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Interrelations Between Continuous
and Discrete Lattice Filter Structures

Steven R. Weller, Arie Feuer, Graham C. Goodwin, and H. Vincent Poor

Abstract— Lattice filter structures have a long history in the
filtering and prediction of discrete-time signals. Often these
discrete-time signals arise from the sampling of an underlying
continuous-time process, and the limiting behavior of the filter as
the sampling rate increases is rarely considered. In this paper it
is shown that this issue is resolved if the standard formulation of
the lattice filter structure, based on the forward shift operator, is
replaced by an alternative formulation based on the incremental
difference, or delta, operator.

The paper contains two contributions. First, the continuous
and discrete lattice algorithms are presented in a unified
framework, thereby revealing their common structure. Secondly,
it is shown that when the discrete-time signal is obtained by
sampling an underlying continuous-time process, the lattice filter
corresponding to the discrete case converges, in a well-defined
sense, to the solution of the underlying continuous problem as
the sampling period approaches zero.

I. INTRODUCTION

ATTICE filter structures have been studied extensively by
various authors in the context of the modeling of discrete-
time signal processes in autoregressive form, e.g, Morf et
al. [16], Honig and Messerschmitt [6], and Goodwin and
Sin [5]. The lattice: form arises by orthogonalizing the past
data, replacing this original data by a sequence of orthogonal
residuals spanning the same space. Because the lattice filter
produces as its output one-step-ahead and one-step-backward
residuals of the incoming observations, it is straightforward to
use it as a one-step prediction filter [3]. As such, the lattice
filter is an alternative to the common transversal filter structure
for realizing a restricted complexity one-step predictor (the
Levinson predictor).
By considering the one-step-ahead prediction problem as
a special case of the more general problem of estimating
a smooth signal buried in white noise, we reformulate the
lattice filter using an incremental difference operator—the
delta operator [15]. In this formulation, the sampling interval
appears explicitly, and the discrete lattice structure is presented
in a fashion that leads naturally to a continuous form as the
sampling rate increases. The continuous lattice filter presented
here appears in the work of Kailath er al. [2], [10], [13]. We
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present the filter here to highlight the connection between
the continuous lattice filter and its more common discrete
counterpart.

We will also re-examine the one-step-ahead prediction prob-
lem, and present an appropriate continuous-time counterpart.
This work complements earlier studies by Kailath ez al
[2], [10] and Pham and le Breton [12], [17] and presents
these results in a unified framework. In the latter work high
order derivatives of the process are regressed on lower order
derivatives. This leads to an interesting extension of the
Levinson-Durbin approach to continuous time. However, due
to the nature of the regressors, the Toeplitz nature of the
discrete problem is lost, and this means that there is no simple
order recursion. Hence the method is not directly analogous to
the discrete case and cannot be considered a natural continuous
version of the discrete problem. By way of contrast, the
procedure we develop is directly analogous to the discrete
case and is obtained by a natural limiting process in which the
sampling interval goes to zero.

There have been several other recent papers dealing with
Levinson type algorithms using fast-sampled data [8], [18].
However, this latter work mirrors the continuous time all-pole
work [12], [17] mentioned above. The filter structure presented
here differs in two significant ways from the algorithms in [12},
[17], [18]. First, in those references, the continuous-time signal
process is assumed to be smooth, i.e., the first n mean square
derivatives of the process are assumed to exist. Our signal
model, on the other hand, is a smooth signal in additive white
noise. The presence of this noise necessitates low-pass filtering
of the signal prior to sampling. Moreover, it shall be seen
that this prefiltering is crucial in obtaining a rapprochement
between the discrete-time and continuous-time lattice filtering
problems. Secondly, our limiting procedure (in passing from
discrete-time to continuous-time) involves considering a fixed
time interval, and allowing the number of sample points to
increase. By way of contrast, in the work of Vijayan et al.
[18], the filter order is fixed as the sampling period tends to
zero.

