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Time Delay Estimation in Continuous
Linear Time-Invariant Systems

Julio Tuch, Arie Feuer, and Zalman J. Palmor

Abstract—The use of a time delay in modeling LTI systems is quite
common. However, attempts to estimate these time delays in continuous
systems typically resorted to methods which increase the number of
parameters in the system, in contradiction to the use of time delay in
the model to begin with. We present here an attempt to estimate the time
delays directly. The algorithm we present is supported both by analysis
and simulations with very encouraging results.

1. INTRODUCTION

Recursive parameter identification of linear time-invariant systems
has been extensively studied. Many algorithms exist covering a wide
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range of accuracy v.v. simplicity. These algorithms are supported by
analytical studies and results and are well understood. Considerably
less is known ,however, about the identification of systems with
unknown time delays (also referred to as dead time). The difficulty
arises from the way the time delay parameter enters the system model.

A number of attempts of dealing with systems with time delays are
reported in the literature. In the discrete case, the common approach
is based on knowledge of an upper bound on time delay value. The
system transfer function numerator is expanded by the given upper
bound and, accordingly, the number of parameters to be estimated is
increased. The drawback of this approach is clear as an increase in
computational effort which may be costly at best. An example to this
approach is [1]. Another approach for discrete systems is described in
[2] where the algorithm increases the time delay by one sample time
at each step. This is based on a parallel computation of three error
terms corresponding to +1, 0, and —1. The decision then is made by
choosing the smallest error.

In the continuous-time models, typically, various approximations
have been used, such as Pade of various orders (see, e.g., [3]-[5]),
with limited success. In [6], an attempt was made to define an
error function which depends on the time delay only. A polynomial
match of this function for a collection of preselected time delay
values enables the computation of the best parameter, the one which
minimizes the given function. Once the time delay is determined,
the model becomes linear for the other parameters. This procedure
is very slow and requires a large computational effort. In most cases
described above, to be able to estimate the time delay (which is one
additional parameter) one is required to estimate a number, sometimes
large, of parameters. In addition, no analysis was attempted as to
the convergence of the proposed algorithms. The main thrust of our
paper is the estimation of the time delay. We propose an algorithm
to do this for a continuous system. An analysis is presented which
proves the convergence of the algorithm, and robustness issues are
discussed as well, The proposed algorithm is then expanded to include
the case where, in addition to the time delay, one estimates all other
parameters. For this, however, we have no analytical results. To verify
the analysis and to demonstrate the feasibility of the algorithm, we
present some of the simulation results which were carried out.

II. IDENTIFICATION OF TIME DELAY IN A KNOWN LTI SYSTEM

Consider a continuous-time linear time-invariant system with a
single input and a single output. The system is given by the equation

A(D)y(t) = B(D)u(t — 1) @1
where
AD)=D"+an D"+ 4 a0
B(D) = buD™ 4+ b1 D™ 4ok bp,  m<n. (22)

D = d/dt is the differential operator and 7 is the time delay (or the
dead-time, as it is sometimes referred to) of the system.

Let us assume now that both the coefficients a; of A(D) and b;
of B(D) are known, and we would like to estimate the time delay
7. In addition, we would like to perform this estimation on line as
more and more data are being collected. Namely, we want to develop
an adaptive identification algorithm for 7. To do that, let us assume
that B(s)/A(s) is stable and minimum phase and apply the Laplace
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transform on both sides of (2.1) to get

n—1

>

=0

b;

gn—1

i Y(s) + e_”zm:

1=0

Y (s)

Us)  (23)

sﬂ—i
where Y (s) and U(s) are the transforms of y(t) and u(t), respec-
tively.

