1042

(81
91

A. J. Laub, “A Schur method for solving algebraic Riccati equations,”
IEEE Trans. Automat. Contr., vol. 24, pp. 913-921, Dec. 1979.

J. Manela, “Deterministic contro} of uncertain linear discrete and sam-
pled data systems,” Ph.D. dissertation, Univ. Calif., Berkeley, May
1985.

K. S. Narendra and S. S. Tripathi, “Identification and optimization of
aircraft dynamics,” J. Aircraft, vol. 10, no. 4, pp. 193-199, Apr. 1973.
L R. Petersen and C. V. Hollot, “A Riccati equation approach to the
stabilization of uncertain linear systems,” Automatica, vol. 22, no. 4,
pp. 397-411, July 1986.

W. E. Schmitendorf, ‘Design methodology for robust stabilizing con-
trollers,” J. Guidance, Contr. Dynamics, vol. 10, no. 3, pp. 250-254,
May-June 1987.

, “Designing stabilizing controllers for uncertain systems using the
Riccati equation approach,” IEEE Trans. Automat. Contr., vol. 33, pp.
376-379, Apr. 1988.

(10]
(11}

[12]

(13]

Generalized Sample Hold Functions—Frequency
Domain Analysis of Robustness,
Sensitivity, and Intersample Difficulties

Arie Feuer and Graham C. Goodwin

Abstract—Qver the past 5 years, there has been substantial interest
in the use of generalized sample hold functions for control. In this
correspondence, we use a tool, which is novel in this context, namely,
Amplitude Modulation Theory. We employ this tool to analyze the
quantitative and qualitative features of the intersample behavior in
a frequency domain setting. This offers new theoretical and practical
insights into the method. Our conclusion is that the perceived benefits
come at substantial cost which makes its practical use questionable.

1. INTRODUCTION

In practice, most sampled data controllers are implemented using
zero-order hold functions. This raises the issue, however, of whether
or not any advantage can be gained from the use of other types of
hold functions.

This problem has been widely studied under the heading of
Generalized Sample Hold Functions. For example, Kabamba [1]
establishes that by using these functions, one can achieve many
desirable properties for the associated sampled response, including:
arbitrary input—output transfer functions up to the order of the original
system, simultaneous pole assignment for several systems, optimal
noise rejection, and decoupling. Many related results have been
studied in the literature [2—[6]. Several papers, however, such as [5],
have questioned the intersample behavior.

Indeed, this has become a significant focus of recent literature on
sampled data control for the zero-order hold case [7]-[9].

Here we present a novel approach to the analysis of the intersample
response of sampled data control systems based on frequency domain
modulation theory. The use of this approach is a natural consequence
of the periodic nature of the hold function. We apply this methodology
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to the case of generalized sample hold functions. This mode of analy-
sis gives new frequency domain insights into the performance of gen-
eralized sample hold controllers, including a thorough analysis of the
intersample behavior and associated robustness and sensitivity issues.

We view the action of the generalized sample hold function as
a form of amplitude modulation. When viewed in the frequency
domain, this means that additional high-frequency components are
generated centered on multiples of the fundamental generalized
sample hold frequency (i.e., the sampling frequency). When the
output is sampled, these high-frequency components are folded back
into the base-band frequency range resulting in a modified sampled
frequency response. The action of the generalized sampled hold
policy is then clearly revealed. Specifically, one only need choose
the various continuous time frequency components so that when
they are superimposed at the base band by the sampling action,
they result in the desired sampled frequency response. On the other
hand, this line of reasoning also reveals the inherent drawbacks of
this approach. In particular, one sees that the continuous time output
response necessarily contains nonnegligible high-frequency compo-
nents centered on multiples of the sampling frequency. Moreover,
the more one demands of the generalized sampled hold function,
the larger these high-frequency components must be. This difficulty
becomes more pronounced if one considers the input signal. Since,
in most cases, the gain of a process will decrease with frequency, a
necessary consequence of having nonnegligible output power at high
frequencies is that there must be even greater input power at the
same frequencies. Moreover, this high-frequency input power must
increase with the sampling rate.