Our development will be based on an extension of the delta
operator [15]. This operator is generally superior to the shift
operator when fast sampling is employed. For example, if one
uses AR models, then it can be shown that the delta form
is numerically superior to the shift form at high sampling
rates [4], [18]. The essential reason is that, in the shift form,
the filter coefficients converge to the binomial coefficients
independently of the underlying continuous-time process. Thus
numerical precision is lost due to the fact that the true system
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information is encoded in the last significant bits of the AR
coefficients. However, a different phenomenon occurs in the
case of lattice filters. For the latter problem, we show below
that the coefficients in the normal shift form are O(A). Thus
some form of scaling is necessary to alleviate problems due
to coefficient quantization. The delta formulation used here
has the advantage of making this scaling explicit. Also, this
formulation is pivotal in establishing the connection with the
underlying continuous-time filter.

The layout of the paper is as follows. In Section II, we
review the structure and some features of the discrete lattice
filter. We show how such a filter can be used for prediction
purposes, and indicate its close relationship with the Levinson
predictor. The signal process we observe is taken to be a
signal (S) in white measurement noise (V'), and the prediction
problem is referred to as the “discrete time SV problem.” Note
that the problem of predicting a signal from past measurements
of itself is a special case of the SV problem. In Section III,
the corresponding continuous time SV problem is proposed,
and we outline its solution. Sections II and III serve to present
the continuous and discrete SV problems within a common
framework. In Section IV, the link between the continuous
and discrete SV problems of Sections II and III is made
apparent by presenting the discrete-time structure using a
divided difference (delta) operator. In Section V, we show
a different facet of the connection between the continuous and
discrete SV problems by obtaining the discrete solution when
an underlying continuous process is sampled. It is shown that
the discrete-time problem converges to the continuous-time
problem in a well-defined fashion, and that the corresponding
filters are intimately linked.

Since we will need to deal with both continuous time and
sampled signals, we introduce the following notation:

* ¢ denotes real time (measured, for example, in seconds),

* A denotes the sampling period (A = 0 signifies contin-

uous time),

* i3k 1l,mmn e

For a sampled signal, we will be interested only in those
times ¢ which can be expressed as ¢t = kA for some k € Z.
In the discrete time case we will often suppress the explicit
dependence on A by writing 7(k) = y(kA), where y:R — R.

II. LATTICE FILTERS AND THE SV PROBLEM IN SHIFTFORM

In this section, the essential features of the lattice filter
structure introduced by Itakura and Saito [7] are reviewed. The
key feature of the lattice filter is that it is an orthogonalization
device which replaces the original measurement process by a
sequence of orthogonal residuals spanning the same space. It
shall be seen that the production of these residuals permits a
slight extension of the basic lattice structure, by which one-
step-ahead and one-step-backward predictors for the signal
process are readily obtained.

Suppose the measurement process {7(-)} consists of a signal
process {3(-)} (with known covariance structure) corrupted by
white measurement noise {T(-)}. Predicting subsequent values
of the signal process based on measurements of {7(-)} will be
referred to as the discrete-time “SV problem.” It is in this

context that the lattice filter shall be presented. In the sequel
we shall rely on projection arguments using the usnal notion
of a Hilbert space spanned by a set of random variables (see,
e.g., [14]).

Consider a real-valued, wide-sense stationary discrete-
time random process {7(-)}. Let H be the Hilbert space
spanned by the random process {%(-)}, with inner product
@), 7)) £ E{FRNG)}), where £{} denotes the
expectation operator. We denote by 7; for k£ > 0 the closed,
linear subspace of H spanned by {7(5), 5(j + 1),---,5(j +
k)}. 7;»“7 for k < 0 denotes the empty space. For every

y(i) € H, g | 7;:%) denotes the orthogonal projection of

%(i) onto ?;.H; that is,

E{@0) - 56 | YT} =0,
l=.77.7+11s.]+k‘ @

P . .. .
Thus g(z | Y;-+ ) is the wide-sense conditional expectation of
7(2) given the observations 7‘;+k.

