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Convergence and Performance Analysis
of the Normalized LMS Algorithm with
Uncorrelated Gaussian Data
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Abstract —The normalized least mean square (NLMS) algorithm can be
viewed as a modification of the widely used LMS algorithm. It has an
important advantage over the LMS—its convergence is independent of
envirc tal ckh This fact is proven. In addition, we present a
comprehensive study of the first- and second-order statistic behavior in the
NLMS algorithm. We show that the NLMS algorithm exhibits significant
improvement over the LMS algorithm in convergence rate, while its

steady-state performance is considerably worse.

I. INTRODUCTION

HE LEAST mean square (LMS) algorithm as intro-

duced by Widrow (see, e.g., [1]) has gained much
popularity due to its simplicity and ease of implementa-
tion. One of its major advantages over stochastic ap-
proximation (SA) type algorithms (where the adaptation
gains decay to zero) is the ability to “stay alive” and to
respond to a changing environment (often the main reason
for introducing the adaptive algorithm). However, as the
analysis of the LMS algorithm has indicated (see [2]-[4]),
the relationship between the fixed adaptation gain and the
statistics of the environment determines the algorithm
convergence and its performance. A gain choice which is
good for certain environments may result in poor perfor-
mance with a change in environment or even in divergence
of the algorithm. As a result users of the LMS tend to be
overly conservative in their choice of adaptation gain value,
hence causing unnecessarily slow convergence. With this as
a motivation, one would like to be able to choose the
adaptation gain according to the incoming data. One pos-
sibility of accomplishing this is the normalized LMS
(NLMS) as presented by Nagumo and Noda [5].

Bitmead and Anderson have investigated some conver-
gence conditions for the NLMS [6}, but the first attempt at
a quantitative analysis of this algorithm was carried out by
Bershard [7]. While some of the results in [7] are similar to
some of our results, the conclusions drawn are consider-
ably different. Bershard concentrates on one aspect only of
the algorithm—its steady-state performance. As a result,
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he limits his discussion and conclusions (especially for the
case with distinct eigenvalues) to the approximation of
small gain. By doing so, we feel, he strips the NLMS
algorithm of one of its main performance advantages over
the LMS: the speed of convergence. The work reported
here complements [7] and details a comprehensive study of
the NLMS and its relation to the LMS.

In Section II we present a new motivation for the
NLMS algorithm which provides, from the start, an intui-
tive explanation of why the NLMS is expected to converge
faster than the LMS. In Section III we prove convergence
conditions for the algorithm (both first- and second-order
statistics), while Section IV deals with a quantitative com-
parison between the LMS and NLMS. Because of analyti-
cal difficulties, the comparison is done through two special
cases. To support the analysis, simulation experiments
were performed, and their results are reported in Section
V. Section VI concludes the paper and summarizes the
main observations of the study.

II. THE NORMALIZED LEAST MEAN
SQUARE ALGORITHM

The normalized LMS algorithm has been presented in
the literature (see, e.g., [5] and [7]), but we shall arrive at it
from a new direction which, we believe, adds some insight
into its properties. The basic problem under consideration
can be described as follows. A sequence of n-dimensional
vectors {X, )} and a sequence of scalars {d,} are mea-
sured. It is desired to find a weight vector W, so that
¥, =WTX, is as close to d, as possible in the mean square
error (mse) sense. The solution W*, often referred to as the
Wiener solution, is well-known and has the form

W*=R"'P (2.1)
where
R=E{X. X[}
P=E(d.X,}. (2.2)

To get a constant W*, it is assumed that X, and d, are
jointly stationary.!

!Practically, it allows for either a slowly varying environment or sharp
changes with long times in between.
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The vector W* can also be computed recursively using
the steepest descent (SD) algorithm as follows (see, e.g.,

1D:
W =W, +2u[ P~ RW,]

=(I-2pR)W, +2uP. (2.3)
The convergence of the SD is guaranteed if
1
0< — 24
. (24)

and (see [8]) the fastest convergence is achieved with the
choice

1
}\min + >\max

pr = (2.5)
where A . and A . are the smallest and largest eigenval-
ues of R, respectively.

