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and deduces the normal equation by a method of derivation, which
introduces some difficulties in the complex case. But even in the
real case, it is the wrong way to obtain the results.

It is clear that P(1) is the development of

J(w) = E{|y - w*x\z}

where y is the desired signal and x the vector observation, which
are supposed to be complex second-order random variables (RV).
It is much better to start from (1) than from P(1).

In fact (1) shows that J (w) is a distance in the Hilbert space H
of second-order RV’s. In this space the scalar product between two
vectors u and v simply E (uv*), where the star denotes the complex
conjugate. Let us call H, the subspace of H containing all the RV’s
on the form h'x. The problem is to find the element of H, giving
the minimum distance to y. The solution is. well known, and is
given by the projection theorem, or

w'x = Proj [y|H,] (2)

whicli is the geometrical definition of w. To find explicity the so-
lution, it is sufficient to apply the orthogonality principle, or

y—wx || H, (3)
which can be written
E{h“x(y - w*x)*} =0, v h. (4)
Developing this expression we obtain
K (p— Rw) =0 (5)

and as this must be valid for all h, we obtain Rw = p, or the normal
equation P(2).

This proof is absolutely general and does not introduce any dif-
ference between the complex and the real case. It guarantees the
fact that it is a minimum, while this point needs a special argument
when using differentiation giving only an extremum.

An objection can be made that it makes use of the projection
theorem which can be unknown. To overcome this, it is sufficient
to prove that any other solution gives a greater mean-square error,
which is an indirect proof of the projection theorem, for those not
familiar with it.

For this we start from P(1) and we calculate J (R™'p + v). By
simple algebra this gives

J(R'p+v)=J(R"'p)+vRo. (6)

As R is a nonnegative definitive matrix, v'Rv = 0, and the result
is

vo,J(R'p+wv)=J(R'p) (7)

which completes the proof, or proves the well-known result that
the projection gives the minimum distance.

This proof is not only the shortest possible, but also puts the
problem in its true framework, which is the concept of Hilbert space
of RV’s, already known, {1, p.96], [2, p.40], {3, p. 25]. Further-
more, it is the basis of a geometrical interpretation of all the mean-
square estimation problems whose extension to constrained prob-
lems [5] and nonlinear problems [5] are solved by the same meth-
ods.
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Variable Length Stochastic Gradient Algorithm

Zeev Pritzker and Arie Feuer

Abstract—This correspondence describes the transversal variable
length stochastic gradient (VLSG) algorithm. The algorithm is derived
from the stochastic gradient (SG) algorithm which is modified in order
to allow dynamic allocation of coefficients of an adaptive filter. The
order of the filter and the adaptation step size are changed automati-
cally when an appropriate level of performance is reached during the
course of the adaptation process. This way the algorithm results in
both fast convergence, typical to low order filters, and good steady
state performance, typical of high order filters.

I. INTRODUCTION

The stochastic gradient (SG) is a very common adaptive algo-
rithm [1]-[3], [6]. Probably the most common SG algorithm is the
least mean square (LMS). It is a very simple algorithm and that is
the main reason for its popularity. However, a major problem with
the LMS is its slow convergence compared to other algorithms
which are clearly more complicated (e.g., the recursive least
squares algorithm). As a result, considerable effort has been di-
rected towards improving the convergence rate of the LMS while
preserving its basic simplicity.

In this correspondence we describe a new modification of the
LMS and from the results we have, quite a promising one. Our
idea is based on the following two observations: Generally, with
the LMS, the lower the dimension of the regression vector, the
faster the algorithm convergence. On the other hand, the higher the
dimension of the regression vector, the better the algorithms steady
state performance. To accommodate these two contradictory goals
we propose an LMS which can change its dimension—initially low
dimension to achieve initial fast convergence, and gradually in-
creased dimension to finally give the desired steady state perfor-
mance. We called this algorithm the variable length LMS
(VL-LMS).