Assumptions
DI: The processes {7(-)} and {3(-)} are related by

y(k) = 3(k) +o(k), Vk el

D2: The process {3(-)} is zero mean and wide-sense
stationary with known covariance function W;. The process
{#(:)} is zero mean and white with variance %, and
{3(")}, {v(-)} are uncorrelated, i.e.,

E3k)S(k+0)}=W,, Vk,ieZ
E{v(k)o(5)} = bk, Vk,jeZ
E(3Z(k)T(j)} =0, Vk,jel.

Definition 2.1 (SV problem in discrete time): Let processes
{7()}, {3(-)} and {®(-)} satisfy assumptions D1, D2. Then
predicting the value of the signal process {3(-)} at a spe-
cific time k, say, given a finite measurement record {F(k —
N),---,5(k —1)}, say, will be referred to as the SV problem
in discrete time.

Let 5(k | 7::11\,) denote the orthogonal projection of 3(k)
onto the linear subspace 7::11\,. Thus 5(k | Ve ) is the
optimal linear least squares predictor of 3(k) given the N
previous observations {3(k — N),---,5(k — 1)}. The forward
residual of order N is defined as follows:

2 (N, k) £ g(k) - 5(k | Th_ ). ®
Similarly the backward residual is defined
N <k
a(N k) S5k - N) -5k -N|Vi_yy) @)
where

€5(0, k) =2(0, k) = (k). @
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Fig. 1.

It can be shown (e.g., [5, p. 285]) that the forward and
backward residuals satisfy the order recursive formulas

&)
(6)

e (N+1,k) =2,(N, k) + K" T'ep(N, k- 1)

a(N+1,k) =N, k—1)+ K" (N, k)

comprising the lattice structure depicted in Fig. 1, where K
are referred to as a reflection coefficients.

The forward and backward residuals satisfy the following
orthogonality properties [5]:

E{es(k, i+ k)es(i, i+ )} = R 6,k
fe(k, )es(j, i)} = B 6,

)
®)

It follows from (7) and (8) and Definitions (2) and (3) that
both {2;(0, k), &(1, k),---,8(N — 1, k)} and {€;(0, k —
N+1),e:(1,k—N+2),---,2(N — 1, k)} are orthogonal
bases forV),z_NH. Using €,(0, k), e,(1, k),...,e(N -1, k)
as an orthogonal basis for VZ_N +1» it can readily be shown

(see, e.g. [3]) that a one-step-ahead predictor can be obtained
as

N
~ —k —_—t_ .
3(k+1|yk7N+1):_E Ke(i—1, k). 9)
=1

Likewise, a corresponding expression for the one step
backward predictor can be obtained:

N .
S(k—N|Yi i) ==Y Kep(i—1,k—N+1). (10)
i=1
The one-step-ahead predictor in (9) expresses predictions
as a weighted sum of backward residuals. It is also possible

to form predictions as a weighted sum of past values of the
measurement process:

N
~ 5k —N — .
§k+1|Yi_np1) ==Y arglk—i+1).

=1

an

This is the Levinson predictor, in which the coefficients .Y
are chosen to minimize the mean square prediction error

E{Bk+1) =3k +1|Vi_yn.1))?)

707

and are obtained as the solution of the Yule-Walker equations

7+ Wo) Wi Wy 7 W,
Wl . Eév _ W2
i W || _:
Wn_1 (F+Wq)l Lan Wi
(12)

In practice, (12) is usually solved recursively in N by the
Levinson algorithm [11], which exploits the Toeplitz structure
of the matrix on the left-hand side.

The following well-known relationship also holds.

Lemma 2.1: The coefficient @y in the Levinson predictor
(11) is identical to the reflection coefficient K" in the lattice
filter.

Proof: See [5, p. 291]. O

HI. THE SV PROBLEM IN CONTINUOUS-TIME

In this section, we consider the continuous time analog
of the discrete time SV problem introduced in Section II.
That is, we consider the problem of estimating the value
of a continuous time signal process {s(-)} at time ¢ based
on measurements of a related process {y(-)} over a finite
observation window of length T'. Such a problem has been
considered previous; see, for example, Kailath [10].