In the case where R and P are not available, they can
be replaced by some estimates. Using X, X/ as an instan-
taneous estimate of R and d, X, for P in (2.3), we get the
well-known least mean square algorithm

W= (I-2uX,X] )W, +2pd, X,. (2.6)
Note that, to guarantee convergence of the LMS, consider-
ably more stringent conditions on p are required (see [3]).

Going back to the SD algorithm one can ask, at each
step, what is the optimal step size to be taken. Then,
instead of a constant u, we get

L
b = ZaZRak (2-7)
where
a,=RW,—P. (2.8)

Substituting (2.7) in (2.3) we get the normalized SD (NSD)
algorithm

T
a.a,

W, .. =W, - a
k+1 .
+ k aZRak k

(2.9)

First, we observe that if the initial values are such that
(W, — W*) is an eigenvector of R then W, = W*. Namely,
in one step we get the right value. In case all eigenvalues of
R are equal, namely, R=AI, the above is true for all
initial conditions. Actually, in this case p¥ =1/2A, so the
NSD becomes like the SD with the choice (2.5) for p.

For the general case, when the ratio A, /A, is in-
creased, the SD performance is known to deteriorate
and that is when the NSD performance becomes clearly
superior. Fig. 1 demonstrates the effects of increase in
A max/ A min ON each algorithm in the case where the eigen-
values of R are A;>A,=A;=--- =A,. The superiority
of the NSD is clear for larger spread of the eigenvalues.

Let us again consider the case when R and P are not
known, and we use again X, X and d, X,, respectively, as
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their estimates. Substitution in (2.8) and (2.9) will result in
X xr d,
W= I1- BX,(TX k+BﬁXk (2.10)

where the coefficient 8 was introduced for additional
control. This is the normalized LMS algorithm in the exact
form as it appears in [5] and [7].

In the following sections we investigate what is required
to guarantee the convergence of both the weight vector
mean and the MSE as well as some performance character-
istics. The comparison between the SD and the NSD
suggests that the convergence rates of the NLMS will be
superior to those of the LMS. We will show that, contrary
to the conclusion in [7], this in fact is the case. Before
proceeding we make the following two additional assump-
tions on the data, similar to those made in [2] and [3] for
the LMS analysis and in [7].

Assumption 1: The sequence {X,} is zero mean and
jointly Gaussian with {d,}.

Assumption 2: The sequence {X,} is uncorrelated in
time, namely,

E{X X7} =0for j#k.
III. CONVERGENCE OF THE NORMALIZED
LMS ALGORITHM

Since there exists an optimal solution to the problem
posed, an immediate question is whether the algorithm
converges, in some sense, to this optimal solution. We will
show that the convergence of the weight vector mean to
the optimal weight W*, can indeed be guaranteed. How-
ever, as was pointed out in {2] and (3], since the weights are
stochastic processes the above is not satisfactory. We must
guarantee a finite variance for the weight vector as well as
a finite mean square error—it will be shown that the two
are strongly related.

As a first step we derive the equations governing the
behavior of the weight vector mean and variance. To do
that it will be convenient to carry out the following change
of coordinates. Let Q be such that

Qo=1
QRQT= A =diag(},). (3.1)?
Then define
X, =0X, (3.2)
and
V,=Q(W,—W*). (3.3)

Next, premultiply (2.10) by Q and substitute (3.2) and
(3.3) to get

"T
V, I- + —e*X, 34
k+17 B XkTXk k XTX k“*k ( )
2A Q satisfying (3.1) exists since R is symmetric.
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where e} =d, — XTW*.
TXka

XX
¢ XX,

X
Vk+l k+1— Vka B[m

IASEI A S

X X[
XX,
Be;
+ ===
XX,

¢ YT

ppp ey e
X/X,

G YT

T X Xy ¢ T
V.XI+ XvI- /‘;kr)zk V. X,

o X XT
YRR,

/82(81:')2)Z "

(3.5)

We now make the following observations based on As-
sumptions 1 and 2 and (3.4):
Observation 1: Since
E{ek*Xk} =E{dkxk}_E{XkaT}W*
=P—-RR'P=0
and e}, X, are jointly Gaussian, they are independent as
well.

