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and the scalar «; corresponds to the minimum mean-square error
of the quadratic function W/ Q, W — 2PTW + 1 and is given by

ay = 1- Wi'o wi. ™

Hence, if there are enough number of degrees of freedom in the
system, one would expect o; = 0 and

W7o Wi = 1. ®)
Hence, the constrained optimization problem can be reexpressed as
min WTRW (9a)
w
subject to (W — WO Q (W - W) < & (9b)

III. LIMITING SOLUTION AS § — |

It can be verified [1] that the optimum weight vector that solves
(9) is given by
W= X(,(R + )A\an)qQ| W9
= Wi - R+ X,0Q) 'RW/ (10)

where X, is the optimum Lagrange muitiplier, which is the root of
the following equation:
WiI'RR + ,0)'QR + X, Q)" RW! = ¢ (1

It is clear from (11) that as £ — 0, A, = oo, and as ¢ — 1, A -
0. Also

= IWIRR £ 8,007 QR + R, 00"
“ QR + R, 007 'RW] a2)
Hence, £ isAa nonincreasing function of A, as X, increases.
Also,as A, = 0
R+R0)"'"=R'"- KR '"QR". (13)
Equation (11) can be reexpressed as
AWITQRT'QR™'Q WY — 28, Wi QR™'Q, WY
+ wi'g Wy = 14)
Substituting (13) into (10) gives
Eliml W=RXART'OW, =AR'P,. (15)

Recently, Kikuma and Takao [S] proposed a technique based on
the correlation-constrained minimization of power (CCMP) method
for broad-band array design. The criterion is to minimize the output
power under the constraint on the cross correlation between the
desired signals at the input and output of the array. The constraint
to protect the desired signal is determined by a prior knowledge of
the characteristics of the desired signal in terms of its direction of
arrival and frequency spectrum. It is shown in [4] that when the
desired signal is modeled to have a flat spectrum over the frequency
band of interest, the CCMP method is equivalent to solving the
following constrained optimization problem:

min W' RW (16a)
w
subject to PTW = 1. (16b)

The optimum weight vector that solves (16) is given by

Wwe Rh 17
~ PIRT'P an

Comparing (15) and (17), it is interesting to note that the limiting
solution of the guadratically constrained broad-band processor
problem as £ — 1 is equivalent to that of the CCMP method. Hence,
the following conclusions can be made.

1) It was reported in [S] that the CCMP method is sensitive to
spectrum mismatch. Hence, one would expect that the soft con-
strained minimum variance beam-forming method as proposed in
[6] would also be sensitive to spectrum mismatch if high levels of
distortion are permitted.

2) In those applications, where the signal power spectrum is
known, the improvement in SNR through the use of soft constraints
can also be achieved through the constrained system defined by
(16). In fact, the linearly constrained system defined in (16) is much
easier to solve.

IV. CoNCLUSIONS

The correspondence has derived the limiting solution of the
quadratically constrained broad-band beam formers as £ — 1. It is
shown that the limiting solution is equivalent to the CCMP method
proposed in [5]. Hence, the improvement in SNR through the use
of soft constraints {6] can also be achieved through the CCMP
method, which is much easier to solve. However, like the CCMP
method, one would expect that the soft constrained beam-forming
method is sensitive to spectrum mismatch when high levels of dis-
tortion are permitted.

REFERENCES

[1] M. H. Er and A. Cantoni, ‘‘A new approach to the design of broad-
band element space antenna array processors,”” IEEE J. Ocean. Eng.,
vol. OE-10, pp. 231-240, July 1985.

[2] —, “*An alternative formulation for an optimum beamformer with
robustness capability,”” Proc. Inst. Elec. Eng., vol. 132, part F, pp.
447-460, Oct. 1985.

[3] —, “*A unified approach to the design of robust narrow-band antenna
array processors,”” IEEE Trans. Antennas Propagat., vol. 38, pp. 17-
23, Jan. 1990.

{4] M. H. Er, **An alternative implementation of quadratically constrained
broadband beamformers,’” Signal Processing, vol. 21, pp. 117-127,
Oct. 1990.

[5] N. Kikuma and T. Takao, ‘‘Broadband and robust adaptive antenna
under correlation constraint,”’ Proc. Inst. Elec. Eng., vol. 136, part
H, pp. 85-89. Apr. 1989.

[6] B. D. Van Veen, ‘“Minimum yariance beamforming with soft response
constraints,”” IEEE Trans. Signal Processing, vol. 39, pp. 1964-1972,
Sept. 1991.