Turning to the issue of sensitivity, the above arguments suggest
that any disturbance injected into the loop will result in nonnegli-
gible high-frequency continuous time output components and large-
amplitude high-frequency continuous time input components. Thus,
if sensitivity is defined in terms of the magnitude of the disturbance
response (irrespective of frequency), then it is clear that the use
of generalized sample hold functions will generally give very poor
sensitivity performance. For example, even a constant disturbance
leads to large high-frequency continuous time components which do
not decay with time!

On the issue of robustness, we see that the fidelity of the folded
base-band response relies upon the fidelity of the system’s high-
frequency continuous time response. In practice, the high-frequency
response of a system is usually difficult to accurately define. For
example, unmodeled dynamics such as small time delays, high-
frequency poles, etc., will significantly change the continuous time
system’s high-frequency response, and this will almost certainly
destroy the resultant folded behavior. This must be considered as
unacceptable robustness behavior.

In this correspondence, we make the above arguments precise by
quantifying the intersample behavior using novel frequency domain
arguments based on amplitude modulation theory.

II. THE GENERALIZED SAMPLE HOLD
FUNCTION APPROACH TO CONTROL

In the literature, there are slight variants of the generalized sample
hold approach. These all lead to basically the same end result. Thus,
to be specific, we will follow the approach in [1].

Consider a linear time-invariant single input—single output contin-
uous time system given by

0018-9286/94$04.00 © 1994 IEEE
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Fig. 1. The GSHF control scheme.

2(t) = Az(t) + Bu(t)

y(t) = Cx(t) 2.1)

where x is an n-dimension state vector.
We define the control law as follows (see Fig. 1):

u(t) = F(t)y(kA) + G(t)r(kA) EAL<t<(k+1A (22)

where A is a predetermined time interval [to be used as the sampling
period for (2.1)] and F(t), G(t) are periodic functions of period
A. The signals y(t) and r(t) are the output and reference input,
respectively, and y;(t) and r,(t) are their impulse sampled forms.
The sampled state response of (2.1) is given by
(k+1)A
eMEFDA=T) By dr.

(2.3)
Substituting (2.2) into (2.3) and using the periodicity of F(¢) and
G(t) gives

2((k+1DA) = e 2(kA) +/
kA

A
r((k+1)A) = [eAA +/ eA(A_T)BF(T)d-rC}x(kA)
o

A
+/ AR BG(rYdr r(kA).  (24)
0

Assuming (2.1) is controllable, it can readily be shown that F(t) and
G(t) can be chosen so that

A
/ E'A(A_T)BF(T)dT =f

0

(2.5)

A
/ MO BG(rYdr = ¢
0

(2.6)

where f and g are arbitrary n vectors. Using (2.5), (2.6) in (2.4) gives

2((k+1)A) = [e?® + fCla(kA) + gr(kA). 2.7

Combining (2.7) with (2.1), we see that the sampled input—output
frequency response is given by

Hs(w)=C(“® —e** — f0) 7Yy
B C(ej;dAI_ eAA)—lg
T 1= C(e/A] = eAN)-LfT

From (2.8), it is evident that if the system is both observable and
controllable, then, provided pathological values of A are avoided,
f and g [and hence F'(t). G(¢)] can be chosen so as to arbitrarily
assign the numerator and denominator of the system discrete time
transfer function. Full details of this approach are given in [1). Note
that the solutions to (2.5) and (2.6) are not unique. This flexibility
has been used to achieve multiple objectives such as simultaneous
pole assignment for several systems [1].