Observation 2: Since X; and X, are uncorrelated for
j# k and Gaussian, they are independent. Hence, from
(3.4) and Observation 1, ¥, and }fk are independent.

Observation 3: X, being Gaussian with zero mean and
(3.1) with (3.2) imply that the expected value of any
functlon of X,, which is odd with respect to at least one
entry’ of X,, is zero.

Next, take the expected value of both sides of (3.4) and
(3.5) and use Observations 1-3 to get

E{Vk+1}=[1_.BB]E{Vk} (3~6)
and
Cii1=C,— B(BC,+CB)+B*D,+B%*H (3.7)
where €* = E{(e}*)?} is minimal mse,
X X7
B= E{ Aok } (3.8)
XX,
C=E{VV} (3.9)
XX XX
Dy =E| 5 Cirm (3.10)
X X, "X X,
X X7
H=E{—“*= (3.11)
(X7X,)

Based on Observation 3, we add the following.
Observation 4: B and H are diagonal matrices and D,

has the property that only the diagonal entries of C,
*This means Ihat if g(x;,x,, -, x,) is the given function, then
8xy, Xg,m s X5ty X, ) = = By, Xgyt s Xy, Xy
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appear in the diagonal entries of D,. Specifically,

(D) Z G, (3.12)

and also for i # j
(Dk)i,j=2Gi,j(Ck)i,j (3.13)

where
s \20 o \2
X )
)

(X7X,)°

Since both (3.6) and (3.7) are linear time-invariant dif-
ference equations the asymptotic stability of their autono-
mous part and the boundedness of the forcing term (in
(3.7)) will guarantee their convergence. We start with the
latter.

Clearly,

1 1
H |<u|H|=E{—==%)=E{= =
| ,,.| r[ ] {Xerk} {XkTAl/ZA—lAl/ZXk}

1 E 1
< == ).
T Amn | XIATIX,
The entries of the vector A~'/2X,* are independently

identically distributed (i.i.d.) Gaussian with zero mean and
variance 1. Hence, from (A3) in Appendix I we get

|H, ;| < TR (3.14)
Now we prove the following:
Proposition 3.1: Consider (3.6) and (3.7). Then, if
0<B8<2, (3.15)

both equations are asymptotically stable. (See also [6].)

Proof: Consider first (3.6). Let a and a be an eigen-
value and the corresponding eigenvector of [I — 8B]. Note
that both are real since the matrix is symmetric. Then

a’[I-BBla=aa"a
or
Ba™Ba=(1-a)a"a (3.16)
Also, from (3.8) and the Cauchy—Schwartz inequality,
0<a’™Ba<a'a (3.17)
Combining (3.15)-(3.17) we can conclude that
O0<l—-a<fB<2
S0
la) <1.

Hence, since all eigenvales of [I — BB] are within the unit
circle, (3.6) is asymptotically stable.

“Since A is a dla%onal matrix wnh ?osmve values A, on its diagonal,

ATV = diag (A2 05172,
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Now we consider (3.7). We treat separately the off-diag-
onal and diagonal terms of C,. For the off-diagonal terms
we have, because (C,), ;=(C,) ;i and using Observa-

tion 4,
(Ck+1)i,j=Yi,j(Ck)i,j (3-18)
where
;=1-B(B,,+B, ) +28%, , i#].
Since
A% (%), = (X)[+(R),,  (3.19)

we have, with (3.15),
1- Yi,jzﬁ[(Bi,i+ Bj,j)_ZBGi,j]

