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Conditioning of LMS Algorithms with Fast Sampling
Arie Feuer and Rick Middleton

Abstract—The LMS algorithm is very commonly used in signal process-
ing. Its convergence properties depend primarily on the step size chosen
and the condition number of an information matrix associated with the
system. In most applications today, the LMS uses a regression vector
based on the shift operator (including the ubiquitous tapped delay line). In
this correspondence, we demonstrate that generically, when fast sampling
is employed, these regression vectors lead to poorly conditioned LMS.
By comparison, delta operator based regression vectors lead with rapid
sampling to improved condition numbers, hence, to better performance.

1. INTRODUCTION
All linear estimations are based on a model of the form

(k] = X[k]"Wo + n[k] m

where y[k] is measured and X[k] € IR", frequently referred to
as a regression vector, is an n-dimensional vector formed from
measured variables. W, is a constant vector to be estimated, and
n[k] is a “noise” sequence. Depending on the way X [k] is formed,
(1) represents different models. One common choice is the tapped
delay line, where X [k]T = [z[k — 1], z[k — n]], with z[k] a
scalar sequence. '

“ The well-known least mean square (LMS) algorithm is a recursive
algorithm to estimate W, in (1) using mean square error (MSE) as
the optimality criterion. The MSE is given by

MSE = E{ (y[k] - X[k]TW)z}
= E‘{y[k]z} —2P™W + WTRW @
where
P= E{y[k]X[k]}

R= E‘{X[k]X[k]T}. 3)

Roughly speaking, the LMS is a gradient search algorithm on the
surface defined in (2) and attempts to converge to its unique minimum
at R7'P. It is quite clear that the performance of this search
algorithm depends solely on the shape of this surface which in turn,
depends on the matrix R. Equi-MSE surfaces are ellipsoids. How
narrow these ellipsoids are is determined by the relative values of
the eigenvalues of R. Specifically, consider the condition number of
R, S, which is defined as

S = Ama.x [R]

= Xl R] @
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where Amax[R] and Amin[R) are the largest and smallest eigenvalues
of R. Then, large S implies narrow ellipsoids, when S = 1 (all
eigenvalues of R are equal) the ellipsoids become spheres. On the
other hand, it is well known that when these ellipsoids are narrow the
gradient search becomes more difficult and proceeds “cautiously.” In
other words, the search algorithm will take longer to converge to a
predetermined neighborhood of the optimum.

The above observations appear in many references (see e.g.,
[1]-[4]) and are known in practical applications of the LMS al-
gorithm. With this in mind, we wish to highlight in this paper a
tradeoff in the choice of X [k] between simplicity in implementation
and performance.

Since typically the measured data sequences result from sampling
a continuous time process, we start our discussion with a continuous
time process x(t). It is assumed to be stationary with autocorrelation
function

r(r) = E{:z(t + T).r(t)}. )

z(t) is passed through an anti-aliasing filter and then sampled at a
period A, For simplicity, we consider a simple “integrate and reset”
anti-aliasing filter. So, if x[k] denotes the sampled sequence, we have
kA

z(t) dt. ©6)

1
z[k] = —
W=Z fa

The autocorrelation sequence for z[k] will then be
r[m] = E{m[k + m]z[k]}
1 /5 ra
=iz ‘/0. [) r(mA+ o0 —()dod(. ()

The following can now be established:
Lemma 1: For any autocorrelation function r(7) of z(t), which
is continuous at 7 = 0, we have for any fixed integer m

};il.ng r[m] = r(0). ®)

Proof: From (7)

r[m] - r[0] = % /OA /OA (r(mA+a—()—-r(0)) do dC. (9)

Given any € > 0, the continuity of 7(7) at 7 = 0 implies that there
exists 81 > O such that given |7| < & we have |r(1) — r(0)| < .
Let § = 7;6#—1, then given |A| < § we have for 0 < 0, ¢ < A
mA+o—(| < (Im|+1)A < b1 s0|r(mA+a~¢)—r(0)]<e
and, by (9) also |r[m] — 7(0)| < e. This establishes (8). O

Next, we consider two general ways of generating the regression
vector X (k] and discuss the significance of these choices as far as
the condition number of the resulting R is concerned.

