
On the reconstruction of a ® nite sum of sinusoids from non-uniform
periodic samples

G. C. GOODWIN² , A. FEUER³ * and S. J. LEE§

This paper considers the extension of known su� cient conditions for signal recon-
struction fromnon-uniformperiodic samples to the case where the signal comprises
a ® nite combination of sinusoids. In this case, it is shown that the reconstruction
can be achieved by a causal observer. The result hinges on the observability of the
associated signal model. It is shown that the su� cient conditions for this observ-
ability to hold are the same as the band-limited condition which applies to the
general non-causal reconstruction result.

1. Introduction

The problem of reconstructing band-limited signals from non-uniform periodic
samples has been treated in the literature (Papoulis 1968, Jerri 1977). The associated
construction is, however, non-causal, being based on an in® nite weighted sum of sinc
functions. Thus, these general results are essentially an existence theorem.

In this paper we consider the special case where the underlying signal comprises a
® nite combination of sinusoids. In this case, we show that the reconstruction can be
achieved via a causal ® nite-dimensional ® lter designed using observer principles.

A key question in this context is the observability of the underlying signal model
with non-uniformly sampled data. We show that observability of this model is
guaranteed provided the sinewave frequencies satisfy the general constraint for
reconstruction based on non-uniform samples as outlined in Papoulis (1968) and
restated here.

The current result can be used in a practical sense to reconstruct signals that are
well approximated by a ® nite Fourier representation. This gives additional insight
into the formal existence results mentioned earlier. The results also have implication
in determining the bandwidth of signals that can be dealt with in sampled data
control systems where non-uniform sampling is employed. In fact, this study was
motivated by an industrial application concerning a continuous galvanizing line
where the instrumentation imposed a periodic measurement pattern (Goodwin
et al. 1994).
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2. Non-causal reconstruction

There exist a number of results which extend the reconstruction of band-limited
signals from uniformly sampled data to non-uniformly sampled data. These go back
as far as 1968 (Papoulis 1968). An extensive treatment is presented in Jerri (1977).

We are speci® cally interested here in non-uniformly sampled data which has a
periodic pattern. Namely, if {tq : q = 0, 6 1, 6 2,. . . are the sampling instances we
have, for some integer M,

t0 = 0

tq - tq- 1 = ¢q

ü
ý
þ

(2.1)

¢q+M = ¢q (2.2)

Let y(t) be the underlying (continuous-time) signal and let y[q] = y(tq) be the corre-
sponding sampled data. The question we address here is: when and how can one
reconstruct y(t) from {y[q]}?

2.1. The sampling extension result (Papoulis 1968)
Let y(t) be a given continuous-time signal and y[q] = y(tq) the resulting sampled

data sequence with periodic sampling as in equations (2.1), (2.2). Then, y(t) can be
uniquely recovered from y[q] provided

Y (x ) = 0 for |x | >
Mp
T

(2.3)

where Y (x ) is the Fourier transform of y(t) , and

T = å
M

q=1

¢q (2.4)

The reconstruction formula is of the form

y(t) = å
¥

q=- ¥
b q (t)

sin
p (t - tq)

T( )
p (t - tq)

T

y[q] (2.5)

where b q (t) are time functions which depend only on the sampling pattern.
A proof of this result and the expression for b q (t) are given in the Appendix.
Note that the bandwidth limitation (2.3) has a simple intuitive interpretation,

namely, that the usual Nyquist rate for uniform sampling should apply to the aver-
age sampling period. Clearly, if M = 1 we recover the well-known uniform sampling
result.

The reconstruction given in (2.5) is non-causal and hence of limited practical
value. In practice one would like to reconstruct the signal using only present and past
data, namely, in a causal way. For a special class of signals which can be modelled as
follows

Çx(t) = Ax(t)

y(t) = Cx(t)

ü
ý
þ

(2.6)
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it is clear that, if the samples of the state x(t) are available, namely x[q] = x(tq) , the
signal can be exactly reconstructed via

y(t) = CeA(t- tq)x[q], tq £ t < tq+1 (2.7)

This is clearly a causal process. Hence, going back to our original problem, we
consider a two-stage reconstruction process: (i) use the data {y[q]} to reconstruct
x[q], and (ii) use (2.7) to generate y(t) .