~ N2 ~ \2 ~ \2 ~ \2
>BE (Xk)i+(Xk)j 1- E (Xk)i+(Xk)/
- XX, 2 X7X,
> 0.
On the other hand,
~ N2 s \2
(X)i+(X))
1-v,;<B(B,;+B,)) ='BE{_—X~',T <p<2.
Hence
|Yi.j| <1
and (3.18) is asymptotically stable.
For the diagonal entries of C, we can define
Oy = [(Ck)l,l’(ck)l,b' : "(Ck)n.n] ! (3.20)
and use (3.7) to write
0,.1= Fo, + B%*h (3.21)
where
T
h= [Hl,l» H2,2a' tT Hn,n]
F=diag {(1-28B, )} + B°G. (3.22)

For stability analysis we consider the autonomous part,
namely, the equation

G, 1= Fd, (3.23)
where
&, = 0. (3.24)
For the above equation we note the following:
(8,),=0. (3.25)
Since by the Cauchy-Schwarz inequality
G,,> B2,

ii=

we have from (3.21) that if (6,), > 0, then

(801),= (Fo,), = (1-288, )(3),+ B> £ G, (5,),

);+B*% G, ,(6,),

J*i

Bi,i)zl(ak)jZ 0

= (1_2BBi.i+:B2Gi,i)(6k

> [1-2p8B, ,+ B(
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Hence, by induction

(6,),20, i=12,--,n (3.26)

for all k.
Now if we denote

n

U = Z (Gk)i’

i=1
we have from (3.22) and (3.23)
V1= v, — B Z [2Bi,i(6k)i_.3 Z Gi,j(ak)j]'
i=1 j=1

Since X7_,G, ;= B, ;
equality

E{(X;k)?} =E

and by the Cauchy-Schwarz in-

or

> ———
20+ LA

Jj=1
we get

Vps1 S 1—3(2—3)ﬁ V-

By (3.15),

0<B2=B) 55— x <1

and by (3.26) v, > 0 for all k, so the above impiies that

lim v, =0
k— o0

and from (3.26) with the definition of v, we conclude that

lim 6,=0.
k— o0

s0 (3.23) and hence (3.21) are asymptotically stable.

IV. PERFORMANCE COMPARISON BETWEEN THE
NLMS AND LMS ALGORITHMS

Since exact quantitative analysis of (3.6) and (3.7) for
the general case seems very difficult if possible at all, we
will in the sequel concentrate on two special cases: 1) all
eigenvalues of R are equal and 2) one eigenvalue of R is
larger than the others which are equal.

However, before we turn to these special cases, the
following comments are in order. Noting that relationships
discussed in Section II between the LMS and SD on one
hand and the NLMS and NSD on the other, one would
expect the NLMS to have better convergence rate than the
LMS. Contrary to the conclusions of [7], both our analysis
and simulations indicate that this indeed is the case.
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In our comparison of NLMS and LMS performances,
since convergence conditions were established, we study
convergence rate of weight mean values and mse behavior
—Dboth its convergence rate and steady-state value. Let us
recall from [2], [3], or [4] that

€= E{(ek)z} =e*+tr[AC, ]

. éx,.(ok),. (41)

This and the structure of (3.7) enables us to lump together
all (a,), which correspond to equal eigenvalues of R. The
measures we use for algorithm performance are the misad-
justment (see [1])

> (42)

for steady-state performance and eigenvalues of the
matrices involved for convergence rates.

