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On the Optimal Weight Vector of a Perceptron with
Gaussian Data and Arbitrary Nonlinearity

Arie Feuer and Roberto Cristi

Abstract—In this correspondence we investigate the solution to the
following problem: Find the optimal weighted sum of given signals when
the optimality criteria is the expected value of a function of this sum
and a given ‘“‘training’’ signal. The optimality criteria can be a nonlin-
ear function from a very large family of possible functions. A number
of interesting cases fall under this general framework, such as a single
layer perceptron with any of the commonly used nonlinearities, the
LMS, the LMF or higher moments, or the various sign algorithms.

Assuming the signals to be jointly Gaussian we show that the optimal
solution, when it exits, is always collinear with the well-known Wiener
solution, and only its scaling factor depends on the particular functions
chesen. We also present necessary constructive conditions for the ex-
istance of the optimal solution.

I. INTRODUCTION

We consider the configuration of a single perceptron, which con-
sists of a linear combination of N input sequences passing together
with a training sequence through a nonlinearity. This configuration
is depicted in Fig. 1. Typically, the perceptron output try to track
the training sequence. The nonlinearity block here contains the
nonlinear function of the perceptron, any nontinear effects in mea-
suring the training sequence (e.g., quantization, hard limiter), and
the tracking criteria chosen. Similar configurations with specific
nonlinearities have been discussed in [1]-[3]. Specifically, [3] deals
with an adaptive algorithm which updates the weight vector in or-
der to achieve optimal tracking.

It is well known from the adaptive filtering literature that the
ability to determine the existence and structure of the optimal so-
lution is at the basis of any adaptive algorithm. Since the percep-
tron weights are updated adaptively, the existence of an optimal
solution and its nature must be addressed. That is exactly the pur-
pose of this correspondence. We show here that for a very large
family of nonlinearities, with Gaussian data, the optimal solution,
if it exists, is collinear with the well-known Wiener solution. We
also provide necessary conditions, testable for any particular non-
linearity, for the existance of the optimal solution.

II. THE MAIN RESuULT

Let us consider the configuration in Fig. 1 with the processes

X(n) =[x (n), x,(n), - - -, xy()}, d(n)
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f(y.d)
Fig. 1. Problem configuration.
being stationary and jointly Gaussian. We denote
R = E{X(mX(m)} (M
P = E{d(m)X(m} 2
R, = E{d(m)d(m)}. 3)

Clearly, y(n) = WTX(n) and d(n) are also jointly Gaussian, with
a density distribution function given by

1 1 2 T T, 23
=—"s ——— (R;y? — 2P"Wyd + W'RW d
p(y, d) 27‘_]"|/2exp{ 2|r|(dy 'y )

)
where |r| is the determinant of the covariance matrix r
WRW  P'W
" LTW R, } ©

Define the general tracking criterion as
JWy = E{f(y, d)} ®

where f(y, d) can be any nonlinearity which is bounded by an
exponentially increasing function. Clearly, to be a valid tracking
criterion, it must satisfy certain conditions but at this point this is
not our concern. The problem we want to solve is to find a vector
(set of gains) W, which minimizes J(W), namely,

W,

ope = arg min J(W). (@]
WeRY

Noting that R ™'P is what is commonly referred to as the Wiener
solution we have Theorem 1, as follows.
Theorem 1: W, in the sense of (7), if it exists, is of the form

Wy = aP~'P ®)

where « is a scalar.

Proof: The proof makes use of some of the ideas in Price’s
theorem [4]. It is well known that the Gaussian p.d.f can be written
in the form

©

1 ” VW
p(y,d) = an? S‘ S_m e DG (), wy) dwy dw,  (9)

where ® (w;, w,) is the joint characteristic function of y and 4. So,
by (6) and (9)

JWw) = S_ Si f(y, dp(y, d)dydd

l @ @ oo @
oo ]

< e TG (o) dw, dw, dy dd. (10)
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Since y and d jointly Gaussian, using (4) and (5) we have

®(w,, wy) = exp { —3 (WRWw? + 2P"Ww, w;, + R,wd)}

¢9))
so that
B(W) = 2’ S_w S;mf(y’ 2 g_m S_m [=RWwi = Pww,]

- e iyt wddg (o w,) dw, dw, dy dd. (12)

But, it can be readily shown (using (9)) that

Ppyd) _ 1

3y’ @n)? S_m S_m Wi Om, we T dw dw,

and
Fp(y,d) _ 1 g‘”
ayod (2’
- ey gy dy,.

So, substituting in (12) we observe that
aw) S“’ g‘”
w T ). _wf(y, d)
Fp(y.dy ¥y d)
- |RW + P
[ dy? dyod

S_m wywy & (W, wa)

-

} dy dd.

(13)

Since f( y, d) is bounded exponentially the following integrals are
well defined:

© =Y 82 ,d
w=| [ o220 ma s
R p(y, d
w={ | o 2laa a5

(Note that ; and «, depend on R, P, R;, and W itself; however,
the important fact is that both o and «, are scalars.)
Hence, W, must satisfy aJ (W) /@W = 0 or, equivalently, from

(13)-(15)
a)RW + P = 0. (16)

Clearly, if &; = 0 and &, # 0, W, does not exist, if «; = 0 and
o, = 0, (16) is trivially satisfied, and for o, # O we get

W = @R ™'P
where

2 (17)

o
O

Assuming the W, exists we may substitute (8) in (4) and (5) to
get

R N L p2 2052
p(y. d) = 2| 72 exp{ 21 (Ryy* — 2aByd + o'fd )}

(18)

and

o8 af
ol »
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where
B =PRP. (20)

Denote

®|&

then we have
Theorem 2: For (8) to be the solution of (7) o must satisfy the
equation

E{lyy? — ayd — *8(y — D1f(y, d)} = 0.