While an analysis of the VL-LMS performance is beyond the
scope of this paper we make use of the close relationship between
the steepest descent (SD) algorithm and LMS—the LMS can be
viewed as an approximation of the SD. We apply the variable length
approach to the SD to get what we called the VLSD and analyti-
cally show the convergence rate improvement possibilities. This
provides the motivation for applying the variable length approach
to the LMS and, as a matter of fact, to many other SG algorithms.
Extensive simulations verified the improved convergence rate of
the VL-LMS over the standard LMS, and a sample of these results
is presented here.

II. THE VARIABLE LENGTH STEEPEST DESCENT (VLSD)

The general problem we address can be presented as follows.
Given a vector {X,} € C" and a scalar {d,} stochastic se-
quences find a vector of weights W, € C" which will minimize the
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mean-square error (MSE)
I =E{|e’} = E{|a, - w'x,}. (1)

E{ } denotes the ‘‘expected value of { }** and () is the complex
conjugate transpose. The solution to this problem is well known
and given by

Wop = Ry'p (2)
where
Ry = E{X,X}'} (3)
and
p = E{d:X,}. (4)

Wy can be computed in an iterative way by means of the SD al-
gorithm

Wi =(1—”RN)WH+ILP (5)

which is known to converge, with properly chosen step size, to
Wop- (For a more detailed description and discussion see, e.g.,
[61.)

We note that in all adaptive filtering applications X, =

% %, —15 * * *, X,_n4117 where x, is a stochastic stationary se-
quence, so that

Ry(i,j) =E{xn-i+lx;r—j+l} =r(i—J) (6)
where Ry (i, j) is the (i, j)th element of Ry and r(k) is the kth

sample of the autocorrelation sequence of x,.

By substituting (2) into (1) we get the minimal MSE for the N-
dimensional case

2 -
Toin(N) = E{|d,["} — p"Ri'p (7
while the learning curve (describing the MSE at each iteration) is
Jn(N) = Jmin(N) + (Wn - Wopx)HRN( W, — Wopl)' (8)

The rate of convergence of J, depends on the convergence of W,.
W, has several modes contributing to its convergence and clearly
the slowest will dominate its rate of convergence. So we will use
the slowest mode of W,’s convergence as our measure of the con-
vergence rate of W,,. It is well known (see, e.g., [6]), that the choice

2

Hon(N) = o N) ¥ cmn (V)

)

will result in the fastest convergence of the SD. oy, (N) and
amin (N ) are the largest and smallest eigenvalues of Ry, respec-
tively. With this choice of u the slowest mode is given by

BN = |1 - l“’oplamax(N)l = |1 - ”Oﬂlami“(N)I

_S5,(N) -1
=5 1 (10)
where
Sa(N) = O‘max(N)/C'min(N) (“)

is the eigenvalue spread of Ry.

It can be readily seen by (10) that 8y is a monotonically increas-
ing function of S,(N).

Next we are going to show that S,(N ) is a monotonically non-
decreasing (strictly increasing in most cases) function of the di-
mension N.

The computation of the eigenvalues of Ry is not an easy task,
even for small values of N (see, e.g., [S]) and no closed form
expressions exist for these eigenvalues or the corresponding eigen-
value spread. Instead, we bound S, (N ) by S, (N — 1) and achieve
our purpose this way.

Since Ry is Hermitian it can be partitioned as follows:

Ry_1 vy
Ry=1| , (12)
rv-1 r(0)
where ry_, € C¥~'. Then we have the following:

Theorem 1: Let Ry be a positive definite matrix partitioned as
in (12) where Ry -\ is its principal submatrix. Then

S,(N) = S (N - 1) (13)

for all N > 1. Furthermore, let an eigenvector of Ry_, corre-
sponding to either o, (N — 1) or a,,;,(N — 1) be not orthogonal
tory_,. Then

So(N) > S(N - 1) (14)

for N > 1.

The proof of this theorem follows directly from results in [7] and
[8] where the eigenvalues of Ry_, and Ry are shown to have an
interlacing property.

We have so far shown that 8 is a monotonically increasing func-
tion of S,(N) and that S,(N) is a monotonically increasing (in
most cases) function of N. Thus, clearly, 8y is a monotonically
increasing function of N. This means that the larger N is, the slower
the convergence of W, to W,,.