II. GENERIC SHIFT OPERATOR RESULTS
In this section, we consider a generic shift operator formulation,
in which the regressor X, (k] is generated via
A
9X[k] = Xo[k + 1]

= A X, k] + Byz[k] (10)
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where (A4, Bg) is a controllable pair and {lA.'(Aq)I <1 4

1,2,---, n} (Ai(Aq) denotes the ith eigenvalue of Ag).
Note that the commonly used tapped delay line corresponds to the
choice

0 00 1
10 00
Ag= : N B, = (1)
0 0 1 0 0
where the regression vector is X [k]T = [:c[k -1],-, [k — n]],

and is therefore a special case of (10).
We then have the following result:
Lemma 2: For any fixed (i.e., independent of sampling interval)

pair (4,4, B,), {l)\;(Aq)l <1, i=12,---, n} we have
lim Ry =r(0)(I - Ag) 'B,BI(I - AD)™ 12)
where
A
R, & E{Xq[k]Xq[k]T}.
Proof: From (10)
K=Y (A4)" Byalk —1—m]
m=0 .
hence
=3 > (A" BB (A7) rlm — 1. a3
m=0 l=0

Since A, has all its eigenvalues inside the unit circle, the infinite
summations in (13) converge uniformly, and so:

Jim Ro= 3" 3" (4,)"B,BI(A]) (Aiglo rm -1]).

m=0 [=0

(ﬁsing Lemma 1.1) = r(0) ()of (A,,)"') B,BT (i (A;)‘)
m=0 =0

= r(0)(I = Ag)~ B,BF(I — A7)

O

Since B, B:f has rank one, Lemma 2 clearly shows that as the

sampling rate increases, the shift operator correlation matrix R,

tends to a singular matrix for all n > 1. Thus, its condition number
increases with the sampling rate to infinity.

III. DIFFERENCE OPERATOR RESULTS

As an alternative to the shift operator-based generation of the
regression vector, we suggest here using the difference operator.
In [5], a difference operator based discrete time system calculus is
proposed. It is shown to be a numerically superior alternative to
shift operator based calculus. The proposed numerical advantages
are shown to be particularly evident at rapid sampling rates.

The difference operator used, called the delta operator, is defined
as follows:

g—1
AT

>

) (14)

4

6X[k) % (X[k +11 - X[k]). (15)

Using the delta operator we can generate the regression vector via
8 Xs[k] = As Xs[k] + Bsx[k]. (16)

1979

From (15), (16) can be rewritten as
aXs[k] = (I + AA.;) Xs{k] + ABsz[k]. an

Thus, we see that the delta operator form is equivalent to a shift
operator form, except that an explicit, structured dependence of the

“matrices A and B on the sampling period has been incorporated.

We now proceed to our main result for the delta operator case:
Lemma 3: Let Xs[k] be generated as in (16), and define

R & E{Xe[MXs[H"}. (18)

Then, assuming {Re Ai(As) <0, i=1,2,---, n},

lim Rg:f / 6% BsBY % S r(o — ()do d¢.  (19)
A—0 0 o

Proof: In view of (17), (13), and (7) we have

R=3 3 a7 (1+845)" BBF (1+A4F) rim -1
m=0 [=0
= i f: {(1 + AAs)™ BsBY (I + AAE)I
m=0 [=0
(rn+

I+1)A
/ r(ec —)dod(
1A a .

= /ueo/o-oo (I+AA5)[%] BsBY (I+AA})[%]

-r(c — () da d¢ 0
where “[w]” denotes the greatest integer less than or equal to the
real number w. For sufficiently small ARe {\:(A4)} < 0 implies
[1 4+ AX;i(A)| < 1, and so the integral in (20) converges uniformly.
Therefore, it can readily be shown that

(&l _

ets”

(1480
and

lim R.;—/ / lim { I+AA6)[K] Bs BT (H_AAT)[%]}
r(o=¢)dod¢
0

0
Under mild conditions on As, Bs and the auto-correlation function
7(7), it can be shown that the right-hand side of (19) is nonsingular.

For example, it suffices that As, Bs be controllable, {Re'/\,-(As) <

0, i=12,.--, n} and the spectrum of z(¢) has a support at least
at n isolated points (see [2]). One should note that when the condition
on the spectrum of z(t) does not hold there is no sampling rate and
no regressor structure that will give a full rank correlation matrix,
That is, the “problem” is fundamentally singular and the dimension
of the model must be reduced.

IV. DISCUSSION

The condition number of the correlation matrix in LMS algorithms
is an important factor in the algorithm’s performance. Lemma 2 indi-
cates that with rapid sampling, generically, shift operator-based LMS
a.lgont.hms (including the common tapped delay line implementations)
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will be poorly conditioned. On the other hand, as seen in Lemma 3,
delta operator-based implementations are generically well conditioned
at fast sampling rates. These observations imply that when compared,
one can expect an improved convergence rate when the delta form
is used.

Of course, this improvement in convergence rate comes at some
price—an increase in the number of computations required. Gen-
erating the regression vector via a tapped delay line, which is the
simplest shift form, will require no additions and no multiplications.
On the other hand, the simplest delta form (using a canonical
representation of As, Bs), will require 2n additions and » multi-
plications.