Let us denote the estimate of 7 by +; then #(t), the estimate of
y(t), is defined through its Laplace transform by

n—1 m

& a; —af bi
Y(s) = _Z(,:s""y(s) +e ;8” U(s) 24
and the error e(t) through its transform
O —sr —a7 = b
E(s)=Y(s)=Y(s)=(e* —e )gsn_i U(s). (25)
Denote
V)= o5UG),  i=01-(mtl) Q)
and define the sensitivity function
_ (s
®(s) = 5 (2.7)
Then, by (2.4) and (2.6), we get
B(s) = —e™" Y bihita(s)
=0
or
$(t) = =Y bithiga(t — 7). 2.8)
2=0

Motivated by the continuous recursive least square algorithm as
presented in the literature (see, e.g., [7]), we define the following
algorithm for adaptively estimating

P(t)é(t)e(t)
1+P(t) (1)
. )2 2
P) = -2
Note that the 9; () are generated by passing u(t) through a bank of
integrators, and recall that we assumed n > m so YPm41 can be at
most equal to u(t).
The convergence properties of this algorithm can be summarized
in the following theorem.

Theorem 2.1: Let B(s)/A(s) be stable and minimum phase and
u(t) > € > 0 for all t > 0. Then, in the algorithm defined by (2.9)

7

P(0)>0 } 2.9)

Jim (1) = . 2.10)
Proof: Define the following function
o(t) = %(m) . @1
Then, using (2.9), we get
o(t) = LD 2y oy, @12

T 14 P()e(t)?

From (2.6), v:(t) are clearly positive and monotonically increasing.
Hence,

Wt — 1) — it = R)[# — 7]
=it -7) =it - Dt —7) = (¢t - %) >0. (2.13)
Since B(s)/A(s) is minimum phase, b; > 0; hence, from (2.8),
B(t) < 0 (2.14)
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and from (2.5) and (2.13)

e®[F(t)=1] = 3 bilgi(t—7)— i (t—2()][F(8)—7] > 0. (2.15)
=0
From (2.9), clearly, P(t) > 0 so, combining (2.14) and (2.15) into
(2.12), we conclude that

W) <0 Vi

This implies that v(t) is bounded for all ¢ and so is 7(¢). It can
readily be shown that

#®) < 7 (2.16)

where 7 = 7 + [#(0) — 7| and #(0) is the initial value for #().
Now, from (2.6),

t
wilt) = / Yisa (o) do
]
and since u(t) > ¢

Pi(t) > £ (2.17)

(n =)
$0
(¢ —7) = (E = Pl (t = 7) = 9t — )]

=lt=m)= =] v

-7
t—r

€ e
- " e

> ol - - a1

2 il =) = = A =) = (= 7))

S 1 e SRR S (S P
+ (=5 i -

for t > 27, (2.18)

Also, from (2.8) and (2.17), we have

lo(8)] = Zbﬂbiﬂ(t —#)> EZ

(t—#)nt
(n—17—1)

fort > 27. (2.19)

Combining (2.12), (2.18), and (2.19), we get

o P)e(t)? ,it)A_T —cl(t) — 712
U(t)—W ¢(t)(T ) < —c[#(t) - 7]

< —cu(t) (2.20)

where
n—i—1

_ Zin;o i_r(n—i)!

et P
Ei:o itn—i—1)

> 0.

Thus,
v(t) < v(o)e™
and clearly, v(t) — 0 as t — oo so that

lim 7(t) = 7. O

t—oo

Remark 2.1: In case u(t) < —e < 0 for all ¢, Theorem 2.1 holds
as well (the proof is almost identical).
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Fig. 1. No modifications with unit step input.
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Fig. 2. Square wave input with period 3.

Remark 2.2: From the definition of the signals ¢;(t) and the
condition on u(t), clearly, in practical implementations, the algorithm
has to be modified so that the 3:(¢) do not saturate. Several
modifications are possible, and all of them were tried successfully
in our simulations.

1) In light of Remark 2.1, one could use an input signal which
changes signs (e.g., a square wave). As long as the time distance
between sign changes is considerably larger than 7 and 7(t), con-
vergence will be guaranteed.

2) Periodic resetting of the integrators to zero will also guarantee
bounded values for 1;(t), and if the resetting period is long enough,
again, convergence is guaranteed.