(2.8)
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Some of the approaches that have been suggested in the literature
for evaluating F'(t), G(t) are: 1) to use piecewise constant functions
(e.g., F(t)y = Fi; (1 — 1)% <t< i%); or 2) to define

A T
w I/ eATBBTeA Tdr 2.9)
0
and then to put
T
F(t) = BTeA (20w -1y
G(t) = BTeAT (-0 -1 0<t<A. (2.10)

The solution given in (2.9), (2.10) can be shown to result in minimum
power in the generalized sample hold functions [6].

Note that the above analysis only considers the sampled behavior.
In the next section, we examine the associated intersample behavior
using amplitude modulation theory.

III. FREQUENCY DOMAIN ANALYS
Since G(t) and F(t) are periodic functions with period A, it is
natural to expand them in a Fourier series of the form

F(t)= ) aje’™! (3.1
pe—eo
G(t)= ) age’™" (3.2)
p=—o0
where
Wo = 2%. (3.3)

We then have the following result, which summarizes many of
the observations made in Section II using the frequency domain
representation (3.1), (3.2).

Lemma 3.1:

a) When F(t), G(t) are defined as in (3.1), (3.2), then (2.5), (2.6)
are equivalent to

oo

Z a,{Bp:f

p=—cc

(3.4)

oo

Z ayB, =g

p=—oc

(3.5)

where {B,} denotes a set of basis vectors given by

A .
/ e(A—JPWlJ])U do B
0

- i(A_m]mm B
N (i+1) ‘

BP
(3.6)

b) Provided the system is completely controllable, then any set
of n vectors {Bp, }(p: # p;) will be linearly independent and hence
span C". (If A is singular Bo must be included in this set).

Proof:

a) By direct substitution.
b) We will distinguish two cases.
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Case 1 (A Nonsingular): Generically, (3.6) can be rewritten as

B, = [jpwol = A|"'[I —e**|B  forallp.  (3.7)
Suppose {Bp, }¢ = 1,- -+, n are linearly dependent. Then, there exists
a vector 0 # v € C" such that
vTBp, =0, i=1,---,n.

This implies, in view of (3.7), that jp;wo are zeros of the transfer
function

vT[sI — A]7M{I — e**]B. (3.8)
Since, however, A is nonsingular and (A, B) is a controllable pair,
vT[I — e42] # 0, [I — ¢*®]B # 0, so that the transfer function
in (3.8) has at most (n — 1) zeros. This is a contradiction which
implies v = 0.

Case 2 (A Singular): In this case, (3.7) holds for all p # 0. It can
be readily shown, using (3.6), however, that if v Bo = 0 as assumed
here, v7 [ —e“m] # 0. Also, in this case, the transfer function in (3.8)
has a pole zero cancellation at the origin. So, vTB,,i, i=1,---,n—1
would imply that this transfer function has n — 1 zeros while only
n — 2 are possible after the cancellation. Thus, the conclusion is the
same as in case 1. O

Referring to Fig. 1, since r,(t) is a sampled signal, the correspond-
ing transformed signal must be periodic; i.e., Rs(w + wo) = Rs(w),
where wo = 2F and R.(w) 2 F{rs(t)}.

The (zero-order) hold block has impulse response given by

_J1 0<t<A
ho(t) = {0 otherwise G9
so that its frequency response is given by
. A
o= 2222
w
_ o—iwA
=iz (3.10)
Jw
Also, from (3.1) and (3.2), we have the Fourier transforms
G(w)=F{G(t)} =27 ) ajb(w — pwo) (3.11)
p=—00
Fw)=F{F(t)} =27 Y alé(w — pwo). (3.12)

p=—o0

Next we consider the modulation phase.
From Fig. 1, we have (using the modulation property of Fourier
transforms),

Flu(®)} = U() = 5-{G(w) [Ho(w) Ro()
+F () [Ho(w)Ys(w)]} (3.13)

where * denotes convolution and Y;(w) denotes the transform of the
sampled output signal, y,(t). Also, from Fig. 1, we have

Y(w) = Hw)U(w)
= 5 H@){G() Ho(w)Ru(w)]

