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where T,(a, b, k) is defined by (3.8) and

F.(a, b)=
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tr 67(a, b)P,(a, b)X (2, b)X.(K—a, K-b)D(K, a, b))X(K—a, K—b)X,(a, b)P,(a, b)§(a, b)

rq(a, b) (log r.(a, b))'*
<t 87(a, bP(a, )X (a, bYX,(a, b)P,(a, b)d(a, b) (log r,(a, b))~'~*

< tr 7(a, b)b(a, b) (log r.(a, b))~'~<—0.

Together, (3.8), (3.26), and (3.27) confirm (3.25).
Lemma 4: If conditions A and B hold, then there exist constants K; >
0 and M; > 0 such that

S.(a, b, K)>Kir,(a, b) (log ri(a, b))'**, vn>M,  (3.28)

where eithera < p, b < d,ora < d,, b < ¢; K > d, = max (p, g).
Proof: From (2.10)-(2.13), (3.1) and (3.23)(3.24), it can be shown
that
S.(a, b, k) = 27%||M,(po—a, Go— b)B(po, qo)||>—rala, b)
* (log ro(a, b)' " =2|IM(po—a, go— D)8 po, g0
ID(K, a, YR (K—a, K—b)Qu(a, YW, |
=2 M, (py—a, go—b)8(po, @)| - | DK, a, b)

- X1(K—a, K-b)X,(a, b)P.(a, H)i(a, B)|.  (3.29)

By Lemma 1 and (3.24)

| M, (po—a, go— b)8(po, 0|2
=167 (Po, @I M,(po—a, go— 5))*(po, g0
> K3|8(po, qo)ll>r.(do, do) (log ra(ds, do))' . (3.30)

By Lemma 2 and (3.30)
L= M (po—a, go—b)8(po, )| 3
| DK, a, bYX (k—a, k—b)Q.(a, b)W,, |
< K8(po, g0 *Tuta, b, K)=0. (3.31)
Obviously,
L,=|D(K, a, b)X (K —a, K—b)X,(a, b)P,(a, b)é(a, b)|
IMu(po—a, go—b)8(p0, q0)| 7' —0. (3.32)
From (3.30)—(3.32), it is clear that
ra{a, b) (log r,(a, b))’

R.(a, b)=2"%~ =
| M, (po—a, go— b)B(po, qo)|*

—2L%5-2L, 2 2 %!

for sufficiently large n: hence,
Si(a, b, K) > R,(a, )| Mu(po—a, qo—b)6(po, 0|2
2 Kir,(a, b) (log r,(a, b))'+*.
Then (3.28) is established by taking
Ks=27*"1K7 min (|4, 1%, ||B,]*).

Proof of Theorem 1:1f d, = d, then (2.14) holds by Lemma 3 and
(2.15) is valid by Lemma 4, witha = b = d — 1 and K, = min (K,
K;). Conversely, if (2.14) is true, then it must be that d > d,; otherwise,
d < d,. Then Lemma 4 and the fact that r,(d, d) < r,(d,, d,) imply that

S.(d, d, K)>Kyr,(d, d) (log r,(d, d))'**

this is a contradiction of (2.14). Similarly, the validity of (2.15) means
that d < d, or we infer that d — 1 > d,; then by Lemma 3,

Sd=1,d-1, K)< =K r,(d=1,d=1) (log r,(d—1,d—1))! .

(3.27)

This contradicts (2.15). Thus assertion (1) of Theorem 1 has been
verified.

In case of d = d,, suppose that (2.16)-(2.18) hold; we prove that p, =
pand g, = g. When p = ¢, ifeither p, < por g, < g, then (2.16) must
fail by Lemma 4. When p # ¢, say ¢ < p = d,, then p, must equal p;
otherwise, (2.16) cannot hold. If p, = p and @, > g, then (2.18) fails and
if p; = p, q; < g, then (2.16) is not true by reasoning similar to that used
in the proof of assertion (1). We see that p; = pand q, = gq.

