 1)2(1 − 2−εCt/r)

)
− Ct(1 − ε)

}
< 0
}

= Pr
{
εP (

√
τ + 1)2Ct − Ct(1 − ε) < 0

}
=

{
1 ε < 1

1+P (
√

τ+1)2

0 ε ≥ 1
1+P (

√
τ+1)2

(18)

The next proposition then follows by changing the order of
taking limit and expectation, due to dominant convergence.

Proposition 4: The achievable rate of a scheme which uses
Wyner-Ziv compression, for r, t → ∞, is

RWZ = τ̃Eν

[
lim

r→∞ r log2

(
1 + Pν(τ ∨ 1)(1 − 2−εCt/r)

)]
>

P (τ ∨ 1/τ)Ct

1 + P (
√

τ + 1)2
Eν [ν] − δ =

PCt

1 + P (
√

τ + 1)2
− δ (19)

for any δ > 0.
The last equality in (19) is since E[ν] = τ ∧ 1/τ , which is
derived from Pν(ν) presented in [2]. So unlike the simple com-
pression, for infinitely many transmitters and agents, but with a

fixed total capacity to the final destination, the achievable rate
is larger than zero. We note that although this effect is shown
for infinitely many agents and transmitters, it is still dominant
when r and t are very large, but finite. In addition, the above
rate approaches the cut-set upper bound when P >> 1 and
τ << 1.

V. UPPER BOUNDS ON THE ACHIEVABLE RATE OF THE

NOMADIC SETTING - BLOCK FADING

We consider two methods to upper-bound the average rate
of the block fading setting, so that the upper bound is the
minimum of the two bounds. We then demonstrate these
bounds for a specific scheme and show their tightness.

A. Joint processing at the agents upper bound

For the sake of the upper bound, we allow the agents to fully
collaborate, that is they still are not cognizant of the codebook,
but now they can jointly quantize the received signal before
forwarding to the final destination.
This means that the joint agent receives the channel output (1),
where again, we assume Gaussian channel outputs, although
we do not prove that Gaussian signalling is indeed optimal.
For the sake of brevity we switch to vector notations, and write
(1) again, with unitary U1 ∈ C

r×r and U2 ∈ C
t×t such that:

Y = HX + N = U1ΛU∗
2 X + N. (20)

We can further switch notations by the singular value decom-
position:

Ỹ = U∗
1 Y = ΛX̃ + Ñ , (21)

where Λ ∈ C
r×t is a diagonal matrix with the diagonal

containing the squared roots of the eigenvalues of H∗H (or
HH∗), X̃ = U∗

2 X ∈ C
t×1 and Ñ = U∗

1 N ∈ C
r×1. Notice

that N and Ñ have the same distribution law. This is true also
for X and X̃ since, using similar arguments as section III-A,
Q = P

t It is optimal.
Since Ỹ = U∗

1 Y is sufficient statistics of Y , with independent
entries (nomadic setting), the entries of the vector Ỹ can be
compressed independently from each other. Then we use [13]
and take the case of a single agent (signal to noise ratio of
Pλi

t ), connected to a final destination with the bandwidth of
C̃i (0 < i ≤ r ∨ t):

Ri(H, C̃i) � log2

(
1 +

Pλi

t

2C̃i − 1
2C̃i + Pλi

t

)
. (22)

Which results with the upper bound:
Proposition 5: The averaged achievable rate of a block

fading, distributed MIMO scheme, with a nomadic transmitter,
is upper bounded by:

R ≤ Rjoint � EH{R∗(H)}. (23)

Where R∗(H) is defined as

R∗(H) � max∑
C̃i=rC, 0≤C̃i

∑
i∈I

Ri(H, C̃i). (24)
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B. Non-cooperative upper bound

For the second upper bound, we do not assume that the
agents can cooperate, instead we upper-bound the achievable
rate from every agent, as if no other agent had existed. Recall
that Vj is the message sent from the Aj . Since Xn −Y n

j −Vj

forms a Markov chain, ∀j,S, j /∈ S:

I(Xn; Vj |VS , H) = H(Vj |VS ,H)−H(Vj |Xn,H) ≤ I(Xn;Vj |H).

So that we have:

R ≤ 1
n

I(Xn; V{1,...,r}|H) ≤
r∑

j=1

1
n

I(Xn;Vj |H). (25)

Now we can use [13] again, for every agent. This gets us to:

1
n

I(X; Vj |H) ≤ EH

{
log2

(
1 + P |hj |2 2C − 1

2C + P |hj |2
)}

and to the second upper bound.
Proposition 6: The achievable rate of a block fading dis-

tributed MIMO scheme, with a nomadic transmitter, is upper
bounded by:

R ≤ Rind � EH

⎧⎨
⎩

r∑
j=1

log2

(
1 + P |hj |2 2C − 1

2C + P |hj |2
)⎫⎬
⎭ .

(26)

C. Numerical example

The above upper bounds and achievable average rates are
tested for a 4 × 4 setting and averaged over the channel
matrices H , randomly generated from the complex Gaussian
distribution. Each agent has lossless links with capacity of C =
2 bits per channel use to the final destination. The resulting
average of 20 channel realizations are plotted in figure 2. It is
seen there that the joint upper bound is rather tight, and that
the Wyner-Ziv compression scheme, which requires sophisti-
cated processing at the destination, significantly outperforms
the simple compression scheme. This is although they both
achieve the full-multiplexing gain. The joint upper bound of
subsection V-A is tighter than the upper bound of V-B, since
the separated upper bound assumes independent transmissions
to each agent, without considering the interferences of the
other transmissions. We expect it to be tighter when r << t.
The joint upper bound V-A is tight mainly due to the nomadic
setting, which does not allow any decoding at the agents.
Thus allowing joint processing without decoding is not very
beneficial.

VI. CONCLUSION

In this paper we showed the effectiveness of several com-
pression techniques for decentralized reception in fast fading
and block fading MIMO channels. We proved that in many
cases, the simple compression is sufficient to get the full-
multiplexing gain. In addition, we showed the advantages of
the Wyner-Ziv approach, which were evident in an asymptotic
analysis and in a finite example. We presented an upper bound
for the block fading channel, which is based on the nomadic
characteristic of the scheme, and which turned out to be quite
tight even for relatively a small 4 × 4 scheme.
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Fig. 2. Averaged rates of Wyner-Ziv and of simple compression schemes
and the upper bounds over a block fading 4×4 system with C = 2, averaged
over H .
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