We, however, are interested in the behavior of the MSE. Using
results from [6] we know that the slowest natural mode of the MSE,
which, again dominates its behavior, is given by

Jo(N) = Join(N) + (Jo = Join(N)) B

To apply our approach we must guarantee that starting with the
same initial MSE, after the first iteration the MSE for N is smaller
than the MSE for (N + 1). For this we need the following:

Assumption AI: The minimum MSE levels J,,;,(N) and J,i, (N
+ 1) satisfy the following inequality for N > N

‘,0 - Jmm(N) 1- 6%\/+I
‘10 _Jmm(N+ 1) 1- B%I ’

Assumption Al together with the monotonicity for 8y will guar-
antee that

(15)

Ji(N) < J1(N + 1)

and applying the proposed variable length approach will give the
desired improved performance.

Note that in practice it is common to have Jy >> J.,., (N ). Then,
because of the monotonicity of 8y, assumption Al is readily sat-
isfied.

The proposed VLSD algorithm is then as follows. The adapta-
tion is started with N weights and the algorithm is switched to N
+ 1 weights at an appropriate moment (e.g., any moment before
ny in Fig. 1). The added weight is initially set to zero. The process
is repeated until the desired filter order is reached. The advantage
of the VLSD over SD is illustrated in Fig. 2.

The choice of the initial order N should be made with caution in
order to satisfy Assumption Al. If N is chosen to be too small
Jmin (V) may be not far enough from Jj, to satisfy (15). Simulations
have shown that in practice choosing a sufficiently large N(3 to 6
in most applications) will solve the problem.

The ideal switching point, n,, is illustrated in Fig. 1, and an
exact expression for it as a function of J,; i (N), Jmin (N + 1), By
and By, can be derived. This expression is quite complicated and
in practice the following simple technique has been successfully
implemented. A small ¢ > 0 is set and the algorithm is switched
to a higher order when the MSE decays below J;, + ¢, i.e, when-
everJ, < Jun + ¢.

So far we have described the VLSD. This algorithm cannot be
of much practical use since exact knowledge of input statistics is
required for its implementation. However, it provides valuable in-
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Fig. 2. Learing curves of the (N + 1)th order SD algorithm and the VLSD
algorithm with N = N, N =N + 1.

sights and motivation for the forthcoming VL-LMS algorithm. The
results of this section were verified by computer simulations which
confirm the validity of our analysis. The simulation results are given
in Section 1V.

III. THE VARIABLE LENGTH LMS ArGORITHM (VL-LMS)

Taking the SD algorithm in (5) and replacing Ry and p with their
instantaneous estimates X, X and d#X,,, respectively, one gets the
well-known LMS algorithm

Wn+l = Wn + [‘LC,TX,,

(16)

where

e, = d, — WIX,. (17)

The proposed VL-LMS algorithm is then as follows. The recur-
sive algorithm (16) is initially used with N weights. The algorithm
is switched to N + 1 when the MSE is close to J,,;, (N ) where the
added weight is initially set to zero. The process is repeated until
the desired filter order is reached. In fact the VL-LMS algorithm
is the stochastic version of the VLSD algorithm just as much as the
LMS is the stochastic version of the SD. Between the switching
points the VL-LMS behaves identically to the corresponding fixed
length LMS with the same number of weights and same initial con-
ditions. It is known, [6], that the learning curve of the LMS ex-
hibits behavior similar to that of the corresponding (same step size)
SD. Hence, the learning curve of the VL-LMS will exhibit behav-
ior similar to that of the VLSD.

The choice of the switching points, however, has to be recon-
sidered. Recall that in Section II, J.;,(N) were assumed to be
known for each N. This assumption is not valid in practical use of
the VL-LMS. Still, in many applications, some a priori knowledge
enables the derivation of a set of reasonable estimates for these
values. For example, in the adaptive equalization application the
algorithms input {x,} is the output from a linear channel excited
by an i.i.d data sequence. Since voiceband communication chan-
nels are only allowed to vary within certain limits (such as CCITT
specifications for allowed amplitude and phase responses) the
channels output {x, } belongs to a bounded population of stochastic
processes for which a reasonable set of estimates of J,,;,(N ) can
be generated a priori.