On the Steady State Performance of Frequency
Domain LMS Algorithms
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Abstract—The use of the fast Fourier transform (FFT) in the imple-
mentation of the least mean square (LMS) algorithm in the frequency
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domain results in several types of algorithms, two of which can be
classified as constrained and unconstrained. In this correspondence,
we point out that, in general, especially with correlated data, the un-
constrained algorithm may have a significant performance advantage
in steady state if block mean square error is the criterion. Further-
more, we point out here that, in the constrained algorithms, the choice
of different step sizes in different frequency bins (as is commonly done)
will very likely result in a deterioration of steady state performance.
This does not happen in the unconstrained algorithm.

1. INTRODUCTION

Adaptive filters are used in a wide variety of applications. The
most common algorithm implemented in these filters is the least
mean square (LMS) algorithm. However, two phenomena have ad-
verse effects on the performance of the LMS. When there is a need
for a high-order filter, the allowable step size is reduced, and the
algorithm becomes very slow. Another problem occurs when the
input signal to the filter is highly correlated. Then, typically, the
result is a large spread of the eigenvalues of the autocorrelation
matrix, which again causes the algorithm to slow down. In addi-
tion, with a large-order filter, the computational load can be very
substantial

A number of researchers noted the possibility of implementing
the adaptive filter in the frequency domain (see, e.g., [1]-[6], [9]).
There, the use of the fast Fourier transform (FFT) provides a con-
siderable reduction in computation, and the ability to control each
frequency bin separately provides an improved convergence rate
over the time domain LMS algorithm. There are several approaches
described in the mentioned references, differing in the way the FFT
is used. The common underlying denominator is that, in most cases,
the frequency domain adaptive filter is used as an alternative to the
time domain LMS, attempting to reach the Wiener optimal solution
faster and in a computationally more efficient way. In [9] this as-
pect is emphasized. The simulation results presented there show
the transient behavior of some of these approaches.

In this correspondence, we point out, however, that depending
on the data used, the results may be quite different than implied in
the various algorithms. We mainly concentrate on the optimal so-
lutions and the steady state solutions, but also, discuss briefly some
convergence aspects.

II. CONSTRAINED AND UNCONSTRAINED FREQUENCY DOMAIN
ADAPTIVE FILTERS

The well-known least mean square (LMS) algorithm has the form
w(t + 1) = w) + 2ue(®) X(1) Q)]

where X(7) is the data vector (sometimes referred to as the regres-
sion vector), and in adaptive filters typically consists of

X0 =@, x@¢ =1, -+ ,xt = N+ DI ?)

and p is the time domain LMS step size. The error at sample ¢ is
given by

e(r) = dr) — y(»
= d@n = XO'w(@) 3)
where d(f) is the ‘‘training sequence’” or the desired response of
the adaptive filter.
A block implementation of the above algorithm was proposed in

[7] to gain computational efficiency. The idea is to accumulate a
block of data and update the gain vector w once every block,
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namely, at the jth block

2up -
w(j + 1) = w(j) + % K7 (4)

where L represents the block length.

X = [X((j — DL + D, X(j - DL + 2),
- XY (5)

¢ =1le((j— DL+ 1), e((j — DL + 2),
- e(jD)" (6)
e((j — DL + i) =d((j — DL + i) = X(j — DL + i)'w(j)
©)

and ug is the step size. It has been shown in [7] and in [8] that the
block LMS (BLMS) algorithm of (4) attempts to optimize the av-
erage block mean square error (BMSE), namely

i
J = I &{efe} ®

which, for stationary signals, results in the same optimal solution
as the LMS algorithm [of (1)], provided the number of gains
[namely, the dimension of the vector w(j)] is the same in both
algorithms.

Next came the frequency domain implementation of the adaptive
filter. This, however, created the need for 2N-point FFT, because
of the known relationships between the DFT, the circular, and the
linear convolutions. Hence, the frequency domain algorithm, re-
sulting from N-dimensional time domain algorithm, is 2N dimen-
sional. Around this point evolve the differences between the algo-
rithms proposed in [3], [4], [6], and [9]. The algorithm proposed
in [6] unifies and generalizes the ones in [3], {4], and [9]. It is
given in the following form:

Wk + 1) = Wk) + 2GupX(k) " VE(k) )
where
W) = [W,(k), - -+, Wiy (01"

is the frequency domain gain vector at iteration (or block) k.
In the equation above, we denote by G and V'

G = FgF™' (10a)