To carry out stage (i) we use an observer (which can be made, theoretically, to
converge at any desired rateÐ even in a ® nite number of steps if we employ a dead-
beat observer). Clearly, the key question to our ability to use an observer is whether
x[q] is indeed observable from y[q].

The main purpose of this paper is to establish the connection between the con-
dition in (2.3) and the observability question above. To do that we restrict attention
to a special class of signals comprising a ® nite sum of sinusoids.

3. Problem set-up

Consider a continuous time signal given by

y(t) = å
n

i=1
ai sin (x it + u i) (3.1)

The signal y(t) is sampled in a non-uniform pattern, de® ned as follows.
Let {p[k]} be a periodic sequence of zeros and ones such that for some integer

N ³ 1

p[k + N] = p[k] forallk (3.2)

Denote

M = å
N

k=1
p[k] £ N (3.3)

then, with kq such that

p[k] =
1 if k = kq

0 otherwise{ (3.4)

we have

kq+M = kq + N (3.5)

The sampled sequence is then given by

y[q] = y(kq¢) (3.6)

where ¢ is an underlying fast sampling period. Or, if we denote

y1[k] = y(k¢) (3.7)

and

yp[k] =
y[q] if k = kq

0 otherwise{ (3.8)

we can write
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yp[k] = p[k]y1[k] (3.9)

Note that y[q] and yp[k] contain the same data; hence, in the sequel, we will use
either the one or the other as needed. The problem we address here is: Under what
conditions can y(t) be reconstructed from the data {y[q]} (or, equivalently from
yp[k]) via a ® nite-dimensional observer using the two-stage method outlined in the
previous section?

4. Signal model

The continuous time signal (3.1) can be modelled as in (2.6) where

A = diag (Ai) Î R 2ń 2n (4.1)

Ai =
0 1

- x 2
i 0[ ] f or i = 1,2,. . . ,n (4.2)

and

C = [1 0 1 0 . . .] Î R 1́ 2n (4.3)

Without loss of generality we may assume that the frequencies are in increasing order
of magnitude, i.e.

0 < x 1 < x 2 < ´´´< x n (4.4)

The extension to the case x 1 = 0 is straightforward but will not be considered here,
for notational simplicity. Then, using (3.4), (2.6), (4.1) and (4.2), we see that the data
yp[k] satis® es the equations

x[k + 1] = ASx[k] (4.5)

yp[k] = p[k]Cx[k] (4.6)

where

x[k] = x(k¢)

y1[k] = y(k¢)

AS = diag (ASi)

üïïï
ýïïïþ

(4.7)

ASi =
cos x i¢

1
x i

sin x i D

- x i sin x i¢ cos x i¢

é
êë

ùú
û

(4.8)

Note that the eigenvalues of AS are
Ş
2i- 1 = e jx i¢

Ş
2i = e- jx i¢

ü
ý
þ

i = 1,2,. . . ,n (4.9)

With the model as in eqns. (4.5), (4.6) the question now is, under what conditions is
this system observable.
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5. Reconstruction from non-uniform periodic samples

We observe that the system in equations (4.5), (4.6) is a periodic linear system. To
investigate its observability we could try a direct approach, calculating the observ-
ability Gramian, or we could transform the system into a time-invariant representa-
tion, using one of a number of existing possibilities (see Khargonekar et al. 1985,
Flamm 1991, Misra 1996). We choose to transform the system into an LTI equiva-
lent using a raising technique (Khargonekar et al. 1985).

To derive the r̀aised system’ we de® ne

xR[m] = x[mN] (5.1)

yR[m] =

yp[mN]
yp[mN + 1]

..

.

yp[mN + N - 1]

é
êêêêêêêêë

ùúúúúúúúú
û

(5.2)

Then, using (4.5), (4.6), we can readily verify that these vectors satisfy

xR[m + 1] = ARxR[m] (5.3)

yR[m] = CRxR[m] (5.4)

where

AR = (AS)N (5.5)

CR =

p[0]C
p[1]CAS

..

.

p[N - 1]C(AS )N- 1

é
êêêêêêêë

ùúúúúúúú
û

(5.6)

We note that the system of eqns. (5.3), (5.4), referred to as the r̀aised system’, is
observable if and only if the original, periodic system, eqns. (4.5), (4.6), is observable.

The conditions under which the latter result holds are established in the following
theorem, which is the main result of this paper.