In order to detect switching points we need to estimate recur-
sively the MSE, J,(N). A simple and robust estimate of J,(N)

.

can be obtained by performing ‘‘exponential smoothing’’ of the
square error in (17). So

J(N) = (1 = @), (N) + |e, ]’ (18)

where 0 < @ < 1.

Another difference between the VLSD and the VL-LMS is the
choice of the step size u(N). It cannot be chosen equal to that of
(9) since the LMS algorithm requires smaller g in order to converge
(see, e.g., [2]). The bound suggested in [2] is

"'max(N) = 2/[3trRN]
= 2/[3Nr(0)].

However, to get a smoother behavior for the LMS we chose the
value

u(N) = 0.2/[Nr(0)] (19)

proposed in [6].

It should be noted that this choice for our initial N may well be
larger than the allowable for final desired filter length N.

The “‘misadjustment’” is defined for the fixed length LMS as the
ratio of the excess MSE due to gradient noise to the minimal
achievable MSE. Its steady state value in a stationary environment
was given approximately by [6] as

M(N) = 1/[2uNr(0)]. (20)

It has been observed that in practice the noisiness of the LMS learn-
ing curves remains very much the same during the learning period
and the steady state. M (N ) can then serve as a measure of gradient
noise level during the adaptation process. For the VL-LMS algo-
rithm substitution of (19) into (20) results in

M(N) = 1/[2n(N)Nr(0)] = 0.1 = constant. (21)

This reflects an important property of the VL-LMS algorithm: De-
spite the fact that the step size is increased (typically by an order
of magnitude, beyond even the stable range of the fixed length
LMS) during early stages of adaptation, the level of gradient noise
remains constant. If such large step sizes were used in fixed length
LMS a very noisy learning curve or even divergence would result.
Note that the steady state misadjustment of the VL-LMS is the
same as for the fixed length LMS of order N.
. The VL-LMS algorithm is summarized as follows:

1) < Initialize >
1.1 Setasmall¢ > 0
1.2 Setasmall @ > 0
1.3 Set an array of empirically estimated MSE levels Jyin (N )

t0 Join(N — 1)
14N=N
1.5 4 = 0.2/[Nr(0)]
1.6 W, =0

2) Forn = 0 to infinity do:

N=N+1

goto2.1.

IV. COMPUTER SIMULATIONS

In order to test the proposed algorithm extensive simulations have
been performed. The inverse modeling application (see [6]) was
chosen in order to demonstrate the VLSD and the VL-LMS algo-
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rithms performances. The variable parameters of the simulation
were the plant’s impulse response and the minimal and final filter
lengths, N and N, respectively. The performance of the VLSD and
the VL-LMS were compared with the performance of the conven-
tional SD and LMS algorithms applied to an adaptive FIR filter of
fixed length N. _

Ry, p, and J ;. (N), (N < N < N) were computed from the
plant’s impulse response and the input noise variance. The SD and
the LMS algorithms were run using (5) and (16), respectively, with
identical step size given by (19). The VL-LMS algorithm was im-
plemented as described at the end of Section III. The VLSD algo-
rithm was implemented as described in Section II, except the choice
of u(N) and the switching moments, which were chosen to be
identical to those of the VL-LMS.

Fig. 3 shows the results of the runs of the four algorithms on the
same scale. The plant impulse response is (0.5)" forn = 0, 1, 2,
3,and N = 2, N = 8. The curves for LMS and VL-LMS are the
averages of 10 independent runs. As expected, the LMS and the
VL-LMS learning curves closely follow those of the SD and VLSD.
Clearly, the variable length algorithms converge considerably faster
than their fixed length counterparts. Despite the fact that the step
size which is initially used for the VL-LMS is 4 times that of the
LMS ((19) for N = 2 and N = 8), the VL-LMS learning curve
exhibits the same low level of gradient noise as that of the LMS.
These results are in full agreement with our analysis.