Assumptions
CI: The processes {y(-)} and {s(-)} are related by

y(1) = s(7) + v(7), vr € R.

C2: The process {s(-)} is zero mean and wide-sense
stationary with known covariance function W(-), {v(-)} is a
zero mean “white noise” process with incremental covariance
I'dr, and {s(-)}, {v(-)} are uncorrelated, i.e.,

E{s(t)s(t —7)} = W(r), vt, T €R
E{v(t)v(r)} =T6(t — 1), Vi, T€R
E{s(t)v(r)} =0, vt, T €R.

Definition 3.1 (SV problem in continuous time):

Let processes {y(-)}, {s(-)}, and {v(-)} satisfy assumptions
Cl, C2. Then predicting the value of the signal {s(-)} at
a specific time ¢, say, given a finite measurement record
{y(r): t =T < 7 < t}, say, will be referred to as the SV
problem in continuous time.

Motivated by the results of the previous section, our forward
estimate of s(t) based on measurements {y(7): t—7 < 7 < t}
will be denoted $(¢ | Y;! 1), and will take the form

t
| Yig) = —/ A(T, t - o)y(o)do (13)
=T

where A(T), -) is a continuous function with support in [0, 7).
By a slight abuse of terminology, A will be called the filter.
Similarly, the backwards estimate is assumed to take the form

¢
t-T|YE )= —/ B(T, t — o)y(o) do. (14)
t—T
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The following results summarizes some of the properties of
the estimators given above.

Lemma 3.1: Let 3(t | Y/ 1) and $(t — T | Y;! ;) be as
given in (13) and (14). Let the forward and backward residuals
be defined by

es (T, 1) £ y(t) - 3(t | Y p)
eo(T,t) S y(t—T) — 4(t - T | YL ).

(15)
(16)

then
1) A(T, -) satisfies the following integral equation [9]:

T
W(r)+TA(T, 7) + / A(T, o)W (1 — o) do = 0,
0

0<r<T. (A7)

2) B(T, -) is the time-reverse of A(T, -):

B(T, T -0) = A(T, o), 0<o<T. (18)

3) A(T, -) satisfies the following equation, which is known
as the Bellman-Krein-Siegert relation [13]:

0A(T, o)
oT

4) The forward and backward residuals satisfy the following
relationship termed the continuous time lattice structure:

Rt R Pl [ I

5) Forward and backward estimates can be expressed in
terms of prediction residuals:

= AT, T-0)A(T,T), 0<o<T. (19)

T
S| Vi) = - / Alr, Dey(r. ) dr 21)

T
5t-T|Y )= —/ A(T, T)es(r, t) dr (22)
0

6) {ex(-,-)} and {ey(-,-)} satisfy the following orthogonal-
ity properties:

g{eb(Tv t)eb(T -7 t)} =0,

Eles(T, t)eg(T —7,t — 1)} =0,

T>0
7> 0.

(23)
(24)

Proof: There does not appear to be a reference where
these facts are all brought together in a unified way. Therefore,
for completeness, we briefly establish them in Appendix A.(0

The above Lemma summarizes the key properties needed in
the subsequent development. However many other properties
hold. For example, the operators A and B also satisfy the
following Krein-Levinson equations [10]:

o 9
(—8T + a)B(T, )= AT, T)A(T, 1) (25
P
ﬁA(T, t) = A(T, T)B(T, t). (26)

IV. DISCRETE-TIME SV PROBLEM IN DELTA FORM

In Lemma 3.1, the relationship (20) was proved and termed
the continuous time lattice structure. In Section II, the discrete
time prediction residuals €;(N, k) and &,(N, k) were shown
to satisfy the recursions (5) and (6). However, the discrete-
time and continuous-time lattice structures (20) and (5) and
(6) bear little resemblance to one another. We show below
that by recasting the discrete-time solution in difference form,
the connection is clarified.