Theorem 1: The raised system (5.3), (5.4) is observable for any set of distinct fre-
quencies {x i}, i = 1,2,. . . ,n, provided

0 £ x i <
Mp
N¢

(5.7)

Proof: To prove the claim we make use of the PBH test (see, e.g. Kailath 1980).
Namely, the system is observable i�

rank I̧ - AR
CR[ ] = 2n (5.8)

for every eigenvalue ¸ of AR.
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Note ® rst that, from (4.9) and (5.5), the eigenvalues of AR are

2̧i- 1 = e jNx i¢

2̧i = e- jNx i¢

ü
ý
þ

i = 1,2,. . . ,n (5.9)

Suppose now that for eigenvalue z̧ , 1 £ z £ 2n, there exists a vector v Î C 2n such
that

z̧ I - AR

CR[ ] v = 0 (5.10)

Our objective is to show that any v satisfying (5.10) must be identically zero i� (5.7)
holds.

Using (4.7), (5.5) and (5.6), eqn. (5.10) can be written as

[ z̧ I - (ASi)
N]

v2i- 1

v2i
[ ] = 0; i = 1,2, . . . ,n (5.11)

å
n

i=1
p[k][1 0](ASi)

k
v2i- 1

v2i
[ ] = 0; k = 0,1,. . . ,N- 1 (5.12)

Let us concentrate ® rst on (5.11). De® ne the following two index sets:

I1 = {1 £ i £ n | e jNx i¢ = z̧ } (5.13)

I2 = {1 £ r £ n | e - jNx r¢ = z̧ } (5.14)

Then, for all 1 £ i £ n such that i /Î I1 Ä I2, the matrix [ z̧ I - (ASi)
N] is nonsingular;

hence, from (5.11),

v2i- 1 = v2i = 0 " i /Î I1 Ä I2 (5.15)

Let i* be the smallest integer in I1 Ä I2. Without loss of generality we assume
i* Î I1. Then, by (5.13), for every i Î I1 there exists an integer L 1

i ³ 0s.t.

Nx i¢ = Nx i*¢ + 2p L 1
i (5.16)

and for every r Î I2 there exists an integer L2
4 ³ 0s.t.

Nx r¢ = 2p L 2
r - Nx i*¢ (5.17)

We consider two possible cases.

Case 1: I1 ´ I2 = [
Then, it can readily be shown from (5.13), (5.14) that Nx i¢ is not an integer

multiple of p for all i Î I1 ´ I2. From (4.8) we have

(ASi)
k =

cos kx i¢
1
x i

sin kx i¢

- x i sin kx i¢ cos kx i¢

é
êë

ùú
û

(5.18)

and by (5.11), (5.13) and (5.14) we get
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v2i = jx iv2i- 1 " i Î I1

v2r = - jx rv2r- 1 " r Î I2

Substituting this and (5.18) in (5.12) we get

p[k] å
i Î I1

e jkx i¢v2i- 1 + å
rÎ I2

e jkx r¢v2r- 1{ } = 0; k = 0,1,. . . ,N- 1 (5.19)

Denote by 0 £ k1 < k2 < ´´´< kM < N the ® rst M integers for which p[k] = 1.
Then, using (5.16) and (5.17), we can rewrite (5.19) as

e jk1x 1wi*¢

. .
.

0

. .
.

0 . .
.

e jkMx i*¢

é
êêêêêêêêêêë

ùúúúúúúúúúú
û

å
iÎ I1

e j2p L 1
i

N k1

e j2p
L 1

i
N k2

..

.

e j2p
L 1

i
N kM

é
êêêêêêêêë

ùúúúúúúúú
û

v2i- 1 + å
r Î I2

e j2p L 2
i

N k1

e j2p
L 2

i
N k2

..

.

e j2p
L 2

i
N kM

é
êêêêêêêêë

ùúúúúúúúú
û

v2r- 1

ìïïïïïïïï
íïïïïïïïïî

üïïïïïïïï
ýïïïïïïïïþ

= 0

(5.20)

Let

a m = e j2p km
N ; m = 1,2,. . . ,M

Then, since by (5.16) and (5.17) 0 £ L 1
i + L 2

r < M for all i Î I1 and r Î I2, the vectors
in (5.20) are columns in the matrix product

( a 1)
L 2

r*

. .
.

0

. .
.

0 . .
.