Fig. 4 corresponds to plant with impulse response (0.5)", n =
0, 1. Again N = 2, N = 8 and we observe a clear advantage of the
VL-LMS over the LMS.

The choice of the switching parameter ¢ was made empirically.
The best value of ¢ was found to be 0.15 with initial MSE nor-
malized to unity. The sensitivity of the algorithm to ¢ appears to
be very low: The behavior of the VL-LMS algorithm was practi-
cally unaffected when ¢ was changed in the 0.06-0.2 range.
Clearly, this reflects low sensitivity of the algorithm to the esti-
mated J,;, (N ).

We have also applied the VL approach to another SG algorithm
used for blind equalization (see [4]). The key idea is to avoid the
use of training sequences and then the MSE turns out to not be an
appropriate performance criterion {1], {3]. The performance sur-
face is nonquadratic in this case, and a good measure of a blind
equalizer’s performance (residual intersymbol interference in a
digital communication system) is

2 v

k#0
2
Vo

D=

where { V. } is the impulse response of the overall communication
system (the channel in series with the equalizer) sampled at the
symbol transmission rate. For more details see, e.g., [1]. Zero dis-
tortion (D = 0) means perfect equalization. The condition D =
—15 dB is commonly referred to as ‘‘open eye.”” When the blind
equalizer reaches the open eye condition, the equalization can be
switched to a much faster ‘‘decision directed’” algorithm [3]. The
time required for convergence to the —15 dB level is therefore of
paramount importance.

In Fig. 5 we show the evolution of the distortion for the fixed
length blind equalizer with 30 complex weights (FLBE-30) which
is typical for practical implementations. An alternative approach
proposed in [4] is to use FLBE-15 and to pad zeroed weights to get
the 30 taps before switching to the decision directed mode. In Fig.
5 we show both the FLBE-15 and the corresponding VLBE. We
clearly observe the faster convergence of VLBE to the open eye
level. Using the variable length filter strategy reduces the overall
convergence to that of the conventional equalizer without the pen-
alty of training sequence.

V. CONCLUSION

In this correspondence a new transversal variable length sto-
chastic gradient (VLSG) algorithm was proposed. The key idea is

FesRwEw IEANREAmARRSEARBBE
T T T T T
o] 200

Fig. 3. Learning curves of the SD and the LM_S with N = 8 and the VLSD,
VL-LMS with N =2, N = 8.

T T T 1 T
o] 100 200 300
Fig. 4. A comparison between LMS and VL-LMS performances (N = 2,
N = 8 plant length is 2).

Distortion
FLBE-30

FLBE-IS

—25 -
_30J

Fig. 5. A comparison of variable length blind equalizer (VLBE) and fixed
length blind equalizer (FLBE) performances.

to adjust the number of the adaptive filter’s weights (filter length)
dynamically. This way we accomplish both fast initial conver-
gence, typical to small number of filter weights and low steady
state MSE, typical to large number of filter weights.

We have concentrated here on the VL-LMS but the same ap-
proach can be implemented on other SG algorithms as demon-
strated in our simulations. Also, we believe that additional perfor-
mance improvement can be gained by clever design of a variable
length stochastic gradient algorithm in the nonstationary input case.
This, however, is a subject for further study.
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Cumulant Series Expansion of Hybrid Nonlinear
Moments of Complex Random Variables

Gaetano Scarano

Abstract—In this correspondence a general theorem for zero-mem-
ory nonlinear (ZNL) transformations of plex stochastic pr
is presented. It will be shown that, under general conditions, the cross
covariance between a stochastic process and a distorted version of an-
other process can be represented by a series of cumulants. The coeffi-
cients of this cumulant expansion are expressed by the expected values
of the partial derivatives, appropriately defined, of the function de-
scribing the nonlinearity.