V = FyF ™! (10b)

where
27
F={qu}‘ quzexp ’J‘ZW(P—l)(q—l) 5
p.og=1,2,---,2N
is the 2N-point FFT matrix; and g, v are diagonal matrices repre-
senting the weight vector constraint and the error vector constraint,

respectively.
By similar notation

X(k) = FX,F~' = diag (Xo(k), - -+, Xow—i(0)) (D)
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is the input signal matrix in the frequency domain,
x((k = DN)
x(tk + DN — 1) x((k — I)N)

P =

Xk+ DN+ 1) x(k— DN +2) ---

is the input signal matrix

E(k) = D(k) — X(k) W(k) (13)

is the error vector in the frequency domain: D(k) is the 2N-point
FFT of the desired signal and pris a nonsingular matrix controlling
the convergence rate of the algorithm (typically a diagonal matrix).
With the above notation, we can readily point out the main dif-
ferences in [3], [4], and [6].
In [4]
2N

[23:]
wp =210

&= N

N
eel, v= 2 eel
i=N+ =

(e; is the ith column of the 2N x 2N identity matrix /).
In [3]

N
g=1 v= E;I eel, pr = adiag B(X)™"

P (X) being the average power in frequency bin i.
In [6], an additional possibility is proposed

=l§ I + cos Ei I
J 2i=1 N ci€is

N
v= 2 eel,
i=1

ur as in [3].

III. THE OPTIMAL SOLUTIONS

It is well known that the LMS algorithm (1) is motivated by the
MSE criterion and converges, with some misadjustment, to its op-
timal value. Similarly, the BLMS converges to the optimal value
of the BMSE in (8). The question is how can the algorithm in (9)
be motivated and what does it converge to. To answer this ques-
tion, let us define the following problem.

Find W e C*, which minimizes

1

T

E{E(k) " VE(k)} (14)

subject to the constraint

W € range [G] (15)

(range [G] is the subspace spanned by the columns of G). Note

that Jy as defined in (14) is, in fact, the BMSE (with v of [3], [4],

and [6]), and that in the algorithm given in (9), W(k) € range [G]

for all k provided W(0) € range [G] (otherwise W(k) — range [G]).
To solve the above problem, let

n = rank [G]

(note that n is also the dimension of range [G]) then, since G =
G, there exists a full column rank matrix G € C™ " such that

G = GG".
Then for every W € range [G], there exists a unique W e C”, such
that

W =GW. (16)

x(k— DN+ 1) -

x(kN) Cx(k + DN = 1)

Cx(kN — 1) -+ x(tk + DN = 2)
. . . (12)

x(kN + 1) - -« x((k — l')N)

Substituting (16) into (14), the optimization problem can be recast
in terms of W. Namely, find W that minimizes

Jy = ! S{EW" VEK)}

TN
1
= oN2 1€ {Dtk)" VD(k)}

- 2WHGY & {X (k)" VD(k))

+ WHGHS (X" VX(k)} GW]. (17
Assuming & {X(k)* VX(k)} > 0, a unique optimal solution exists,
which is given by

Wo = [GY8 {X()" VX(K)} G17'GPe (X" VD(K)}  (18)

and the optimal value for Jy will then be
I = 2—;,—2 8 {DW VD) — WHGHE (X" VXY GW,].

(19)

Going back to the algorithm in (9), and recasting it in terms of
W(k), we get

Wk + 1) = Wk + 2G"u: X" VE(R) (20)

where

E(k) = D(k) — X(k) GW(k). @2n

Taking the expected value of both sides of (20), and assuming that
X(k) and W(k) are independent, it can readily be shown that if the
algorithm converges then

lim §{Wk)} = W,
k— oo
and W,, will satisfy

Glur8{X(0" VD)) = G"ur& {XR) VXR)} CW,..  (22)

The discussion so far enables us to make the following obser-
vations.

Observation 1: In the unconstrained frequency-domain adaptive
filter (UFLMS), where n = 2N, G, and pur have no effect on the
optimal solution and W, = W,,. Namely, the algorithm converges
1o the optimal solution. However, in general, the optimal solution
of the UFLMS does not correspond to a time-invariant filter (it will
result in circular rather than linear convolution).

Observation 2: Any constraint imposed on the FLMS, namely
any case where n < 2N, will, in general, result in a deterioration
of performance (the optimal BMSE J, will be larger). This can
easily be seen from the fact that we are optimizing over a subset
of gains as stated in (15). Clearly, the smaller » is the smaller the
set to which W is constrained and the larger the corresponding J,
(the worse the performance of the algorithm).
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Observation 3: In the constrained case (n < 2N), the choice pr
= uol, uo, a positive scalar, will guarantee (see (18) and (20)]

W, = W,.