( a M) L 2
r*

é
êêêêêêêêêêêë

ùúúúúúúúúúúú
û

( a 1)
M- 1 ( a 1)

M- 2 . . . a 1 1

( a 2)
M- 1 ( a 2)

M- 2 . . . a 2 1

..

. ..
. ..

.

( a M)M- 1 ( a M)M- 2 . . . a M 1

é
êêêêêêë

ùúúúúúú
û

(5.21)

where r* is the largest integer in I2 (hence, L 2
r* ³ L2

r for all r Î I2). The matrix on the
left is clearly nonsingular since a m /= 0, and the matrix on the right is a Vandemonde
matrix. As 0 £ km < M £ N, we have a z /= a m for all 1 £ z /= m £ M, which guar-
antees the nonsingularity of the Vandemonde matrix (Muir 1960) and the indepen-
dence of the vectors in (5.20). Hence, clearly

v2i- 1 = v2r- 1 = 0 " i Î I1,r Î I2

and the whole vector v must be zero.

Case 2: In ´ I2 /= [
From (5.13) and (5.14) it follows that I1 = I2 and Nx i¢, for all i Î i1, is an integer

multiple of p . Hence, (5.12) becomes

å
iÎ I1

cos (kz x i¢)v2i- 1 +
1
x i

sin (kz x i¢)v2i( ) = 0 z = 1,2,. . . ,M
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or

1
2 å i Î I

e jk z x i¢ v2i- 1 +
1

jx i
v2i( ) + e- jk z x i¢ v2i- 1 - 1

jx i
v2i( )( ) = 0 z = 1,2,. . . ,M

Substituting (5.16), we have

1
2

e jk1x i*¢

. .
.

. .
.

e jkMx i*¢

é
êêêêêêêêë

ùúúúúúúúú
û

å
iÎ I1

e j2p
L 1

i
N k1

..

.

e j2p
L 1

i
NkM

é
êêêêêë

ùúúúúú
û

v2i- 1 +
1

jx 1
v2i( )

ìïïïïï
íïïïïïî

+

e j2p
L 1

i
Nk1

..

.

e - j2p
L 1

i
N kM

é
êêêêêë

ùúúúúú
û

v2i- 1 - 1
jx i

v2i( )
üïïïïï
ýïïïïïþ

= 0 (5.22)

Using similar arguments as in (5.20) and (5.21), we conclude that the vectors in the
sum of (5.22) are linearly independent. Hence, we must have

v2i- 1 +
1

jx i
v2i = 0

v2i- 1 - 1
jx i

v2i = 0

üïïï
ýïïïþ

" i Î Ii

so that v21- 1 = v2i = 0 " i Î I1; hence v = 0. h

The above result establishes the key observability condition.
At this point one could employ a (periodic) Kalman ® lter (see Bittanti et al.

1991). Alternatively, a time-invariant observer can be designed to reconstruct
xR[m] (and through it x[k]) . Then the recovery of y(t) follows as given in (2.7).
Remark: We wish to point out two facts: (i) The observer is used to reconstruct
x[k] and through it y1[k] = Cx[k] = y(k¢) . (ii) The choice of the sampling interval
¢ is arbitrary so long as it satis® es (2.2).

These facts mean that, given some ¢ which satis® es (2.2), one can choose any
integer fraction, ¢1 = ¢ /N1 (N1 integer), of this interval to reconstruct y(k¢1) .
Combining this with a simple ZOH allows one to obtain a reconstruction of y(t)
which is as accurate as one desires, using only an observer and ZOH. This point is
demonstrated in the numerical example presented below.

6. Numerical example

The above method is illustrated by a simple example. Consider the continuous
time signal

y(t) = 0.5sin
p t
10( ) + sin

5p t
10

+ 1( ) + 2sin
11p t
10

+ 0.5( ) + sin
29p t
10

+ 1( ) (6.1)
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This signal is sampled using the following periodic pattern

{tq = 0,0.1,0.4,0.8,0.9,1.2,1.6,1.7,2.0,. . .}
to yield the sequence {y[q] = y(tq)} . In ® gure 1 we show the continuous signal
(dotted line) and the sampled data. Using the notation of Section 3, we note that
n = 4 and M = 3 and, with ¢ = 0.1s, N = 8.