Proof: By straightforward calculation of 8°p(y, d)/ ay?,
3%p(y, d)/dydd, and substitution in (14), (15) and (17) will result
in (21). [

Corollary 1: Assuming f(y, d) is twice differentiable then for
(8) to be the solution of (7) o must satisfy the equation

@n

ahy (@) + hy(@) =0 (22)
where
3 (y, d
By (e) = Ei——ff’yz )z 23)
y
(O, D
k() = E {——aya ¥ } (24)

Proof: Since we have assumed that f( y, d) increases at most
exponentially, clearly f(y, d)p(y, d) and f(y, dy/dy p(y, d)
both go to zero as either |y| or |d| go to . Thus, (13) can be
integrated by parts to result in

aJ (W) *f(y, d) 3f(y, d)
—_— = R P .
aw E { Y=o T T ayad
Then, substituting 3J (W) /W = 0 and (8) we get (22) which com-
pletes the proof. O

In a typical perceptron the function f(y, d) has the form
fr.d) = [21@) = &I

where g, (+) and g, () are some nonlinear functions.
Assuming g;(+) is twice differentiable (22) becomes

E{a(g:(D — [81@) — &2(»1g () — gid)g:(»} =0
(26)

(25)

where g/ (x) = dg;(x)/dx.
Let us now consider some choices of the functions g;(-).
Case 1.
1, forx >0

0, forx =0
-1, forx < 0.

g (x) = g(x) =sgn(x) =

Here g;(-) are not differentiable so neither is f(y, d). Hence we
will use Theorem 2 to find the needed « of the optimal solution in
this case.

Straight calculation shows that here

f(y, d) = 2[1 - sgn () sgn (d)]
and since

E {sgn () sgn (d)}

= 2 arcsin <sgn (a)>
1r Py
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E{y*sgn () sgn (d)}

208 vy =1 . <sgn (@) )}
= —— + arcsin
v Vy

{sgn ()
E{|ylal}

= 2—a§ {sgn (@) vy — 1 + arcsin <M>]
- N~

substitution in (21) results in an identity 0 = 0. This means that in
this case, every scalar « satisfies (21). However, since

P'R “Pﬂ
R,

clearly, any & > 0 will provide an optimal solution, namely, for
this case

2
JW) wear-1p =2 {l - arcsin <sgn (@)

Wop = aR7'P for any o > 0.

The negative « corresponds to the maximal J (W).
Case 2. g,(x) = g,(x) = Kx (the linear case).
For this case g/ (x) = K and g/ (x) = 0, so (26) becomes

E{aK’ - K} =0
the solution of which is & = 1. Namely, Wope = R7'P as is well
known.
Case 3. g,(x) = go(x) = x2.
Here, g/ (x) = 2x and g/ (x) = 2, so0 (26) becomes
E{a(dy® — 2(d* - y?) — 4dy} = 0
or
aBe? —y—2)=0

with the solutions «; = 0 and o, = v(y + 2)/3. It can readily be
shown that @, corresponds to the optimal solution we seek, while
a; corresponds to the maximal value for J(W).

Case 4. g (x) = g,(x) = x".

In this case, which generalizes cases 2 and 3, we have gilx) =

n

nx" "' and gi(x) = n(n — 1)x" "2 50 (26) becomes
Efa[@n = )y*"" " — (n = Da"y" " = nd" 'y" '} = 0.

After calculating the needed expectations we find that this equation
has two solutions only, «; = 0 and

o = |20
: fi(n)

@2n — 1!
2" n — 1!

In/2]
v

Eu 29(n — 2)1(j H?

where

filn) =

fn,y) = n! + (n!)?

(by [-] we denote the largest integer smaller than the number in the
brackets).

III. CoNcLusION

The general form of the optimal solution in a single perceptron
with almost arbitrary nonlinear function has been introduced. It has
been shown that this solution is always collinear with the Wiener
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solution obtained in the linear case. Conditions for the existence
of this solution have been presented as well. Extension to more
complex structures of perceptrons (such as multiple layers) is cur-
rently being investigated.
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A Note on the PQ Theorem and the Extrapolation of
Signals

Irwin W. Sandberg

Abstract—The problem of determining a band-limited function from
its values on a finite interval is ill conditioned in the sense that although
the pertinent inverse map exists, it is discontinuous at every point. We
show that whenever certain closely related general problems are well
conditioned in the sense that the inverse operator is continuous, they
can be solved using a special case of a known algorithm. In particular,
attention is directed to the relation between the PQ theorem, its Hilbert
space projection-operator setting, and later work.

[. INTRODUCTION AND ILL CONDITIONING

A familiar extrapolation problem in the area of signal processing
is that of determining a band-limited signal from its values on a
finite interval. More specifically, the problem is to find v given u
where

Wv = u,
v belongs to the subset B of L,(®) consisting of all functions band

limited to some band [—8, 8], W denotes the windowing defined
by

WH® = f,
=0,

1] < 1

otherwise
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