+ F(w)"[Ho(w)Y,(w)]}. (3.14)
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Substituting (3.10), (3.11), and (3.12) in (3.14) we obtain

Z a$ Ho(w — pwo)Rs(w — puwo)

p=—co

Y(w)= H(w){

+ Y a,fHo(w—pwo)Ys(w—pwo)} (3.15)

p=—oco

and since both R;(w) and Y, (w) are periodic with period wo, we have

oo

Y(w) = H(w) LZ adHo(w — pwo) Re(w)

+ ) a;Ho(w—pwo)n(w)]. (3.16)
p=—0o0
Also, we have that
Y, (w) = He(w)Rs(w)

where H,(w) is as in (2.8).
Substituting (3.17) in (3.16), we get

3.17)

Y(w) = LZ adHo(w — pwo)H (w)

+ 3 al Holw— puo) H@HL(w) |Bo(w). G.18)

p=—oco

We summarize the above development in the following result.
Theorem 3.1 (Continuous Time Frequency Response of Sampled Data
System with GSHF’s):

a) Under the conditions depicted in Fig. 1, the frequency content
of the continuous time output, y(t), is given by

Y(w) = H(w)Rs(w) (3.19)

where
H(w) = LZ (af + af Ho(w))Ho(w — pwo) H(w)|.  (3.20)

b) The sampled output, y.(t), has a periodic transform given
by (3.17), where

%ZZO:—WE:O:—M“;’:HO(W ~ (p+ k)wo)H(w — kwo)

1- 43 5% el Ho(w — (p+ k)wo) H(w = kwo)
(3.21)

H jw)=

oo jwA AAy-1
TR dlCW =), o
1- E:":_ma,{C(el“’AI —eA2) 1B,
_ C[ejuAI_eAA]-—lg
T 1-CleiwAT — eAA]LfT

Proof:
a) Immediate from (3.18).
b) We obtain ys(t) from y(¢) by impulse sampling. This
produces frequency folding as outlined in the Introduction.
Pulse sampling Y (w) and using (3.20), we obtain

(3.23)

Y (w) = %; Y (w — kwo) = %kng(w — kwo)
. LZ afHo(w — (p + k)wo)Rs(w — kwo)

+ i al Ho(w — (p + k)wo)Ya(w — kwo)

p=—o0
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L = =
=X Z agHg(w—(p+k)wo)
) =—ocop=—o0
1 oo oo
- H(w — kwo)Ro(w) + X b Z al

k=—ocop=—oc

- Ho(w — (p+ k)wo)H (w — kwo)Ys(w) (3.24)

and hence see (3.25) at the bottom of the page. Equation (3.21)
follows immediately. Equation (3.22) is then a direct consequence
of (2.8), (3.4), (3.5), and (3.7). VvV

As we shall see in the next section, the above theorem allows us
to calculate the intersample behavior as well as giving insight to the
robustness and sensitivity behavior.

IV. INTERSAMPLE BEHAVIOR

If we use only zero-order hold functions, then this is a special case
of GSHF’s with

aS=ks forp=0

=0 otherwise “4.1)
al=k forp=0

=0 otherwise. 4.2)

Substituting (4.1), (4.2) into (3.22) shows that, in this case, the
sampled data frequency response has the form

_ kC(e7¥T - )71 B,

H(w) = - ;
) = L ClomAT = eABy 1By

ki, k2 €eR. (4.3)
Let us assume that we want to use the generalized sampled hold
approach to modify this sampled frequency response to achieve some
other desired value H (w).

For example, we may seek to achieve

C(eijI _ eAA)flg*

Hy(w)= 5= C(er AT — eAR)—1f+"

4.4

If H;(«w) does not lie in the set {H]' (w): k1, k2 € R} as in (4.3),
then it follows immediately from (3.4), (3.5) that

5]

Z alB,

p=—oo

Pp#0

2 minl|f* — ki Bol| 4.5)

oo
> B, (4.6)
ey

p#0

2 minlg® — k2 Bol|.