Verifying that all four frequencies satisfy condition (5.7), we can use an
observer to carry out Stage 1, namely, the recovery of x[k]. We then design a periodic
observer (say using the method in Bittanti et al. (1991) with Q = I and R = I). This
result is

x̂[k + 1] = AS x̂[k] + L [k](yp[k] - p[k]Cx̂[k]) (6.2)

where C, AS are as in (4.3), (4.7), (4.8),

yp[k] =
y[q] for k = 0,1,4,8,9,12,16,17,. . . ,
0 otherwise{ (6.3)

p[k] = {1,1,0,0,1,0,0,0,. . . ,} (6.4)

and the vector L [k] is periodic and given by
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L [0] =

0.475

0.193

0.208

0.306

0.231

0.273

0.069

- 1.414

é
êêêêêêêêêêêêêêêêêë

ùúúúúúúúúúúúúúúúúú
û

; L [1] =

0.533

0.243

0.153

0.472

0.140

1.097

0.425

- 0.222

é
êêêêêêêêêêêêêêêêêë

ùúúúúúúúúúúúúúúúúú
û

; L [2] = L [3] - 0; L [4]

0.462

0.185

0.184

0.271

0.189

0.359

0.191

- 1.442

é
êêêêêêêêêêêêêêêêêë

ùúúúúúúúúúúúúúúúúú
û

L [5] = L [6] = L [7] = 0

With x̂[k] available, Stage 2 of the reconstruction is given by

ŷ(t) = CeA(t- k¢) x̂[k] 0 £ t - k¢ < ¢ (6.5)

The original continuous time signal (dotted line) and the reconstructed signal (solid
line) are shown in ® gure 2. The step adjustments due to the discrete state updating
are evident in the reconstructed signal. As anticipated, the continuous time signal is
asymptotically recovered by the observer.

624 G. C. Goodwin et al.
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Remark: As mentioned at the end of Section 5, an alternative in Stage 2 is to
use, instead, a ZOH. This can be compared to using a periodic ZOH directly on
yp[k]. The results are shown in ® gure 3 where the bene® t of using Stage 1 is evi-
dent. Furthermore, as pointed out in the previous section, the observer can be
designed with any integer fraction of the base sampling period (0.1s in our
example) to get any desired accuracy (using the observer and ZOH only). We
chose ¢1 = 0.01s, and the results are shown in ® gure 4. We see that the results are
now very close to the results obtained with the reconstruction obtained using
Stage 2 as shown in ® gure 2.

7. Conclusion

This paper has shown that when a band-limited signal comprises a ® nite sum of
sinusoids it can be reconstructed by a (causal) ® nite dimensional observer from non-
uniform periodic samples. The su� cient condition for this reconstruction is shown to
be the same as the known result for non-causal reconstruction of band-limited
signals. A two-stage reconstruction is presented, leading to an exact reconstruction.
We also show that recovery to any desired accuracy can be achieved using discrete
time observer and ZOH only.
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Appendix A

To prove the sampling extension result and derive a closed expression for b q (t) in
equation (2.5), we assume an underlying common sampling interval. Namely, we
assume

¢q = Mq¢ (A 1)

for some ¢.
Let

Y d (x ) = å
¥

q=- ¥
¢qy[q] e- jx tq (A 2)

be the spectrum associated with our sampled data. Also, let Y D
1 (x ) be the spectrum

obtained from uniform sampling at period ¢, i.e.

Y d
1 (x ) å

¥

k=- ¥
Y x - k

2p
¢( ) (A 3)

where Y (x ) is the Fourier transform of y(t) and Y d
1 (x ) is the Fourier transform of

the sequence

y1[k] = y(k¢) (A 4)

626 G. C. Goodwin et al.
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Recovering y(t) from y[q] (or, equivalently, Y (x ) from Y d (x )) will be done in two
stages. First we will recover y1[k] from y[q] (rather, Y d

1 (x ) from Y d (x )) , and then y(t)
from y1[k] (or, Y (x ) from Y d

1 (x )) .
The second stage is straightforward and is well known. Namely, we simply use

Y (x ) = H(x )Y d
1 (x ) (A5)

with

H(x ) =
1 for |x | <

p
¢

0 otherwise

ì
í
î

(A6)

For the ® rst stage we can write, from (A 2), (2.2) and (2.4),

Y d (x ) 1
T å

¥

k=- ¥
akY x - k

2p
¢( ) (A7)

where

ak = ¢ å
M

z =1
Mz e jk2p

T tz (A8)