3) Instead of integrators, one could use first-order lags with long
time constants. This will also guarantee bounded v;(t) as long as
u(t) is bounded.

Remark 2.3: In Theorem 2.1, we required a minimum phase
system. Actually, as one can observe from the proof of the theorem,
all that is required is that b; < 0.

In our analysis, we have assumed that the system parameters are
known. An important question is: How sensitive is the algorithm
to this assumption? To discuss this question of robustness, let us
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Fig. 3. Step input with integrator resetting.
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Fig. 4. Step input and first-order delay with time constant= 4 instead of
integrator.

consider, for simplicity, a first-order system where

AD)=1+ aD}
B(D) =b. :

Suppose now that the value used in our algorithm is b,, rather than
b. In this case, the error becomes [see (2.15)]

e(t) = byp(t — 1) — byt — 7).

Suppose u(t) is a unit step input, and ¥(t) is a ramp. It is
straightforward to show that to optimize the integral of the error
squared, the estimated time delay will be
gy D1—b b
() = 5 t+ 5T

1

@.21)

(2.22)

t>T (2.23)
Clearly, no matter how small the difference b, — b is, #*(7) will
diverge to infinity. This means that the algorithm is not robust.
However, we will show that the modifications suggested in Remark
2.2 do remedy this robustness problem.

Let us consider the first modification, noting that the discussion on
the second one will be quite similar with similar conclusions.

With a square wave of period T and “amplitude” 1, we get

sy = {17, for kr <t < kT +T/2
“\k+1T-t, forkT+T/2<t< (k+1T [
£=0,1,2,---. (224)
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Fig. 5. Robustness experiment with square wave input. (a) by

Since #(t) in (2.24) is a periodic function, let us confine our
attention to one period (kT + 7, (k+ 1)T + 7) and ask how 7(¢)
can be chosen to minimize e(t) for every ¢ in this interval. By
straightforward observation, we can conclude that the following 7*(¢)
will accomplish it
bb;—"(t —kT) + &,

for kT +7 <t <kT+7+ 58T
t—kT -T/2,

TO=Y for kT 47+ BT <t <kT 474 (1- )T
Bt — (k+ 1T] + £,
for kT +7+ (1- 8)T <t < (k+ 1T
(2.25)

Note that for b; > b, the second interval becomes empty.

The above means that the algorithm will thrive to converge to
a periodic function oscillating around 7 with amplitude given by
|b1 — b/b1|T'/2. Namely, it is linearly dependent on both the error in
the gains and the period T'. This means that the algorithm, with the
above modification, is robust to errors in the parameters.

III. IDENTIFICATION OF AN LTI SYSTEM WITH TIME DELAY

Identification of a system with a time delay in which all parameters
are unknown is a considerably more difficult problem. Modifying the
RLS algorithm of the previous section to identify the parameters a;
and b; as well as the time delay can be done as follows.

Let us denote

90:[aD,ala"'yan—lybO’bl7""bm7 T]T 3.1
‘I’i(s):—n_l—z‘y(s)a Z=07 17"'3n_1 3.2)
¥i(s) = m=U(s), i=n,.--,n+m+1f ’

Here, since the parameters are all unknown, we define
. n-—1 m
§O) = =D @) + Y bitnsilt — 7) 33)
=0 =0

and the regression vector (see [8])

s = 2

850 = [1/)0(t)7' o ﬂﬁn—l(t)a wn(t-i'),‘ N ,1/Jn+m(t—i'),

T

- Z$i¢n+«‘+1(t - )

i=0

(3.4)

1.4. (b) by
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where 8 is the estimate of 60, namely,

N . R ~ A T
0= [ao, A1s°°°yQn—1, bo,"',bm, T] .

}

The algorithm then is given by
P\ — _ P(Rd(t)e(t)
#(t) = 55 P(t)¢gtT)P()
- _ P®)()é(t 0
P(t) = - S e

(3.5

where

e(t) = y() — 9(¢). (3.6
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The analysis of this algorithm is very difficult and is beyond the
scope of this paper. Extensive simulations conducted show very good
results, some of which are presented here.