On the other hand, if p; = p and g; = g, the validity of (2.16)-(2.18)
is quite easily checked by Lemmas 3 and 4. End of proof.

IV. CONCLUSION

Theorems for order-determination without a priori knowledge of upper
bounds on the order in dynamic systems are developed. Deterministic
procedures to determine orders and estimate parameters simultaneously
are introduced. In order to be successful and practical, it is necessary that
P.(a, b), 6,(a, b), and S,(a, b, k) be generated from recursive forms.
When the upper bounds of orders are known (which means that k is
fixed), these can easily be found. The other case will be further discussed
and developed in detail elsewhere. It is desirable to weaken Condition A
and generalize the results to systems with correlated noise.
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Integral Action in Robust Adaptive Control
ARIE FEUER AND GRAHAM C. GOODWIN

Abstract—It is well known that integral action can be added to linear
systems to achieve zero steady-state error for constant reference inputs
and disturbances. The result has also been extended [3] to exponentially
stable nonlinear systems. This note shows that a similar property holds
for robust adaptive control systems.
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I. INTRODUCTION

There exists an extensive literature on the use of integral action in linear
control systems; see, for example, [1], [2]. Recently, these results have
also been extended to exponentially stable nonlinear systems [3].

In a separate line of development, considerable progress has recently
been made on the problem of designing adaptive control laws which are
robust to certain kinds of unmodeled dynamics; see, for example, [4]-[8].
In one of these approaches [8], integral action was included in the design
and it was shown that the tracking error converged to zero in the presence
of constant reference inputs, constant disturbances, and unmodeled
dynamics. In [8], the integrator was included in the design from the
beginning. However, an option available in classical control, as exempli-
fied in [2] and [3], is to retrofit the integrator to an otherwise stable
design. We have tested this idea in practice for adaptive control and found
it to work well. The purpose of the current note is to establish the
conditions under which this design option is soundly based.

Our method of analysis amounts to verifying that the key condition in
[8], needed for convergence, is satisfied here as well. This illustrates a
proof paradigm which could be similarly applied to other problems. The
principal assumptions used will be as in [8], namely that the plant when
augmented by an integrator has a known degree of controllability and that
an overbounding function is known for the unmodeled system response.

We will treat the continuous-time case, but the corresponding discrete-
time results follow mutatis mutandis by simply replacing p = d/dr by 6

=g — 1/A, L, by L, | by ¥, and so on.

II. THE SYSTEM MODEL
As in [8], let the plant be described by

y=H,(1+H")u 2.1

where u, y denote the plant input and output, respectively, H, denotes the
“‘modeled’” part of the plant, and H’ denotes unmodeled dynamics.

The model H, will be parameterized as a rational transfer function,
ie.,

B

H,=— 2.2
p 2.2)

where
A=p"+a,.1p" '+ +a,

B=b, 1p" ' +b,_2p" 24+ by b, #0.

We require the following assumptions about the plant (2.1).

Assumptions Al:

i) The operator H’ describing the unmodeled dynamics is analytic
outside the stability region and has an impulse response which is bounded
by a decaying exponential;

ii) the plant H,(1 + H’) is strictly proper; and

iii) the plant, when augmented by 1/p has a coprime fractional
representation in the ring of causal stable operators. More precisely, we
require that for a given Hurwitz polynomial J of degree (n + 1) there
exist causal stable operators x and @ such that [9],

Ap BU+H) |
N [7]+Q [_J ]1.