A. Case I: \;=\,i=12,---,n

For this case R = AJ hence X, = X,, and the following
result from [9] can be applied: (X7X,) is statistically
independent of any function of X,, #(X,), which has the
property h(aX,)=h(X,) for all a+# 0. Using this, we
have

E{(xkﬁ}—E{(Xf,’;ﬂk' x{xk}
=B, E{XTX,}
E((X)X)}) - E (f;);;f’;ff ( zxk)z}

Hence
1
B,-,,-=;, i=1,2,---,n (4.3)
3
Gi‘i=m, i=1,2,---,n (4.9
and
1 .
G"’:m’ i+ j. 4.5)

Also, using the same technique as in Appendix I one can

conclude
X,)?
H,,— 5| X
(xix,)
1
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Substituting (4.3) through (4.6) in (3.6) and (3.21), we get

B
E{Vk+l} =(1—;)E{Vk} (4'7)
and for v, =" ,(a,),
2- B 5
vk+1=(1—6( , B))vk+(n_€2)>\- (4.8)

From (4.8) the fastest convergence for v, (and equivalently
for €, = €*+ Av,) is achieved for

B*=1 (4.9)

then €, will converge as (1—(1/n))*. Also from (4.8),
clearly

=€*+ —nﬁ_i*
” (n=2)(2-8)

€

and
n
o
(n-2)(2-8)
For the choice (4.9)
n
M*=——. 4.1
- (4.10)
As a basis for comparison we take the value of g
resulting in the fastest mse convergence in the LMS (see [2]
and [3])
1
C2(n+2)A°

With this choice the mse will converge (for the LMS) as
[1-1/(n+1)]% slower than for the NLMS, while the
misadjustment becomes

p* (4.11)

- n

(4.12)

S on+2

consistently smaller than with the NLMS. From the equa-
tions of the weight-mean values we observe that with the
NLMS (B*=1) the convergence is as (1—(1/n))* while
with the LMS (p*=1/2(n+2)A) as {1-1/(n+2)]*. To
conclude, for this case, while not significantly different, the
NLMS converges faster with worse steady-state perfor-
mance (M, > M,).

Remark: An interesting relationship can be observed
between the choice B*=1 for the NLMS and p*=
1/2(n+2)A for the LMS. With B*=1 we have in the
NLMS

1
T 2X7X,

By

which is a stationary stochastic process. It can be shown
that

mode (k,) = p*

>These same equations have been independently derived in [7]. How-
ever, the approach used here is simpler and more straightforward.
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where by mode(u, ) we denote the value of u at which the
probability density function of p, achieves its maximum.

B Case 2: \;>A,=A;=--- =X, =X

The difficulty in analyzing the NLMS lies in computing
B, G, and H (see (3.8)-(3.13)). In Appendix II we demon-
strate how, for the case we have, they can be computed.
The results are

H - 1 F 3 n-2 n+2 ) A
MM r(n-2) 127 2 0 2 U T

A 1
S N (a2

H = 1 F 1 n-2 n+2 ] A
ii (AIA)I/Zn(n—Z) 2’ 2 ) 2 ’ Al

(4.13)

A 1 s
= mfz, i>2 (414)

3AA/A)Y? (5 n n+4

= F| 5,5 s | 1-
YT n(n+2) (22 2

3(A/\)?
& 30N 7 f (4.15)

n(n+2) 73
G _3AA)T (1 ntd (A

T n(n+2) 2727 27 A

3(A /A

a T\ .

e i>2 (4.16)
g QAT 1 n ned (A
“on(n+2) Tl2020 2 A

(A/A)"?

A . .

t e e i j=2 (4.17)
G AT (3 ned A
Mon(n+2) Tl2727 2 0T N

(A/7)"

A .

G i>2 (4.18)
g AT 3 nt2 (N
L n 2727 2 1 N

(A/A)"2

A 7 7

= m— (4.19)
p /M1 k2 A
i n 2’27 2 A

A }\ 1/2
S (/_l)f7, i>2 (4.20)

n
where F(a, B;v; z) is a hypergeometric sequence defined
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by
a- ala+1)-B(B+1
F(a,ﬁ;v;2)=1+%z+ (Y(Yil)('l'z )22
a(a+1)(a+2),3(,8+1)(ﬁ+2)z3
y(y+1)(y+2)1-2-3
T
. TI(y) 2 T(a+tm)[(B+m)
T(a)T(B) =y T(y+m)m!