IV. SIMULATION RESULTS

Extensive simulations have been conducted, some to verify the
analysis of Section II and some to test the algorithm for the problem
in Section IIL In all our simulations, the following first-order system
has been used

1.5e~15¢
G(s) = P

In Fig. 1, we see the result of using the algorithm with a unit step
input and employed as in Theorem 2.1. The convergence is fast and
seems to be exponential, as predicted by the proof of Theorem 2.1.
In Figs. 2-4, we repeated the experiment, each time with a different
modification proposed in Remark 2.2. In each case, the convergence
is quite similar to the one in Fig. 1, as predicted in Remark 2.2. To
test for robustness, we have tried to use the algorithm without any
modification when b1 # b, and the algorithm diverged. In Fig. 5,
we see the behavior of the algorithm when we use a square wave
as the input. Again, the behavior verifies our discussion and (2.25).
In Fig. 5(a), we take b; < b, and in Fig. 5(b), by > b, both with
similar results.

Finally, we have used the algorithm proposed in (3.5) for the case
when a and b are unknown, with a square wave input. The results
are very encouraging and are given in Fig. 6. We see that all three
parameters converge to the correct values.

4.1)

V. CONCLUSION

An algorithm for direct identification of an unknown time delay in
an LTI system was presented. It is based on the commonly used RLS
algorithm. The convergence of the proposed algorithm for minimal
phase and stable systems, where only the time delay is unknown, is
analyzed and proven. The robustness of the proposed algorithm to
the knowledge of other parameters is also discussed. It is shown that,
with an oscillating input such as the square wave or with integrators
resetting, the algorithm is robust to inaccuracies in system parameters.

The algorithm is extended to the case where all parameters of the
system are unknown. For this, there is no analytical support; the
simulations conducted ,however, show very encouraging results.
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Dissipative H;/H o Controller Synthesis

Wassim M. Haddad, Dennis S. Bernstein, and Y. William Wang

Abstract— In certain applications, such as the colocated control of
flexible structures, the plant is known to be positive real. Hence, closed-
loop stability is unconditionally guaranteed as long as the controller is
also positive real. One approach to designing positive real controllers
is the LQG-based positive real synthesis technique of Lozano-Leal and
Joshi. The contribution of this paper is the extension of this positive real
synthesis technique to include an Hoo-norm constraint on closed-loop
performance.

I. INTRODUCTION

In certain applications, such as the control of flexible structures,
the plant transfer function is known to be positive real. This property
arises if the sensor and actuator are colocated and also dual, for
example, force actuator and velocity sensor or torque actuator and
angular rate sensor. In practice, the prospects for controlling such
systems is quite good since, if sensor and actuator dynamics are
negligible, stability is unconditionally guaranteed as long as the
controller is strictly positive real [1]-[3]. Although there is no general
theory yet available for designing positive real controllers, a variety
of techniques have been proposed based on H; theory [4]-[10] and
H, theory [11], [12].

In this paper, we focus on the H-based positive real controller
synthesis method of Lozano-Leal and Joshi [7]. In [7], it is shown
that if the plant is positive real and if the error and disturbance
matrices satisfy certain constraints, then the LQG controller is also
positive real. This approach is appealing in practice since it requires
only standard LQG synthesis techniques. Our goal in this note is to
extend the synthesis technique of [7] to include an H..-norm bound
on the closed-loop transfer function [13]. This extension thus provides
the control designer with more flexibility in specifying closed-loop
system performance.

II. PRELIMINARIES

In this section, we establish definitions and notation. Let R and
C denote the real and complex numbers, let ( )¥ and ( )* denote
transpose and complex conjugate transpose, respectively, and let
I, or I denote the n X n identity matrix. Furthermore, we write
I+ ||z for the Euclidean norm, || - ||# for the Frobenius matrix norm,
o(-) for the maximum singular value, tr for the trace operator, and
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