III. PARAMETER ESTIMATION

2.3)

We plan to design an adaptive controller including integral action which
should: a) stabilize the system; and b) cause y to asymptotically track a
constant reference input y *. Towards this end, we express the model (2.1)
in filtered (or fractional [9}) form as

y

e

Ey;=(E—A)y+ Bus+ 1, 3.1

where

E=p"+e,_1p" '+ +e,
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is Hurwitz and

L
55" (3.2)
uy biiQu (3.3)
B
n;:%é H'u (3.4)

where Q is Hurwitz of degree 1 and where 7, denotes the filtered
unmodeled response. Note that the filter 1/E is a low-pass filter, whereas
p/Q is a high-pass filter. Thus, (3.1) is simply obtained from (2.1) by
band-pass filtering.
Equation (3.1) can be written in the standard regression form [10] as
() =&()70, +9,0) 3.5)
where ¢ and 0, are the regression vector and tuned parameters,
respectively, given by
(3.6)

SO =1y = 0"yt e, p" U]

0l=le—a, " "y e 1—a1, byy o, Bl 3.7

Because H’ is exponentially stable it is readily seen {5], [8] that the
filtered unmodeled error 7, can be bounded by an exponential function
of past inputs, i.e.,

[l <8 vt (3.8)

where

Blk)y=eat ™ lv(p)us(1)| (3.9)

where g, < 1 and »(p) is an arbitrary Hurwitz polynomial of degree n —
1.

As in [4]-[8], we assume sufficient knowledge of the unmodeled
dynamics to find €, o, such that (3.8) is satisfied. In practice, this does not
represent a major difficulty since one can start with conservative values
and then ‘‘tune-up’’ the bound.

The parameter estimator can now be constructed using ordinary least
squares (for example) incorporating a relative dead zone [5}-[8] to
“‘protect’’ the algorithm against the unmodeled errors. An appropriate
estimator is

~ aPae -
= .
P [T67Po1Cola’ C>0 (3.10)
aPppTP
2 . S — 1
. 1+ Pot CoTd @10
e=y—o70 (3.12)
and ¢ implements a relative dead zone as follows.
Choose v > 0, and let
£ L Vy+1. (3.13)
Then, with 8 as in (3.9)
am 0 if e|<¢£8 (3.14)
SfIEB, e)le otherwise (3.15)
where
) e—g ife>g
flg, e = 0 if lej<g (3.16)
e+g ife< —g.

The properties of the above parameter estimator are, by now, standard
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and given in [8]. In summary, its key properties are as follows:

S1£B, el
Vi+oTe

i) pf € L,

i) €L,

iii) [16-6,1=<18,—6,.
IV. CONTROL LAW SYNTHESIS

We will use a pole placement design. However, unlike the result in [8]
will not include the integrator in the design equation. Instead, we will add
it afterwards as in [2] and [3]. We use the usual certainty equivalence
principle [11]. Thus, let

BT L (B, -+, 000) B leg—dy, s €y~ Gurs Do, -, Baii] @.1)
and define

A=pr+d,_p" '+ +d, 4.2)

B=b, p" '+ +b,. 4.3)

We then define L and P of degree n and (n — 1), respectively, by the
following identity:

AL+ BP=Ax* 4.4
where A * is an arbitrary Hurwitz polynomial of degree 27. (The issue of
relative primeness of A, B will be addressed in Section V.)

We next implement the feedback law conceptually as shown in Fig. 1
where the dotted line represents the retrofit integrator and e’ is a small
constant.

Using filtered signals, the control law of Fig. 1 can be implemented as

Lo 2 = Poren [ =z ); =y—y* 4.5
P EQu— o+e EQz, I=y-y 4.5)

(4.6)

or

Lu;= A(ﬁp+e’)z/'; uf:E% u; z; =@ zZ.

Actually, there are several other ways that the integrator might be
added to the feedback system, e.g., as in Fig. 1 but with the summation
point after 1/£. We have found the setup of Fig. 1 to be most suitable in
terms of the stability analysis.

One final key point is that we must choose the sign of €/ correctly. The
analysis in [2], [3] for the nonadaptive case, suggests the following
choice:

sign e’ =sign b,. 4.7

V. STABILIZABILITY OF THE ESTIMATED MODEL

In common with all analyses of adaptive control laws to date we require
stabilizability of the estimated models. Also, since our control law
involves integral action, we need to ensure that the estimated model does
not have a zero at the origin. Thus, we require |5, | to be bounded away
from zero.