The delta operator is a divided difference operator pro-
posed in [15] as the appropriate discrete time analog of the
differentiation operator:

27
where g is the conventional forward shift operator, and A is
the sampling interval. Thus
z(k + 1) — z2(k)

A .

Here we extend the delta operator to functions of multiple
independent variables.

x(k) =

8 f(ky,- - ki, k)
é f(klv"'vki+1-,"'~,kl\')_f(kl9"'7ki7."ak‘lN)
= A s
1<i<n. (28)

Thus 6'f is a discrete time analog of partial differentiation
with respect to the ith argument of the function f.
With this notation in mind, we can rewrite (5) and (6) as

—==N+1
er(N+1,k)~es(N, k K _
i A) (N K) N E-1) @9
(N +1, k) —&(N, k) &(N, k—1)—e(N, k)
A - A
+N+1
+—x—e(N, k). (30)
If we also introduce the definition
*14\[
AN)EY o1 9. N 31)
A
then from Lemma 2.1,
B ?Nu
AN+, N+1)= (32)

With (32) and the notation introduced in (28), Equations (29)
and (30) may be written

er(N, k)
61[fN k):{
A(N +1, N +1)
[(N+1]V+U —6?

ef(N, k
LMNk—l} 33)
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Also, substituting definition (31) into the one step forward
and backward predictions in the discrete time SV problem
9), (10) gives

N
S(k+ 1|V nya) = —AS AG, i)es(i - 1, k) (34)
=1
N
= —AZA (5, 0)ef(i =1, k— N +1)

i=1

§(k N’Yk N+1

(35)

while the Levinson predictor of (11) becomes

N
N —k —
8(k+1|Yy_ny1) = ‘AZA(N
i=1
Comparison of (13), (20)—(22), and (33)-(36) reveals the
intimate connection between the continuous and discrete lattice
filters. In the next section, we shall investigate the nature of
this connection in more quantitative terms.

Ok —-i+1). (36)

V. SAMPLING AN UNDERLYING CONTINUOUS-TIME PROCESS

In the previous section, it was shown that the form of
the continuous-time and discrete-time time lattice structures
are intimately related. In this section, we investigate this
relationship more closely by quantitatively examining the limit
(as the sampling period tends to zero) of the discrete-time filter
applied to a sampled form of an underlying continuous-time
process.

Consider a signal {y(-)} satisfying assumptions C1, C2.
Note that it makes no sense to directly sample {y(-)} since this
would lead to a discrete-time process of unbounded variance.
This problem is resolved by replacing the impractical ideal
sampler by an ideal sampler incorporating an anti-aliasing filter
before the sampling process. The filter we use here is a “reset
and integrate” type (see, e.g., [15, p. 279]), so that

1 (kDA
@(k-}-l)zz/lm y(t) dt. 37

The following Lemma establishes statistical properties of
the sampled signal.

Lemma 5.1: Let {y(-)} satisfying assumptions C1, C2 be
filtered prior to sampling as in (37). Then the resulting discrete
time process {g(-)} satisfies assumptions D1, D2, where

_ T
’Y=—

j—k A / / tz—tl)dtgdtl. (39)
(G—-1na —-1)A

Proof: That D1 is satisfied follows directly by substitu-
tion of y(7) = s(7) + v(7) into (37).

£{3(s)s(k)}

el /J’A ) 1
= - s(t)dt - —
1A G-na A

(33)

kA

s(t) dt}
(k-1)a

709

1 I8
= ‘A—Q/ / E{s(t1)s(t2)} dt2 dt
G-na -1A

from which (39) follows immediately.

kA
E{v(5)u(k)} AZ/ /_ E{v(t)v(r)} dtdr

= / 6(t — T)dtdr
(k-1)A JG-1)A

s,

That {3(-)} and {o(-)} are uncorrelated is apparent from the
uncorrelatedness of {s(-)} and {v(-)}. O

Given the continuous-time process and its sampled version
{#7(-)} as in (37), our intention now is to establish the connec-
tion between the function A(T, -): [0, T] — R defining the
continuous-time filter (13) and the coefficients {A(N, i)},
defining the discrete-time filter (36). Recall from Lemma 3.1
that A(T, -) satisfies the integral equation (17) where W () is
the covariance function of the signal process {s(-)} (assumed
known, continuous, and bounded), A(T, -) is the required
continuous solution function, and 0 < ' < oo.

