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Abstract 

This note develops a technique for designing diagonalizing compensators based on state-space descriptions. The relationship 
with stable decoupling invariants is also explored. @ 1997 Elsevier Science B.V. 
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1. Introduction 

An important problem in multi-input-multi-output 
control system design is the determination of pre- or 
post-compensators which diagonalize a given plant. 
There has been on-going interest in this problem in 
the control literature; see, e.g., [1-3, 6, 7, 9]. 

The majority of this, literature deals with the ques- 
tion of existence of diagonalizing compensators rather 
than the methods for evaluating them. Also, most 
of these references ~:se state feedback to achieve 
decoupling. Our interest is on strict pre- or post- 
compensation, nameljy, the determination of K1 (or 
/(2) such that, for a g:ven plant, P, the product PK1 

(KzP) is diagonal. We,' will primarily focus on diag- 
onalizing pre-compen';ators for a stable plant (with 
stable K), since the extension to post-compensation 
is then straightforward. 

The main contribution of the current paper is a 
state-space approach to the design of pre- or post- 
compensators for a given stable plant. In addition, 
we relate this methodology to stable decoupling 
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invariants, showing that the designed compensator 
achieves the simplest diagonal transfer function in 
terms of the multiplicity of non-minimum phase zeros 
and zeros at infinity. Finally, an extension to unstable 
plants is presented. In the latter case, cancellation 
of unstable poles is an issue that must be carefully 
addressed. 

2. Pre- and post-compensation of stable transfer 
matrices 

Consider a p-input-p-output n-dimensional LTI 
and stable system described by the following (mini- 
mal) state-space realization: 

= A x  + Bu,  

y =  C x  + Du,  
(1) 

where the transfer matrix H = C ( s I  - A ) - ]B  + D has 
full normal rank. (We work with continuous time sys- 
tems, but the results can be applied, muta t i s  mutandis ,  

to the discrete time case.) 
We will first focus on pre-compensator design. 

We thus wish to design a stable pre-compensator 

0!67-6911/97/$17.00 (~ 1997 Elsevier Science B.V. All rights reserved 
PH S0167-6911(97)00066-2 



174 G C. Goodwin et al./ Systems & Control Letters 32 (1997) 173-177 

Gc described by the following (minimal) state-space 
realization: 

2c =Acxc +Bcr,  u=Ccx~  +Dcr ,  (2) 

such that the transfer matrix HGc from r to y is 
diagonal. 

Let ~r denote the right interactor matrix [8] for the 
system (1), so that 

121 - H{r = [C(sI - A ) - I B  + D]{r 

= C ( s I  - A)- I /~  4 - / )  (3) 

is a biproper transfer matrix (i.e.,/3 is non-singular). 
The right interactor is a natural extension of the in- 
teractor introduced in [8]. Expressions to evaluate an 
interactor based on state-space methods are provided 
in [4], where dual results for the right interactor are 
briefly explored. 

Let 

Ao = A  - BZ)-IC,  Bo = ~ f ) - l ,  

Co = - D-1C,  Do = ~ - l .  
(4) 

From the above definition it can be readily concluded 
that 

[C(sI - A ) - 1 B  + ff)][Co(sI - Ao)- lBo + Do] = L  

(5) 

Since we are interested in finding a diagonalizing 
pre-compensator, it may appear from (5) that we have, 
basically, solved the problem. However, since the sys- 
tem (1) is not necessarily minimum phase, the system 
(Co, Ao, B0, D0) could be unstable. We will proceed by 
building on the system (Co,Ao,Bo,Do), by introduc- 
ing modifications in such a way that its diagonalizing 
property is preserved. 

We define the following subsystems: 

.~i = A ix i  q- Bibti, 
i ----- 1 . . . . .  p, (6) 

ffi = Cixi  -~ Di~ti, 

as the minimal realizations of (Co,Ao,Boei, Doei), 
where ei is the ith column of the p × p identity matrix. 

Since the system (6) can be unstable, let 

Fti = - Kixi + ?i, i = l . . . . .  p, (7) 

where the Ki's are such that (Ai - BiKi) is stable for 
all i. Furthermore, define 

p 

= ) . ~  a~. (8) ff 

i= l  

With the above definitions, we are in a position to 
establish the following result: 

Lemma 2.1. (a) The transfer matr ix  f r o m  ~ =  
[rl . . . .  , yp]X to 5 is given by 

G = [Co(sI - Ao)-lBo + Do] 

x diag{[1 + Ki(sI - Ai ) - lBi]  -1 }. (9) 

(b) tTIG is diagonal. 