These two requirements can be achieved by running parallel parameter
estimator as in [8]. Each parameter estimator ensures that the correspond-
ing estimates lie in a convex region, say D;, for the /th estimator. It is
then simply required that:

»
e, el Jb
i=1

P
ii) for all § € U D;, A and B are uniformly relatively prime and
i=1

b, is bounded away from zero.
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Summation
Point

Plant

= __J

“Slow'" integral path

Fig. 1. Conceptual implementation of feedback law.

We then employ a projection as in [11] to ensure that §; € D;. Also, for
each estimator we monitor

' f1EB, &)’

T167Pg dr (5.1)

M,(z‘)=S

and basically choose that estimator which has the lowest value of M(r).
(Actually, some hysteresis is needed to avoid switching back and forth
between estimators infinitely often—see [8] for details.)

It is readily shown [8] that this selection procedure:

a) retains the standard properties of the estimators;

b) ensures that there exists some time ¢, after which only one estimator
is selected; and

¢) ensures that each estimated model is uniformly stabilizable with b,
bounded away from zero; thus

d) in view of b), ¢), and (4.7), €' is constant for all ¢ = ¢,.

VI. STABILITY ANALYSIS OF THE ADAPTIVE CONTROL LAW

The key equations describing the adaptive feedback law are as follows:
i) the prediction error equation (3.14) which can be rewritten as

Ay;=Bus+e (6.1)
1i) the feedback control law (4.6)
Luy= —(Pp+ehyz/ 6.2)
iii) the design identity (4.4)
AL+ BP=A* (6.3)

(where the coefficients of L, P are guaranteed bounded by the multiple
estimator strategy). Noting that py* = 0, (6.1), (6.2) can be rewritten in
state-space form as

px=A(t)x+Be 6.4)
where
_'ﬁn»l) s _'dn; 09 5;—1’ s 50
1 : O 1
A= 1 0‘ | B=}0
—Fnas B -P,, e, =1, y =1y 0
0 10
X(OT & (o], ooy 2], 0" Ty e ) (6.6)

The time-varying matrix A(f) can be readily seen to have eigenvalues
which are the (2n + 1) zeros of the polynomial (4*p + €’ B). In order
that we can apply the proof paradigm of [8], we require that the matrix has
all its eigenvalues in the strict left-half plane for each fixed time instant.
We therefore establish the following lemma.

Lemma 6.1: For some fixed €’ sufficiently small, the zeros of the
polynomial (4%p + € B) are in the strict left-half plane.

Proof: This result is actually implicit in [2] but can be easily
established in the SISO case as follows. Property iii) of the parameter
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estimator implies that the coefficients of B are bounded. Also, by design,
A * has bounded coefficients and zeros in the strict left-half plane. If we
now form the Routh-Hurwitz array for A*p + ¢/B we find that the left

column of the array is (G,.’; i=1,2,---,2n + 2) where
G, i=1,2, -, n+2
G/ =13 Gi+0(e'); i=n+3, -, 2n+1)
elb,; i=2n+2

where (G;; 1 = 1, 2, ---, 2n + 1) is the left column of the Routh-
Hurwitz array of A* and where lim,s_q O(e’) = 0 (follows from the
boundedness of B’s coefficients).