(4.21)

and I'(+) is the Gamma function.

Using some algebraic properties of the hypergeometric
sequence described in [10] the following can readily be
derived

ntl LY H1-2 422)

1=n+2f4+m +(n+3) A fs (4.
n+1 A 4

f2= n+2f4+ (n+2)7\1f5 ( -23)

+1)A, “3A+A,

3= (" 3)\) fa— (" 3)>\ 5 (4-24)
(”_1))\1 1 1

fe= (n—=2)A ot n+2(2_7)f5 (4.25)
n+1 1

fi= et g (4.26)

where we have expressed all f; through f, and f.

Turning now to (3.21) we note that by making use of the
special case we consider here the behavior of o, and ¢,
can be studied through a two-dimensional equation,

n(°k+1)i [Fl Fz] n(ok)l g ,{Hl}
= €
Z (°k+1).- F F Z (ak)i H,
i=2 i=2
(4.27)
where
F=F, (4.28)
F2=F1,2=F1,3="'=F1,n (429)
F= EE,lz(n_l)FZ (4'30)
i=2
F4=F,-’,+(n—2)F,.,j, i j=2,i#j (4.31)
H =H,, (4.32)
H,= Z H = (n “I)Hz,z (4'33)

i=2

Substituting (4.13)—(4.21) and (3.22) into (4.28)-(4.33) will
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result in
B(A /A 3B
Fi=1- . (2]’6— n+2f3) (4.34)
B*(A /X))
k= Talnr2) (4.35)
E=(n-1)F, (4.36)
B(A/N\)? B(n+1)
e L A ()
1
RES T -
n-—1
fo- (4.39)

H —_——
? (AN)?n(n-2)
From (4.1), (4.2), and (4.27) it follows that
M= B*[A(H,(1- F))+H,F,)+ AH\F+ Hy)(1-F))]
: (l_Fl)(l_FA)_FzFJ .

(4.40)

The value of M, has been computed as a function of S
with A; /N as a parameter and fixed » (Fig. 2(a)) and with
n as a parameter with a fixed A,/A (Fig. 2(b)). We
observe from the figure that M, is monotonically increas-
ing with B, equal to zero at B =0 and goes to infinity at

Mg

40

30

20r

40

30

201

0 05 1.0 |75 B
Fig. 2. Misadjustment dependence on B. (a) n=4. (b) A, /A=5.
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B =2 (this last fact supports the necessity of 8> 2 as a
condition for convergence).

Since equation (4.27) governs the behavior of the mse we
used the largest eigenvalue of the matrix (in absolute

value)
F K
F, F,

from this equation as a measure for speed of convergence.
The values of this eigenvalue were computed as a function
of B and are presented in Fig. 3. We note in this figure
that even for values A, /A >1 optimal convergence rate
(minimum of the computed eigenvalue) occurs around

B*=1. (4.41)
Largest eigenvaiue
10
]
]
0.9r
At/X=10
0.8t
0'70 05 1.0 5 B

0 05 1o 5 B
(b)

Fig. 3. Convergence rate (largest eigenvalue) dependence on B. (a)
n=4.(b) A, /A=5.

In Fig. 4 we present NLMS performance as a function
of the ratio A; /X with B chosen as (4.41). Note that both
transient and steady-state performance deteriorate with the
increase of A, /A.

It has been shown in [11] that, for the LMS to get close
to optimal convergence rate, one can choose

1
EREIERTEETIY R

0 20 40 60
®)

Fig. 4. NLMS performance dependence on eigenvalue spread A, /A. (a)
Misadjustment. (b) Convergence rate (largest eigenvalue).

N/

The choices (4.41) and (4.42) will provide the basis for our
comparison of LMS and NLMS performances. In Fig. 5
we have convergence rate comparisons of NLMS and
LMS, weight mean value in Fig. 5(a) and (b) and mse in
Fig. 5(c) and (d). We observe quite a significant superiority
of NLMS over LMS as could be expected from the discus-
sion in Section II. On the other hand, LMS steady-state
behavior is considerably better than NLMS behavior, as
can be observed in Fig. 6.