Thus, the total high-frequency power in the generalized sampled
hold function must be, at least, equal to the square of the amount
that f* and g* are shifted from values which lie in the set (4.1),
(4.2). Since the vectors B, are of the same order of magnitude as
[H(pwo)|, it follows from (3.20) that the term |H(w)| will have
nonnegligible power outside the band [—-%2, £2]. Since R.(w) in
(3.19) has a periodic Fourier transform, it is clear that Y (w) must
have nonnegligible high-frequency power which is of the same order
as the periodic energy in R,(w) multiplied by the magnitude of the
amount that f* and g™ are shifted from the (4.1), (4.2). Further, the
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Fig. 2. Continuous frequency response [H(w)| for (@) A =
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0.5 s, (b)

input energy in the high-frequency range necessary to achieve this

response at the output must be scaled up by the inverse of |H(w)|.

Since most systems will be strictly proper, this means that the input

energy needs to increase as higher and higher frequencies are needed.
Even for a sampled dc input, we have

Ru(w) = % 3 8w — kwo):

In this case,

Y(w) = 2% S (o + o] B, (O) H(kwo)olw — kwol.  (47)
k=—c0

We observe that Y (w) contains high-frequency components even for
this constant set point!

In summary, we see that the generalized hold approach depends
upon the generation of high-frequency components in the continuous
time output which are folded when the output is sampled. These
folded components are then superimposed at the base band to give
the desired sampled frequency response.

Remark 4.1: The disturbance sensitivity of the approach follows
immediately from the above discussion. Any disturbance injected
into the lop will generate additional nonnegligible high-frequency
components in the output, due to the modulation action. These
components will be of the order of the shift from the zero-order
hold response.

Remark 4.2: The robustness of the scheme can also be easily
inferred from the frequency domain perspective. In practice, the high-
frequency response of any dynamic system is difficult to precisely
quantify. For example it is quite common to have high-frequency
unmodeled dynamics including high-frequency unmodeled poles or
small unmodeled time delays. These modify the high-frequency
response of the system. Usually, in any design, one aims to make the
system insensitive to these unmodeled components. The generalized
sampled hold approach intrinsically depends on the folding of the
high-frequency continuous time response back to the base band so

Y(w)=

A ke —o0 Lpe—co 9 Ho (@ = (P + K)wo) H(w = kwo)Ra(w)

- A Y afHo(w — (p+ k)wo) H (w — kwo)

(3.25)
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Fig. 3. Continuous and sampled responses: (a) A = 0.5 s, (b) A = 0.1 s, and (¢) A = 0.02.

as to construct the desired sampled frequency response. Hence, any
variation in the high-frequency response of the system will be directly
reflected in changes to the resulting sampled frequency response. This
will not only significantly change the sampled performance, but could
well lead to instability.

V. SIMULATION EXAMPLES
Consider a system of the form (2.1), where A, B, C take the

following values:
-2 0 7.33
A= [0 1} B= [2.66] G-

c=[ 1] (52)

Note that this system has continuous time poles at —2, +1 and a
continuous time zero at 0.2. (This choice is reflected in the noninteger
values in the vector B.)

Our strategy will be to use the generalized sample hold approach
(with minimum energy as described in [6]) to shift both the unstable
pole and zero to e~ which is the discrete location corresponding
to —1 in the continuous domain. This is repeated for 3 different
sampling periods, namely, A = 0.5, 0.1, 0.02, respectively.

Fig. 2 shows | H (w)] as a function of normalized frequency (w/wo)
for the 3 different sampling rates. We observe, in all cases, the
presence of significant high-frequency components as predicted in
Section IV. We also see that as A decreases, the larger the high-
frequency components are.