Since the polynomial A * has its zeros in the strict left-half plane, we
know that each G; is positive. Thus, since sign ¢/ = sign b, and |b,| is
bounded away from zero, we can choose ¢/ > 0 (independent of time)
such that G/ is positive for all time. However, this is a necessary and
sufficient condition for (4*p + €/B) to have its zeros in the strict left-
half plane. O

Thus, we see that for each frozen time instant the matrix A(¢) in (6.4)
has eigenvalues in the strict left-half plane. Inspection of the proof in [8]
shows that this is the key requirement for convergence of the adaptive
control algorithm. Thus, using the proof paradigm of [8] we have

Theorem 6.1: Subject to Assumption A.1 and provided

i) (3.8) is satisfied for some ¢, v, E, Q, o,

ii) e/ and € are sufficiently small (both depending on A, v, E, Q, a,,
A*), then:

a) all signals remain bounded; and
b) lim,.. y — y* = 0.

VII. CONCLUSIONS

It is known that in classical control, it is permissible in certain
circumstances to retrofit an integrator to an otherwise stable design. This
note has shown that a similar procedure is valid for adaptive control. A
simple strategy has been described for choosing the integral constant and
global convergence has been established for the resultant algorithm.
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Recovering the Poles from Third-Order Cumulants of
System Output

JITENDRA K. TUGNAIT

Abstract—The problem of identifying the poles of single-input/single-
output (SISO) linear stochastic systems from the higher order statistics of
noisy observations is considered. It is assumed that the system is driven by
an independent and identically distributed non-Gaussian process with
nonzero third-order cumulant function at zero lag. There is no other
restriction on the prebability distribution of the driving noise. The system
is assumed to be of known order, causal, and exponentially stable, but is
not required to be minimum phase. The system output is observed in
additive, possibly non-Gaussian, noise. We show that if there are no pole-
zero cancellations in the transfer function of the given system, then it is
necessary and sufficient for a block Hankel matrix to have rank equal to
the system order where the matrix is constructed from a partial set of
third-order cumulants of the noisy output sequence. This fundamental
result then leads to a linear solution to the problem of estimating the
coefficients of the system characteristic polynomial from which the
system poles can be found via root-finding.

1. INTRODUCTION

A vast majority of the literature on system identification and parameter
estimation using only the output data is restricted to minimum-phase
system models [5]. However, there are several cases of practical interest
where the underlying signal/system model is either causal nonminimum-
phase or noncausal; see, e.g., [1], [2], [6]-[14]. System identification for
such models may be accomplished by the use of the higher order statistics
{11, (2], (6]-[14]. The area of parametric modeling via cumulant statistics
has attracted considerable attention in recent years; for a tutorial and a
perspective, see [7] and [8], respectively, where further references may
be found.

This note is concerned with the problem of recovering the poles of a
causal stable ARMA (autoregressive moving average) model of known
order from the third-order statistics of the system output. We show that if
there are no pole-zero cancellations in the transfer function of the given
system, then it is necessary and sufficient for a block Hankel matrix to
have rank equal to the system order where the matrix is constructed from
a partial set of third-order cumulants of the noisy output sequence. This
fundamental result then leads to a linear solution to the problem of
estimating the AR coefficients from which the system poles can then be
obtained via root-finding.

The problem of linear estimation of the AR coefficients of an ARMA
model from the higher order statistics of the system output has not been
satisfactorily addressed so far; previous attempts include [1, proof of
Lemma 6] (also repeated in {10, proof of Lemma 3] and [13, proof of
Lemma 3]), [11], and [12]. The approach of [11] is flawed as evidenced
by our (counter-) example in Section III (see also Remark 1). In [1] it has
been claimed that there exists a subset of output cumulants that yield the
AR coefficients; the proof is by contradiction and it invokes some results
of Lii and Rosenblatt [14] which require that the system transfer function
be nonzero at zero frequency. As discussed in Remark 2 in Section III, the
arguments of [1] are flawed; the results of [1] remain true, however. In
[12] the same flaw recurs since the arguments used are the same as in [1].
Our results proved in Section III do not require that the system transfer
function be nonzero at zero frequency.

The problem of pole recovery from fourth-order statistics has been
addressed in [3] and [9] following the approach of this note.

The fundamental results pertaining to the recovery of the poles of a
causal stable ARMA model from the third-order statistics of the process
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