The theorem includes as a particular case the well-known invariance
property (Bussgang’s theorem) of Gaussian processes, while holding
for any joint distribution of the processes. The expansion in cumulants
constitutes an effective means of analysis for higher order moment
based estimation procedures involving non-Gaussian complex pro-
cesses.

I. INTRODUCTION

Bussgang’s theorem [1] (as extended to the complex case in [2])
states that the cross correlation between two jointly normal,
zero-mean, stationary complex stochastic processes x(¢) and y ()
is proportional to the cross correlation between x(¢) and z(¢), a
(complex) zero-memory nonlinear (ZNL) transformation of y(¢)

Re(7) = E{x(t) - 2(t = 1)} = K * Ryy(7)
=K E{x(r) - 5(r — 1)}

in which z(#) = g[y(#)]. An overbar denotes complex conjuga-
tion. The proportionality factor

K=i)z [y - 2y0])

was derived in [2], in which oi =E{ly |2} is the variance of y (¢).
This is also referred to as the invariance property of complex
Gaussian processes.

In this correspondence, it is shown that the invariance property
is a special case for Gaussian processes of a more general theorem
that holds for any distribution of the processes. In fact, it will be
demonstrated that, when the function g(.) that can be expressed
in the form g(x) = f(u, w)| u=x Where f(u, w) is analytic both in

u and w, the cross covariance E {x(#) - Z(t — 7) } can be expanded
in a series of cumulants weighted by the expected values of the
partial derivatives of the function f(u, w). This expansion in cu-
mulants constitutes a useful means of analysis for higher order mo-
ment based estimation procedures involving complex, non-Gaussian
processes.

.
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II. THE CUMULANT EXPANSION

The class of analytic conjugate functions in a field 4 is intro-
duced and defined as follows:

acx = {g(x): g(x) = flu, W)

f(u, w) analytic in (4, A)} .

u=x,
w=X

For analytic conjugate functions, the differentiation is defined in
terms of differentiation of the analytic function f (4, w), i.e.,

gr+e
erami 80 = €70 ()
grta
= au”aw"f( wex
=f(""”(x,f).

The expected value is denoted by E {.}, complex conjugation by
the overbar, and the random variables (RV’s) extracted at the in-
stants ¢ and ¢ — 7 from processes x(¢) and y(¢) by X and Y, re-
spectively.

In order to simplify the notations in the following, the case X =
Y is considered first. The extension to the bivariate case is straight-
forward and does not affect the essence of the development that
follows.

Theorem 1: Let g(.) be a conjugate analytic ZNL transforma-
tion in a field A, on which is defined a circularly symmetric com-
plex random variable (CRV)X'. Then

o

1
) —
g=0(q + 1)!q!

where k$¢* "9 is the complex cumulant of order (g + 1, ¢ + 1)
of the bidimensional CRV (X, X).
Proof: Let

E{x . §(x)} =

E{g(q+l,q)(x)} . k5?+l.q+1)

Px (x) = px, x, (X, X;) be the joint probability density
function (p.d.f.) of the real and
the imaginary partof X = X, +
X

Py (s, v) = E{e® ™}

= E{e™*™} the (complex) moment generat-
(s = z(E - Jjn). ing function (m.g.f.) of (X, X);
=3(& +jn) :

the cumulant gene@ting func-
tion (c.g.f.) of (X, X).

Cx(s v) = log Py (s, v)

Differentiating with respect to s both sides of

Cx (s, v) = log Px(s, v)
yields

Px(s, v) - C¢O(s, v) = P{ Vs, v)

where, genérically, the subscript ”* ¢ denotes partial differentiation
p times with respect to s and ¢ times with respect to v.

Again, differentiating r times with respect to s and t times with
respect to v, the Leibnitz theorem for functions of two variables is
obtained:

!
"

(r+ 1,0 = Z Py R
PY*O(s, v) Eo ] Z ¥ v)
. CS{H—I,/—n) (s, v). (1)

'For simplicity, moments and cumulants are taken around the origin,
which is supposed to be enclosed in the ficld A. More generally, the theo-
rem holds replacing x by x — xo (for x, € A), and considering moments
and cumulants around xq.
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