Proof. (a) From definitions (6) and (7) the transfer 
matrix from ~ to tTi is given by 

Gi = ( C i  - D i K i ) ( s I  - A i  + B i K i ) - l B i  + D i .  (10) 

Using the matrix inversion lemma and (6) we obtain 

Gi = [Co(sI - Ao)-ZBo + Do] 

x el[1 + Ki(sI - A i ) - l B i ] - l .  (1 1 ) 

Then, the transfer matrix from ~ to ff = ~P= 1 ui is 
given by 

p 

G = Z GieTi = [Co(sI - Ao)- lBo + Do] 
i - 1  

x diag{[1 + K i ( s l - A i ) - l B i ] - l } .  (12) 

(b) Immediate from (5) and (12). [] 

Lemma 2.1 will form the basis for the construction 
of a stable and proper diagonalizing pre-compensator 
for H. The following result shows how this is 
achieved. 

Theorem 2.1. (a) A diagonalizing pre-compensator 
for  H can be obtained as a minimal realization o f  

G¢ = ~rG diag {1/pi} ,  (13) 

where G has state-space realization as defined by 
(6)- (8) ,  ~r is as in (3), and Pi is any stable monic 
polynomial  o f  degree qi. Here, each qi is the highest 
degree occurring among the degrees o f  all entries o f  
~l i ,  where ~li  is the ith column o f  the left interactor 

f o r  H, which is defined by ¢IH = 121 (121 biproper). 
(b) With Gc as in (a) we obtain HGc = D, where 

D is given by 

D = diag{di}, (14) 

di = 1~Pill + Ki(s l  - Ai ) - lBi]  -1. (15) 
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Also, the set o f  integers given by the number o f  
zeros at infinity (qi) plus the number o f  non- 
minimum phase zeros o f  di corresponds to the set o f  
stable decoupling invariants [2]. 

Proof. (a) With this choice, we see from Lemma 2.1 
that 

HGc = f iG diag{ 1/p, } 

= diag{[1 + Ki(sI - Ai ) - lBi]  -1 } diag{ 1/pi}, 

(16) 

which is diagonal as required. 
We note that G is,, by construction, stable. Hence, 

Gc is stable. To check that Gc is proper, we observe 
that 

Gc = ¢r[Co(sI - Ao)-IBo + Do] 

x diag{[1 + Kr(sI - A i ) - l B i ]  -1 } diag{ 1/pi} 

= ~r~r lH -1 diag{[1 + Ki(sI - Ai ) - lBi]  -1 } 

x diag{ 1/pi} 

= H - I  diag{[1 + Ki(sI - Ai ) - lBi]  - I  } 

x diag{ 1/pi} 

= / ~ - 1  ~1 diag{ 1/pi} 

x diag{[1 +Ki ( s I  - A i ) - l B i ] - l } ,  

which is proper bec~mse of the choice made for the 
degree of pi, i = 1 . . . . .  p. 

(b) We note that 

HGc = diag{ 1/pi} diag{[1 + Ki(sI -- A i ) - l B i ]  -1 }. 

(17) 

The definition ot' the integers q~ ensures that 
diag{ 1/pi} is the simplest diagonal matrix that makes 
H -1 diag{1/pi} proper and, hence, {qi} is the set 
of  decoupling invariants as defined in [2], i.e., they 
characterize the minimal relative degree achievable 
for each diagonal entry of  any diagonalized system. 

Next, consider the expression 

di = 1/pi[1 + Ki(sI -- Ai ) - lBi]  -1. (18) 

Clearly, the non-minimum phase zeros of  di are the 
unstable eigenvalues of  Ai, with corresponding multi- 
plicities. Say aij is an unstable eigenvalue of  Ai with 
multiplicity ma,j. Since Az has as its eigenvalues the 
poles of a minimal realization of the ith column of 
/~ -  1 = ~- 1 H -  l, it is clear that the highest multiplicity 

of aij, as a pole, among the entries of  the ith column 
of H - I  is exactly mao. It is, thus, clear that ma,j is 
the minimal multiplicity that aij must have as a non- 
minimum phase zero of the ith diagonal entry of  any 
diagonal matrix D such that the ith column of H - I D  
does not have unstable poles at aij. By repeating this 
argument with the remaining unstable eigenvalues of  
each matrix Az, and using a similar argument as was 
used for the zeros at infinity above, it follows as in [2] 
that the set of  integers corresponding to the number of  
non-minimum phase zeros plus the zeros at infinity of  
each diag{di} is precisely the set of stable decoupling 
invariants of  H. [] 

Part (b) of Theorem 2.1 establishes that the pro- 
posed pre-compensator is such that the resulting di- 
agonalized system has the least possible multiplicity 
for each non-minimum phase zero and zero at infin- 
ity. This is a very important property, because non- 
minimum phase zeros are a source of limitations on 
achievable performance in feedback systems. There- 
fore, it is of interest to know that the proposed de- 
sign introduces only those additional zeros at infinity 
and/or non-minimum phase zeros which are strictly 
necessary. 