Fig. 3 shows the unit step response of the system. In a) we show the
continuous input, in b) the continuous output, and in c) the sampled
output. Observe that, while the sampled output response is always an
ideal exponential rising to the set point, the actual continuous time
output has strong oscillatory behavior even in steady state. This is
precisely as predicted in (4.7). We also see that the magnitude of the
oscillations on the output are roughly independent of the sampling
rate, but their frequency content obviously increases with wq. Also,
as predicted in Section IV, the magnitude of the input oscillations
increase as é‘

Fig. 4 corresponds to the same conditions for A = 0.5, but where
an unmodeled time delay of 0.01 s has been added to the continuous
time system. Note that this delay is much smaller than the dominant
poles of the system. From the figure, we see that this very small
perturbation is sufficient to destabilize the system! This is exactly as
predicted in Remark 4.2. An extensive range of other simulations has
been carried out. All of the results are in accord with the predictions
made in Section IV. Some additional results are reported by us in
[10].

VI. CONCLUSION

This correspondence has given a quantitative and qualitative analy-
sis of the robustness, sensitivity, and intersample properties of control
based on generalized sample hold functions. Our mode of analysis
uses amplitude modulation theory as in communication systems. Our
conclusion is that while generalized sample hold control seems to
offer great promise when viewed in purely sampled data terms,
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Fig. 4. Step response with A =
A = 0.01s.

0.5 s, and unmodeled time delay of

the continuous time performance is of such a nature to render the
technique of limited practical use. Also, the method of analysis
indicates that these difficulties are inescapable consequences of the
modulation process, and hence cannot be fixed by different choices
of the generalized function.
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Utilization of Automatic
Differentiation in Control Algorithms

Stephen L. Campbell, Edward Moore, and Yangchun Zhong

Abstract—Symbolic languages are increasingly being used in the anal-
ysis and implementation of control algorithms. Many of these control
procedures involve some type of differentiation or Jacobian formulation.
Automatic differentiation provides an alternative means of computing
this information which is rarely considered in the control literature.
This correspondence will discuss the use of automatic differentiation.
Numerical results comparing the use of automatic differentiation and
symbolic approaches in the context of a particular nonlinear control
system will be given.

I. INTRODUCTION

Many control algorithms involve some differentiation of the equa-
tions defining the system. Among these are system inversion, some
path following algorithms, and construction of observability and
controllability matrices [1], [6], [8], [12], [14]-[16], [18], [19].
In addition, optimization routines and solving nonlinear equations
require the construction of Jacobians. Nonlinear descriptor systems
often use differentiation for regularization purposes [2].

The use of symbolic languages such as MAPLE, MACSYMA,
MATHEMATICA, and REDUCE has had a revolutionary impact on
the development of control algorithms. Larger and more complex
models can be considered. Less model simplification needs to be
done. For complicated expressions or where higher derivatives are
required, however, symbolic languages are known to be slow and to
often produce large expressions which can become unmanageable.

Automatic differentiation (AD) is a method for evaluating first
and higher partial derivatives of multivariable functions. In symbolic
differentiation, formulas are derived and then differentiated sym-
bolically, with the result being a formula that can be subsequently
evaluated. Automatic differentiation is fundamentally different. Au-
tomatic differentiation can handle functions defined by a large variety
of procedures or subroutines. An explicit formuia is not required. AD
also tends to be faster than symbolic approaches. A numeric value is
returned for the quantity of interest at a given value of the variables.

The idea of automatic differentiation has been around for some
time [13], [17]. The recent development of general-purpose automatic
differentiation codes combined with the increasing interest in larger
and more sophisticated control problems makes a consideration of
the use of automatic differentiation in control problems appropriate
[9], [10], [16].

In Section II, we briefly discuss AD codes. Section III will describe
a problem that has many features in common with the control
problems mentioned above. Section IV will describe how the results
returned by an AD program can be converted to a more familiar form.
Section V will present the results of our comparison study of the use
of the AD code ADOL-C [10] and a symbolic code written in MAPLE
V on the problem of Section III. A secondary point of this study is
to reinforce the idea that what is computationally practical is rapidly
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