Namely, the algorithm will converge to the corresponding optimal
solution. However, any other choice of ur will result in W, #
W,, which means that the steady state BMSE of the algorithm will
be larger than the optimal (beside any misadjustment due to the
stochastic nature of the algorithm).

Applying the above observations to the three specific cases dis-
cussed in [6] and detailed here earlier, we can conclude the follow-
ing:

For g = I (n = 2N) (as in [3]), we get the smallest optimal
BMSE and can choose uy = diag (g, * * * , pan) # pol to improve
the algorithms rate of convergence without affecting the corre-
sponding optimal BMSE.

For g = Ef';’NH e;el (n = N) (as in [4]), we get, in general,
degradation in the possible optimal BMSE. Additional degradation
is introduced by choosing ur # pol—again the typical tradeoff im-
proved convergence rate on account of degraded steady state per-
formance.

Forg = L&, (1/2) + (1/2) cos ((x/N)i)ejel (n =N — 1)
(as in [6]), again we get a possible degradation in the optimal BMSE
with further degradation due to the choice pg # pgl.

It should be pointed out that the above-mentioned phenomenas
. were not observed in the simulations described both in [4] and [6].
The reason for that is the special type of data used there. In both
cases, the data used were generated by passing x(7) through a finite
impulse response (FIR) filter to get d(r), and the order of this filter
was assumed to be known and used to determine the adaptive filter
order. We note that the simulations in [4] and [6] were done to test
the algorithms for the ideal cases for which the analysis is tractable.
However, since our purpose is to investigate a more realistic sce-
nario, we choose to use the example described in [3] through which
we demonstrate the points made here. This example is more reai-
istic because we use correlated data, and we do not assume the
order of the FIR filter.

IV. NuMericaL ExaMpLE

To demonstrate the points made, we chose to use the same data
used in [3]. These data are generated by passing a sequence {x(1)}
through an FIR filter of order 31. Namely, the desired signal d()
is given by

32
d@y = Zl wox(t — i + 1)

where two possibilities for x(¢) are considered:

Case 1 x(r) white noise with & {x(1)*} = 1.
Case 2 x(1) the output of an AR filter of order 12, namely

12

x(t) = _ZI ax(t — i)y + n()

with & {n(t)’} = 1.

The values of wy,; and q; are given in Table I (they are the same
as in [3]).

Differing from [3], we do not assume knowledge of the order of
the FIR filter generating d(f) instead choose N = 16. This means
that the frequency domain implementations will require 2N = 32
points FFT’s. For each of the above cases, we calculate the BMSE

TABLE |
Values of Values of
Wo; a;
w, = 0.230847 a, = 1.46034
wy, = —0.102171 a, = —1.26638
wy = —0.0383698 a; = 0.850541
w, = —0.295674 a, = —0.629542
ws = —0.00575074 as = 0.497503
we = —0.00693523 a, = —0.273701
wy; = —0.029532 a; = 0.168227
wy = —0.00690188 ag = —0.257914
we = —0.0503678 a, = 0.238396
wye = 0.0102334 a,, = —0.508109
wy, = —0.0448287 a,, = 0.37944
w, = —0.0354443 a;, = —0.204267
wiy = —0.331595
wiy = 0.0051575
wys = —0.0419697
wye = 0.00518027
w, = —0.163817
wie = —0.00926803
wie = —0.000896433
w,y, = —0.00948155
w,y = —0.00180632
woy = —0.000774926
w,y = —0.00647487
wyy = —0.00329426
was = —0.00438749
W, = 0.000927637
w,, = —0.0000200423
wyy = —0.00152551
Wy = 0.00340074
wy = —0.00310239

way = 0.00551548
way = 0.00336223

according to the following equation:
1
BMSE = 25 (8 {D()" VD(K)}

—2WHGHE (X" VD(K)}
+ WHGH e (X" VX(k)} GW

where we substitute for W either W, or W,, calculated from (18)
and (22), respectively, according to the particular combination we
are interested in.

In all the cases where pp # pol, we chose ur = & {X()" X(k)},
which is clearly diagonal since X(k) is a diagonal, and each value
along the diagonal is the power in the corresponding frequency bin.
Note that, as we pointed out earlier, when we refer to the steady
state BMSE, we exclude the additional BMSE due to the stochastic
nature if the algorithm (which corresponds to the misadjustment, a
term commonly referred to in the literature). Let us denote by:

BMSE-1 Optimal BMSE in the constrained algorithm with n =
16 (as in [4]). This is identical to the steady state value for this
algorithm when ur = pol, and to the optimal solution of the
16th-order LMS filter in the time domain.