V. SIMULATION RESULTS

To demonstrate and test the analysis and conclusions in the earlier
sections we have conducted extensive simulation experiments. A
sample of their results is presented here. The experiment setup
is described in Fig. 1. Zero-mean Gaussian white noise s(t) with
incremental variance o, is passed through a second-order filter to
generate the continuous process z(t). z(t) is then passed through
a first-order filter and corrupted by additive zero-mean Gaussian
white noise n(t) with variance 0., to result in the continuous
process y(t). Both z(t) and y(t) are passed through anti-aliasing
filters and sampled at period A as described in (6). x[k| is then
fed into two distinct regression vector generators, one shift operator
based and the other delta operator based according to (10) and
(16), respectively. The resulting regression vectors X4[k] and Xs[k]
together with y[k] are then used each in an LMS algorithm providing
the estimates W, [k], W[k] and the errors e, [k], es[k], respectively.
This experiment was repeated for several sampling periods and the
results are enclosed. '

The parameters chosen are:

a1 =12,a,=25,b=1,0,=1, o, =0.01

0 0 0 0 1
1 0 0 0 0 .
Aq =lo 10 ol B, = 0 tapped delay line
0 01 0 0
-05 0 0 0 1
] _{-1 -05 0 0 _ |1
Ads=1_1 1 —os o |» B=|
-1 -1 -1 -05 1

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 8, AUGUST 1995

4

T
11

T

PR ETI

102

Condition Number

T
Ly

T

L e

g

100 101
Sampling Frequency (Hz)

Fig. 2. Condition numbers versus sampling frequency.
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Fig. 3. Weight behavior for 1 Hz sampling.

The step-sizes for each LMS were chosen to get the fastest
convergence. After numerous experiments they were set at

0.01
pe =0.02, ps \/K

In Fig. 2 we observe the dependence of each condition number on
the sampling rate. Clearly, beyond about 1.5 Hz (A =0.67 s) the shift
operator condition number takes off and grows while the condition
number corresponding to the delta operator converges to a constant
value as predicted by our analysis. The curves in Fig. 2 as well as
all other results were generated by Monte Carlo runs repeated one
hundred times.

In Fig. 3, we see the behavior of the respective estimate vectors for
1 Hz sampling. Clearly, since the difference in the condition numbers
is small (see Fig. 2), it is not noticeable in the rates of convergence
of the respective vector estimates. Neither is there any discernible
difference in the MSE behavior of each algorithm as seen in Fig. 4.

The picture changes drastically when the sampling rate is increased
to 33 Hz (A =0.03 s). In Fig. 5 (top) we see that after about 800
samples (the algorithm was turned on only after 5 s) the estimate
vector is still far from convergence in the shift LMS. On the other
hand, in Fig. 5 (bottom) the weight vector in the delta LMS converges
after about 500 samples and does not differ much from the 1 Hz
sampling case. This clearly agrees with the conclusions from our
analysis.
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Fig. 4. MSE behavior at 1 Hz sampling rate.
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Fig. 5. Weight behavior for 33 Hz sampling rate.
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In Fig. 6 the respective MSE are compared as well. The advantage
of delta LMS is striking—after 800 samples there is an order of
magnitude difference in the respective MSE’s.

VI. CONCLUDING REMARKS

Both the analysis and even more so the simulation experiments
conducted indicate that the use of the delta-based regression vector
used for LMS has a clear advantage as far as performance over
the commonly used shift-based regression vector. This advantage
becomes more and more significant as the sampling rate is increased.
There are a number of applications where the sampling rates are
higher than the required Nyquist rates (e.g., when the sampling rate
is predetermined or when “rough” processing is done in the analog
form while “fine” processing is done digitally). In cases like these
our recommendation is quite clear—consider using the delta operator
even if it means increased computational load.

With this in mind we wish to point out that our choice of (45, Bs)
in the experiment represents a choice we generally recommend

—a 0 0 0 1
—2a —a 0 0 : 1
As=1 90 20 —a 0| BT
—2a ~2a -—2a -—a 1

with “a” as a design parameter.
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Fig. 6. MSE behavior at 33 Hz sampling rate.

Note that this structure corresponds (modulo scaling of B;) to
the Laguerre polynomial form discussed in, for example,-[6]. The
parameter “a” should be chosen to be about ; where T is the
dominant time constant of the system of interest. Note that in the
example, we deliberately selected “a” so as to have an error of a
factor of two compared with the “correct” value (T ~ 1 second),
to realistically represent uncertainty in the time constant. Also,
although it may appear that the Laguerre structure requires O(n?)
computations for the regression vector, this is not so. In fact, the
structure can be implemented with O(n) by noting that (16) can be
implemented as

6X5,1[k) = —aXs,1[k] + z[K]
5X,5,i[k] = —aXs,,'[k] + 5X5,.‘_1[k] - aXs,.'_1 fori=2,.-- ,‘ n

(Xs,i[k] is the i-th component of Xs[k]).
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