Theorem 2.1 shows how to find a diagonalizing 
pre-compensator for H. The related problem of find- 
ing a post-compensator for H can be easily solved as 
follows: First, we find a pre-compensator K for H T 
and then, the post-compensator for H is obtained as 
Gc =KT.  

3. Extension to unstable transfer matrices 

We will show here how the results of  Section 2 
can be employed (whenever this is possible) to de- 
sign a pre-compensator K for an unstable plant, such 
that when K is used in a one-degree-of-freedom unity 
feedback structure, the resulting closed loop is both 
internally stable and diagonally decoupled. 

The design method uses coprime factorizations over 
the ring of proper and stable transfer functions. Thus, 
we will express the system H as 

H =/)~- 137h = N h D h  l, (19) 

where/)h and 3)h are left coprime, and Dh and Nh are 
right coprime. 

The method described below is based on recent re- 
sults given in [5]. There it was shown that part of  the 
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conditions needed to achieve decoupling is the exis- 
tence of  stable transfer matrices )(1 and -g2 such that 

Nh21 and X2/)h are diagonal. (20) 

We note that Nh and/)h are stable. We, thus, recognize 
this sub-problem as the problem of  finding stable pre- 
and post-compensators that diagonalize stable transfer 
matrices. This is precisely the problem addressed in 
Section 2. 

In addition to (20), it is also necessary that the 
following equation be satisfied [5]: 

Nh2, + Xz/)h = I .  (21) 

In an effort to verify if this is indeed possible, and if 
a diagonalizing compensator K can be obtained from 
)~l and )(2, one can proceed in the following way: 
• The procedure described in Section 2 is first used to 

find a diagonalizing pre-compensator, RNh, for Nh 
and a diagonalizing post-compensator,/~oh, for/3h. 
Thus, we obtain SNh = N h R N h  and SDh = RDhf f )h  • 

• We then attempt to solve the following equation: 

representations: 

where/)k = (I - A?kNh)D~ -1, 

or 

K = N k D ~  ~, where Nk = DhlQkff)h I • 

Note that the above expressions are left and right 
fractional representations of  the same compensator 
K. In fact, from the above definitions of/)k and Ark 
and Eq. (23), it is easily shown that/}kNk = N-kDk. 
Finally, it remains to check that either/3k or Nk are 
stable [5]. I f  one is stable then so is the other. Also, 
in this case, the compensator proposed in the previ- 
ous dot-point is a decoupling compensator, and the 
fractional representations above are, respectively, 
left and right coprime factorizations of  K. However, 
if they are not stable then, as explained in [5], no 
decoupling compensator exists. Finally, in the spe- 
cial case when H has no coincident unstable poles 
and zeros,/3k and Ark are always stable, and hence, 
the compensator proposed in the previous dot-point 
is guaranteed to be a decoupling compensator. 

SNh 'diag - -  X diag~ I 
A Nh "v Dh O Dh -~- (22) 4. Conclusions 

for diagonal matrices XDd2 ag and Xdh g. 
Since all the matrices in (22) are diagonal, this equa- 
tion can be solved if  and only if SNh and Sob are 
coprime. 1 
As was shown in Section 2, the matrices SNh and Sob 
are the simplest achievable diagonal matrices (for 
Nh and/)h, respectively) in terms of  the multiplicity 
of  non-minimum phase zeros and zeros at infinity. 
Thus, if SNh and Sob are not coprime, then it is not 
possible to find a decoupling compensator for H.  

• If  a solution to (22) exists, we can construct 
v d i a g ~  ~r o xdiag 

O k = A D h  ~'~Dh and l V k = ~ N h  Nh " Thus, with 
3~1 =Nk  and X ) = D k ,  (20) is clearly satisfied. 
Furthermore, Dk and Ark have the property that 

NhNk + Dkf)h = I. (23) 

Thus, a possible decoupling compensator is 
given by the following alternative fractional 

1 Since SNh and Sob are diagonal matrices, one can test the 
coprimeness of these matrices by examining the coprimeness of 
each diagonal entry. It can be easily shown that if they are left 
coprime, then they are also right coprime and vice versa. Thus, 
we simply use the term coprime. 

This paper has studied the problem of  evaluating 
diagonalizing compensators for square transfer ma- 
trices. A state-space approach has been considered, 
which in the case of  stable transfer matrices directly 
leads to the diagonalizing compensators. Extensions to 
unstable transfer matrices have been briefly explored. 
The relationship between the proposed design and the 
concept of  stable decouplin9 invariants has also been 
discussed. 
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