Remark 5.1: Equation (17) is a Fredholm integral equation
of the second kind, with kernel W (-). A well-known sufficient
condition for the existence of a unique solution A(7, -) which
is continuous on [0, T is that

I'>w()T (40)

where W(0) = sup, g W(0o). In the sequel, we shall assume
(40) is satisfied.

The coefficients {A(N, i)}, of the discrete-time filter
(36) are given by (31) where aN comprise the solution of the
Yule-Walker equations (12). We aim to show that as A — 0,
the discrete-time coefficients {A(N, i)}V, converge to sam-
ple values of the continuous time filter A(T, -) satisfying (17).
To this end, we will construct a continuous-time, piecewise-
constant function (denoted A°*) from {A(N, §)}}, and show
that A° — Aon [0, T] as A — 0.

In all subsequent working, we assume that T' > 0 is fixed,
and that for any N € Z, A is such that

T=NA. “n

The proposed scheme is reminiscent of a numerical solution
for integral equations of the second kind, a problem which has
been well studied (e.g., [1, p. 156]). Namely, the kernel W and
free term —W/T" in (17) are replaced by approximations W*
and —W* /I, respectively, and a bound is obtained for the
error between the solution A of (17) and A* of
w*(r) 1

T
1 /0 AT, )W (r - o) do.

A7) = -—5 0 - ¢

In the method below, however, the approximate solution e
is constructed from the Levinson coefficients {@ }¥,, and
an appropriate W2 is devised such that the resulting integral
equation is similar in form to (17) (cf., Definition 5.1 and
Lemma 5.2 below).
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Definition 5.1: A°(-) and WA(-) are defined as follows:

a A(N,3), TE€l[E-1)A,id),
A& i=1,2,-.. . N-1 42)
A(N,N), T€[(N-1A,T]
WA(r) 8 Wi, 7€ (A, (i+1)A],
i=-N,--,N—1. (43)

Using these definitions of a° and W4, it is possible to for-
mulate an integral equation similar in form to (17) which, when
evaluated at particular points in [0, T], is equivalent to the
Yule-Walker equations (12) defining @. This is established
in the following Lemma.

Lemma 5.2: Let A and W be defined as in (42) and
(43). Then for N, A and T satisfying (41), the integral
equation

FZA(T) + ATZA(U)WA(T —0)do

= -WA(t + A), 0<T<T-A 44

evaluated at 7 = 44, i =0, 1,---, N — 1 is equivalent to the
(Z + 1)th row of (12).

Proof: By substituting 7 = A fori = 0,1,---, N — 1
into (44), and by using (38) and (31) and Definitions (42) and
(43). a

The continuous-time and discrete-time filters are now in
a compatible form, namely (17) and (44) evaluated at T €
{0, A,---, (N — 1)A}. For notational simplicity, the explicit
dependence of both A and A~ on T will subsequently be
dropped.

Using (17) and (44), it is possible to compare the behavior
of ZA at the points 7 = 0, A,---, (N — 1)A with the solution
A(7) of (17) as N — oo (equivalently, as A — 0). We shall
measure the magnitude of a function by its sup-norm, viz.,

sup |f(a)].
€0, T]

With the above as background, we next present the main
result of the paper, in which convergence of the discrete-time
filter to the continuous-time filter is established.

Theorem 5.1: Let the continuous-time filter A(T) satisfy
(17), let the Yule-Walker equations for the discrete-time filter
coefficients be represented in integral form by (44), and let
N, A, T be such that (41) is satisfied. Then if condition (40)
guaranteeing existence and uniqueness of the solution of ( 17)
is satisfied, we may conclude

[|A() —ZA('/-)HOo -0, asN— oo

for 7 € {0, A, 24,---, (N - 1)A}.