BMSE-2 Steady state BMSE for the same algorithm as BMSE-1
when pp # pol.

BMSE-3 Optimal BMSE in the constrained algorithm with n =
31 (as in [6]).

BMSE-4 Steady state BMSE for the same algorithm as BMSE-3
when pr # pol.

BMSE-5 Optimal BMSE in the unconstrained algorithm [3] (as
in [4]—the choice of ur has no effect and the steady state BMSE is
equal to the optimal).



IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41, NO. 1, JANUARY 1993 423

TABLE 11
BMSE Case 1 Case 2
BMSE-1 0.00059 0.0022
BMSE-2 0.00059 0.0088
BMSE-3 0.00042 0.001
BMSE-4 0.00042 0.0011
BMSE-5 0.00015 0.00069

Note that since no additive noise exists in the generation of d(r),
the minimal BMSE possible (which can be achieved if one takes N
=32)is 0.

The results are summarized in Table II.

From the results summarized in Table I we note that generally
the differences between all the BMSE’s are smaller in case I than
in case 2. So the phenomena described here are more disturbing
when the data are correlated (case 2 here). Since in case 1 it can
be shown that the power is equally distributed in all the frequency
bins [x(7) is white noise], there are no differences in this case be-
tween BMSE-1 and BMSE-2, and similarly between BMSE-3 and
BMSE-4. The only factor here is the constraint imposed through
G—the larger n the smaller the BMSE. In case 2, on top of this
phenomena, which can be observed by comparing BMSE-1,
BMSE-3, and BMSE-5, we note the additional degradation due to
choosing ur # pol. This can be seen by comparing BMSE-1 to
BMSE-2 and BMSE-3 to BMSE-4. In the latter, since n = 31,
which is very close to n = N = 32, the unconstrained algorithm,
there is a very small difference between BMSE-3 and BMSE-4, and
between both of them and BMSE-5. It is, however, clear that in
both cases the unconstrained algorithm results in the smallest
BMSE, as we claimed earlier.

V. CONCLUSION

In this correspondence, we have pointed out a potential problem
in some of the frequency domain implementations of the LMS al-
gorithm using the FFT. In general, using unconstrained algorithms
will result in an improved BMSE at steady state. This is true when-
ever the adaptive filter order is smaller than the order of the data-
generating filter. When these data are correlated, the above phe-
nomenon seems to be more pronounced (case 2 of our simulations).
Additional deterioration in the steady state performance will occur
in the constrained algorithms when different step sizes are chosen
for each frequency bin (namely, ur # ugf). Our conclusion is that,
from the point of view of our discussion here, the choice of the
unconstrained algorithm is preferable since it could result in the
best steady state performance, and the pur could be chosen so as to
get the best convergence rate without affecting the steady state per-
formance (we emphasize again that our reference to steady state
BMSE does not include the additional BMSE due to the stochastic
nature of the algorithm, the analysis of which is beyond the scope
of this correspondence).

We would also like to refer to some of the comments made in
[6]. There, the claim was that the constrained algorithms converge
faster than the unconstrained. However, the modification proposed
there is hardly a constrained algorithm (the resulting G is of rank
31), and we note that in the algorithm, (9), the product of a non-
singular G by a diagonal ur, can be replaced by a nondiagonal pg.
Hence, the results in [6] seem to indicate that for the best conver-
gence rate, one should consider a nondiagonal ug in the uncon-
strained algorithm.
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One-Bit Spectral-Correlation Algorithms
W. A. Gardner and R. S. Roberts

Abstract—A technique that greatly simplifies the computational com-
plexity of digital cyclic spectral analysis algorithms is presented. The
technique, which is based on Bussgang’s theorem, replaces complex
multiplications in spectral correlation operations with simple sign-
change and data-multiplexing operations. Moreover, the technique is
applicable to both time- and frequency-averaging algorithms. A sim-
ulation study that compares the computed results obtained using the
new technique with results from standard time- and frequency-aver-
aging algorithms shows that the new technique is very pr ing, par-
ticularly for frequency-averaging algorithms.

I. INTRODUCTION

Most modulated signals encountered in communications and te-
lemetry systems exhibit cyclostationarity. A fundamental tool in
the study and exploitation of cyclostationarity is the cyclic spec-
trum analyzer; that is, an instrument that computes the cyclic spec-
trum from signal measurements and graphs this function (its mag-
nitude and/or phase) as the height of a surface above the bifrequency
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