We can readily show that

ak+N = ak forallk (A9)

anN = a0 = T (A 10)

and

aN- r = ar (complex conjugate) for r = 0,1,. . . ,N (A 11)

where

N = å
M

z =1
Mz (A 12)

Using these properties of ak, (A7) can be rewritten as

Y d (x ) =
1
T å

¥

m=- ¥ å
N

z =1
amN+ z Y x - m

2p
¢

- z
2p
T( )

= 1
T å

N

z =1
az å

¥

m=- ¥
Y x - z

2p
T - m

2p
¢( )

= 1
T å

N

z =1
az Y d

1 x - z
2p
T( ) (A 13)

Or, since Y d
1 (x ) is periodic, using (A 9) we get

Y d (x ) = AY d
1 (x ) (A 14)

where
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Y d (x ) = Y d (x ),Y d x - 2p
T( ) ,. . . ,Y d x - (N- 1) 2p

T( )[ ] T

(A 15)

Y d
1 (x ) = Y d

1 (x ),Y d
1 x - 2p

T( ) ,. . . ,Y d
1 x - (N- 1) 2p

T( )[ ] T

(A 16)

and

A =
1
T

a0 a1 . . . aN- 1

aN- 1 a0 aN- 2

..

. ..
. ..

.

a1 a2 . . . a0

é
êêêêêêë

ùúúúúúú
û

(A 17)

Equation (A 14) is clearly a set of linear equations which we would like to solve
for Y d

1 (x ) . Unfortunately, A is, in general, a singular matrix. Hence, to be able to
solve the equations we will have to reduce the number of unknowns to be equal to
the rank of A. This will be done using the band-limited property of y(t) as given in
(2.3).

From (2.3) it follows that

Y d
1 x - z

2p
T( ) = 0 for z = M- r,M- r + 1,. . . ,N - r - 1

M- 2r - 2
T

p £ x <
M- 2r

T
p r = 0,1,. . . ,M- 1 (A 18)

Let us de® ne

Ar = ET
r AEr, r = 0,1,. . . ,M- 1 (A 19)

with

Er = [e1,e2, . . . ,eM- r,eN- r+1,. . . ,eK] Î R Ń M (A 20)

ei being the ith column of the N ´ N identity matrix. Using the properties of ai and
those of circulant matrices (see Muir 1960), it can be shown that Ar is nonsingular.

Using (A 18), we can write for (A 14)

ET
r Y d (x ) = ArE

T
r Y d

1 (x ) f or
M- 2r - 2

T
p £ x <

M- 2r
T

p r = 0,1, . . . ,M- 1

(A 21)

Because of the nonsingularly of Ar, (A21) can be uniquely solved for ET
r Y d

1 (x ) .
Namely, if we denote

br
z = eT

1 ErA- 1
r ET

r ez for z = 1,2, . . . ,N r = 0,1, . . . ,M- 1 (A 22)

we have, from (A 21),

Y d
1 (x ) = å

N

z =1
br

z Y d x - ( z - 1) 2p
T( ) for

M- 2r - 2
T

p £ x <
M- 2r

T
p (A 23)

Combining the solution in all subintervals of x , we get the solution for the whole
interval
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- Mp
T ,Mp

T[ )
Namely,

Y d
1 (x ) =

å M- 1
r=0 Hr (x ) å N

z =1 br
z Y d x - ( z - 1) 2p

T( ) f or |x | <
Mp
T

0 for
Np
T < |x | <

p
¢

(A 24)
ìïï
íïïî

where

Hr (x ) = 1 for
M- 2r - 2

T
p £ x <

M- 2r
T

p
0 elsewhere

ì
í
î

(A 25)

and (A 24) is repeated periodically (with period 2p /¢). This completes the ® rst stage
of the reconstruction. Then, combining (A 5) and (A 24), we get the reconstructed
signal.

Applying the inverse Fourier transform to (A24) we get, after some algebra, the
result in equation (2.5) with

b q (t) =
1
N

Mq å
M- 1

r=0
å
N

z =1
e j( z - 1)2p

T tq ´e jM- 2r- 1
T p (t- tq) (A 26)

Clearly, b q(t) depends only on the sampling pattern (namely on { Mq}, ¢).
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