V. SIMULATION RESULTS

To verify the analytical results presented in the previous
sections we have run a number of simulation experiments
on the computer. The case used was of the type analyzed
in Section IV-B, similar to the one used in [3], where

Sptng g
S tn,
X, = St ns g
Sptng
and
d,=s,.

S» N; , are sample functions from mutually uncorrelated
zero-mean white Gaussian sequences. The n; , have unit
variance; s, has a variance o2
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(a) E{W,}, o=1.(b)mse, 0 =1. (c) E{W,}, 0 = 4. (d) mse, 6 =4.

In Fig. 7 we compare the results of the analytical equa-
tions with the average of 100 stochastic runs and observe
how close they are to each other. In Fig. 8 we present the
results of using LMS and NLMS algorithms and clearly
observe their support of our analysis of the previous sec-
tion—the NLMS superiority in speed of convergence is
very clear.

VI. CONCLUSION

By introducing the normalized LMS algorithm as an
approximation of the NSD algorithm—a relationship simi-
lar to the one between the LMS and the SD—we feel that
additional insight has been gained. After presenting the
NLMS algorithm, convergence conditions for both first-
and second-order statistics were given and their validity
proven. We have limited our discussions to stationary
Gaussian data without correlation in time.

To gain some quantitative appreciation for the NLMS,
two special cases were chosen for which exact expressions
were derived for both transient and steady-state perfor-
mance. These results were then compared to the LMS
performance with the following conclusions. Significant

improvement of speed of convergence of the NLMS over
the LMS, contrary to some previously published results in
the literature, can be consistently observed at the expense
of worse steady-state performance. A set of simulated
stochastic runs on the computer has been carried out, and
its results verify the analysis of earlier sections.

APPENDIX I

Given an iid. sequence {y,}7, of Gaussian random variables
with zero mean and variance one, we compute

1

Z »w

i=1

To do that we make use of the generalized spherical coordinates
through the following transformation:

IL=E

i-1
y1=r(n sinqbk)cosqb,., l<i<n-2

k=1

n—2
Yuoi= r( I sin¢k) cosf

k=1

n—2
V= r( Il sind)k) sinf
k=1
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where
O<¢,<m
0<8<27
0 <00
Clearly,
n
Z)’iz=’2»
i=1
SO
1 o 0 1 1
1 =E n = “ee ————;—
! Zy_z ffeo ‘/700 Zn:yz (2’”) 72
i=1 ' i=1
n
-CXP(-1/2Z}J,-2)dy1-“dyn
i=1
1. [eo] 27, 7T
= dr do| de, ---de _r"3
ol i
n—-2 s
. I_I Sinnflfkd)kefr /2
k=1
=wa[r" 3"/zalrf sin"~2¢, do, -
(27)”/2 o 1 1
-/"sincﬁ,,_zdcp,,,z.
0
Substituting
v=ri/2
r=(2v)1/2
dr=dv/(20)"?,
we get
—4 ;0 n—2
ST S S _q.-0
j;re dr2zj;vzledv
-4 -2
=27 r("2 ) n>2. (L1)
We also have
k+1
)
./(;Sink¢d¢=r‘/c—+2ﬂl/2’ (1.2)
=)
hence substituting (I. 1) and (1.2) we get
27 2
I —
1 (2 )n/Z
( )f )5
2 I'(1)
.. (n-2)/2
r 2 r 3 !
)
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or, since,

T'(v+1) =oT(v),

(1.3)

APPENDIX 11

To establish the expected values of the various functions of
X, we first consider the following integral which will be central
in the calculations to follow:

7 sin™ xcos” x
[———= (IL.1)
0 (a—boos’x)
Note first that
/Wf(sinx,cosx) dx
0
=f'"/2[f(sinx,cosx) + f(sinx, —cosx)}dx. (IL.2)
0