Proof: From (44) and (17),
la(r) - A%,
< slwa e+ 8 - Wi,

1 /T A
+ 5 [ AW - 0) - Wir = )| do

1 [ 30 - a0 W - ol ao a5

Consider in turn each of the terms on the right-hand side
of (45). Using the continuity_ of W, the definition (43) of
W4, and the definition of W;_ from W (cf., 39)), it is
straightforward to show that for 7 € {0, A,---,(N - 1)A},

1
F||WA(T +4) - W(r)||, =0(4). (46)

Now A is continuous on [0, T7; hence bounded. Thus

T
£ [ 1A@IWA e - 0) - W - o) do = 0(a)

@7
by the same line of reasoning which lead to (46). Also,
1 (T-a A
f/ ”A (o) —A(a)“ ”W (T—U)”wda
0 oo
<SWOI|A*0) - A@)||_ @®)

for o € {0, A, -, (N — 1)A}. Combining (45)~(48) gives

lA(r) - %),
w()T

< ——)Am) - A+ 0(8) (49

for 7 € {0, A,---,(N — 1)A}. But from the condition for
existence and uniqueness of the solution A of (17), (cf,,
Remark 5.1),
w(0)T
r
and so in the limit as N — oo (equivalently, A — 0), (49)
can only be true if

<1

. —A
1\/11—I»noo”A(T) - A (7')”OQ =0.

VI. CONCLUSION

This paper has explored the connection between continuous
and discrete lattice filtering algorithms. It has been shown that,
when formulated appropriately, there is an intimate connection
between the discrete and continuous cases. Further, it has
been shown that when the discrete filtering problem arises by
sampling an underlying continuous-time signal process, the
discrete lattice filter converges to the appropriate continuous-
time filter as the sampling period approaches zero. This gives
insight into both cases and also indicates the appropriate



WELLER et al.: CONTINUOUS AND DISCRETE LATTICE FILTER STRUCTURES

coefficient scaling mechanisms so that the discrete problem
is well formulated at fast sampling rates.

We have treated only the case of a scalar measurement
process but the extension to vector measurements would seem
to follow analogously. Far less obvious extensions may also
exist for nonlinear filtering problems. These issues are the
subject of on-going research.

VII. APPENDIX A
PROOF OF LEMMA 3.1

Proof: 1) By change of variable in (13),

T
(¢ 1Yir) == [ AT, o)yt - o) do
0
Now by the orthogonality principle,

E{(s(t) = 3(t | Y.q))w(n)} =0,

where

t-T<71<t

E{s(t)y(r)} =W(t-7)
and
E{3(t | Yip)y()}

T
- g{_ /0 A(T, oYy(t - o) dals(r) + v(r)l}

= -./TA(T, o)Wt —-o—-1)+T6(t—0— 1) do.

Thus
Wt —-7)+TAT, t—1)
T
+/ A(T, o)W(t—0o —T1)do =0,
0

t-T<r<t (A.1)

which, after change of variables, gives the result.
2) Using (14) and arguing as in the derivation of (17) gives

W(r)+IB(T,T-1)
T
+/ B(T, T -7)W(r —0)do =0,
0

0<7<T. (A2)

Subtracting (A.2) from (17) gives

/O [A(T, o) - B(T, T - o)
[W(r — o) +T68(r — 0)]do = 0,
0<r<T

from which the result follows.
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3) By differentiating (17) with respect to T we obtain

OA(T, 7)
FT + A(T, TYW(T - T)

THA(T, o)
+/0 TW(T—O’)dO’—O,

0<7<T. (A.3)

Now, (17) may also be written (by change of variables) as
W(T -7)+TA(T, T -1)
T
+/ AT, T -o0)W(r—0g)do =0,
0

0<7<T.

Mutiplying the above by A(T, T) and subtracting the result
from (A.3) gives

/ ) [% — A(T, T)A(T, T - o)
0
-W(r — ) + T6(1 — 0)]do = 0,

0<r<T

from which the result follows.
4) By change of variable in (13) and (14) and applying
Definitions (15) and (16), we obtain
T
efT ) =y®)+ [ AT, o)yt -0)do A4
0

T
eo(T, 8) = y(t = T) + /0 AT, T = o)y(t — o) do. (AS)

Differentiating (A.4) gives

% = A(T, T)y(t - T)
+/0 Qé((;;:—a)y(t - 0)do
%’g—’ﬂ =A(T, T)y(t—-T)

T
+ A(T, T)/ AT, T - o)y(t — o) do
= A(T, T)es(T, 1) (A6)

upon substituting (19) and simplifying with (A.5). Let ¢’/ =
T — o in (A.5), then

T
en(T,t) =yt —-T)+ / A(T, o)yt — T+ o')do’
0
from which it follows that

Oep(T,t) _ Oy(t-T)
or ot

+ A(T, T)y(t)
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T NOY(t~T + o , T-r
—/0 A(T,U)Lati-—)dﬂ +[) A(T—T,T—T—a)y(t—a)da']}
TaA(T, UI) ! !
+/; 9T yt =T +0")do =W(T)+F6(T)+/0TA(T,T—0')
=90 | yer Ty W(T -7 =0)+T8T - 7 — 0)|do

ot

T—71
T [— p— —
+/ aAg;’U)y(t—T—f—o)da +/0 AT -7, T-7-0)
0

“[W(T - o) + T6(T — o)) do

T—1 pT
Applying (19) yields + / / AT, T-0)AT -7, T -7 —03)
0 0
Beb(T, t) _ _aeb(T, t) n A(T, ) . [W(Ul - Uz) +F6(01 - (72)] doy dos.
or ot . By change of variables in (17),
3 _ T
y(t)+/0 AT, T - o)yt T+o)da] W(T)+/ AT T o)
o 0
=—%+A(T,T) W@ —7—06)+T6(T —7~0)]do =0
( T
- 1y(?) +/ A(T, o)y(t - o) da] so the previous line becomes
0
- g{eb(T9 t)eb(T =T t)}
= —w + A(T, T)es(T, t) Ty
¢ =l"6('r)+/ AT =1, T =1 ap)
0

o o [W(T - 03) + T§(T — 03)] do
upon simplifying using (A.4). Combining this last result and Ter AT
(A.6) we have the lattice structure in continuous time. + / / AT, T - 0))A(T ~7, T —7 — 03)
5) Using (A.5), 0 0
[W(o1 — 02) + T6(0y — 03)] doy dos

T
T—7
/0 A(r, T)ey(r, 1) dr =T6(r) + /(; AT -7, T—71—09)

T
= /0 A(r, T)y(t — 7)dr . [I‘(S(T o+ W(T— o)+ /TA(T, T
0

+ /T/‘I’A(T7 T)A(T, 7 — 0)y(t — o) do dr
0 Jo [W(o1 = 02) + T6(0y —- a2)] dal} dos.

T
= / A(r, T)y(t — 7)dr
0
T (79 A(T, o) By change of variables this can be written as
+/ ———y(t—o)dodr
0 0 or S{eb(T, t)eb(T =T, t)}

- /OT;% [/OTA(T, oVy(t — o) do| dr — T6(r) + /OT—TA(T =7 —0y)

T
- /0 A(T, o)yt - o) do :
= S| YD)

T
To(T — 03) + W(T - a3) +/[; A(T, a7)

“[W(T - 01— 03) + T8(T - 01 — 03)] dal] doy
as claimed. Equation (22) follows by a similar line of reason-
ing. and by application of (A.1), this can be further simplified to

6) Using (A.5), E{es(T, H)es(T — 1, )}
S{eb(T, t)e;,(T -7, t)}

T-1
T =I‘6(T)+/ AT -7, T — 7 - 02)T8(T ~ 03) doy
= - - — 0
= 5{ y(t -T) +/0 A(T, T - o)y(t — o) da] —0, 0.
-7+ .
Equation (24) follows by a similar line of reasoning. O
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