Now from [10, p. 389] for m> —1, n> —1 and a > |b|>0
fn/2
0

sin™ x cos” x

(a—bcos?x)"

1 n+l n+1 n+1 m+n+2 b
=—kB( )F(—— k'i‘f) (11.3)

a 272 277 2 a

where B(-, -) is a beta function for which
I‘(n+l)r(m+1)
n+l m+1 2
o[ )T

) n+m+2 ’
2 (=5

(11.4)

I'(-) being the gamma function, and F(a, B: v, z) is a hypergeo-
metric sequence defined in (10, p. 1039] as

-B a(a+1)B(ﬂ+1)
F(a B; ‘Y,Z)—1+F +'y(‘y+—1)122
a(a+1)(a+2)B(B+1)(B+2) R
y(y+1)(y+2)1-2:3

Now let { ,}] be an in dependent sequence with y, ~ N(0, ;)
and let g(;, »», -, y,) be any function of y,, then

E{ g(xl’” 'sxn)}
=f_°°°° "f_wwg(yl""’yn)

(I1.5)

(2”),,/2( lil )\‘)1/2

1

'exp{—g > T} dy, - dy,.

‘c

(1L6)

Now use the same coordinate transformation as in Appendix 1,
namely,

i—1
y,-=r(]_[ sin¢k)cos¢,, i=1,2,---,n=2
k=1

Il

Ya—i

n-2
(n smd>k)cosﬂ

1

(11.7)

-2
( ]—[ 1n¢k)sin0.
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Since we deal with the special case where A\, =X i=2,---,n we
observe from (B7) that
J i1 2
Y y,2=r2( I sin¢k)
i=n =
so
2
Y LR S ]
—=r*| —cos’ ¢, + —sin’¢ (11.8)
,‘gl Ai [Al ! A !
and substituted in (IL.6) we get
E{g(yl"”’yn)}
o0 27 T T
=f0 drfo dofo d¢1--~f0d¢,,_2
n—2
8(r,0,4,0 4, ) " I sk g,
£<1
1 21 1
2 e
.———(27)1/2%1{2}\("_1)/2 exp{ - 7[}\—1 cos® ¢y + & sm2¢1]}
‘ (11.9)

where g(-) is the expression resulting from substituting (I1.7) in

8()

From here the computation of the expected values is quite

straightforward. Let

”"

i=1

gy ) =

Then
L =E{ g5, 3)) =fo°°drf02"d0f0"d¢l [T

n—2
-3 it~ 11—k 2
3T sin ¢y COS" ¢y
k=1

(2,”) n/2}\11/2>\(n— 1)/2

rPl1 ) 1 s
-exp —7 /\—lcos ¢1+Xsm¢1 .

We will integrate first with respect to r, using v =cr? we get

1
./-wrnfiie—cr2 dr=_C—(n—Z)/Zfoov[(n—2)/2]fle—v dv
() 2 0

1 n—2
=§C_("‘2/2)F(T), n<2

where

111 ) 1
C=5 A—ICOS ¢1+XSII]¢1 .

IL=E
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Hence

1rn—2
1)

= (2,”,)"/2)\11/2)\(”‘1)/2

1

27 ™ s n—2 2 —(n—-2/2)
f db f d¢, sin" " “ ¢, cos® ¢,c
0 0

-j:d%sin"”%j:d% sin" "4y - j:dd)n_zsin%_z,

or using (1.2)

n-2
A(ln—S)/2r( )
2

L= n_l)fo"dqb

2 1/2A1/2r
. (_2

sin” 24, cos? ¢,

' [Acos2o, + A sin2¢1]("72)/2 .

Substituting (IL1)-(IL5), we get

no{_ 1
i N a(n2)

i=1
F 3 n-2 n+2 ) A
27 2 0 2 U A

Similarly, we can derive all the other expected values.
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