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The concept of maximally admissible sets in regulator design for linear systems is
defined and investigated, and efficient computational methods for finding maximally
admissible sets are presented.

The significance of admissible set considerations in regulator design when control
saturation constraints are present is illustrated via a practical synthesis example.

1. Introduction

In recent years, the synthesis problem of multivariable linear feedback
systems received a great deal of attention in the literature, with particular
emphasis on such problems as decoupling, pole assignment, output regulatfon,
internal stabilization, etc. (see e.g. Wolovich (1974), Wonham (1974) and the
literature cited therein).

Probably the simplest class of linear synthesis problems is the following :
Consider the linear time invariant system

t=Ax+ Bu

(1.1)

y=Cx+ Du

where x=x(t)eR" is the state vector, u=wu(t)eR™ is the control vector, Y=
y(£)eR? is the output vector, and 4, B, C and D are constant real matrices of

appropriate dimensions. The feedback (control) law is given by an expression.
of the form

u=Fx+ Gw (1.2)

where w=uw(t)eR™ is the ‘external control’ and F and @ are constant real
matrices with G non-singular.

The ° closed loop ’ equations are then

&= Ax+ Bw

(1.3)

y=6’x+Dw

where A=A+ BF, B=B@, (=C+DF and D=DG. The synthesis problem
is to find F and @ (if they exist) so that the quadruple of matrices (4, B, C, D)
satisfies certain algebraic conditions (under which (1.3) has a predetermined
dynamical behaviour).
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In practical situations, while of paramount importance, the above algebraic
considerations are frequently incomplete because of the presence of (saturation)
control constraints. Typically, the control u(t) is constrained to take values

in some bounded (and closed) region U < R™ where the boundaries of U are |
the saturation values of the control. Hence, the closed loop eqns. (1.3) are

Fa(t)+ Guw(t)eU , (14)

satisfied only so long as

holds, and violation of this constraint will cause breakdown of the closed
loop dynamics. To prevent such violation it is necessary to constrain the

state x(t) and the external control w(t) to be maintained in some subsets |

X<R* and Q<R™, respectively. The sets X and Q are satisfactory for
adequate feedback performance and are called admissible sets provided
Fx+ GuweU for every pair (z, w)eX x Q.

While admissibility of a pair (X, Q) is necessary, this property alone
(being a pointwise property) does not necessarily imply that the pair (X, Q)
is also dynamically satisfactory. To this end it is required that for each
initial state x,=x(f,)eX there is a control function w(t) (t>1,) taking values
in Q, such that the resultant state trajectory x(¢) remains in X for all {>¢,
A region X possessing this property is called weakly Q-invariant (Feuer and
Heymann (1976)). Thus, weak Q-invariance is also required for adequate
feedback performance. \ '

Naturally, both the admissibility of a pair (X, Q), and the weak Q-
invariance of X usually depend on the choice of the feedback matrices F
and G. Since in most synthesis problems F and G are not unique, the
freedom in their selection can be used to obtain admissible sets as large as
possible so that the region of adequate feedback performance (without control
constraint violation) is suitably maximized.

It is interesting to note that these important practical considerations of
admissibility and weak invariance have not been discussed in the literature to
date. This is especially the case in view of the fact that it is easy to demon-
strate in many synthesis problems that certain algebraically suitable selections
of F and @ may render the closed loop system practically inoperable in that
the region of admissibility is severely curtailed. In fact, it may often be the
case that admissibility questions overshadow certain refined dynamical
considerations.

The present paper is devoted to the computation of maximally admissible
sets, i.e. admissible sets which, in a suitably defined way, cannot be enlarged.
While the analysis is confined to the simple synthesis problem defined by (1.1)
and (1.2), similar considerations are valid in more elaborate situations and
the computations can be applied in analogous manner. It is shown how
maximally admissible sets can be effectively computed, and in special (but
quite common) situations how the evaluation can be carried out through
closed form expressions. Hence the computation of maximally admissible
sets can be easily incorporated into a synthesis algorithm and thus be used
to find feedback matrices F and @ for which adequate (or even optimal)
admissible sets are obtained. Finally, it is shown via a practical synthesis
example, how considerations of admissible sets may decisively effect a practical
design problem. The problem of weak Q-invariance is investigated elsewhere
(Feuer and Heyman (1976)).
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| 2. Preliminaries

The following notation will be used: Capital italic letters 4, B, ...,
will denote matrices and their corresponding linear transformations. Z(4)
and 4 (A) are the range of 4 and the null space of 4, respectively. For a
set U < R%k, U will denote its boundary and int (U) its interior.

Vectors are denoted by lower case italic letters x, w,w, ..., and super-
scripts are used for their enumeration (e.g. #%, u’), whereas subscripts are used
for their coordinates (e.g. x;, u;). For a matrix H, H, will denote its kth row.
The empty set will be denoted by ¢.

Assume now that a given synthesis problem has been solved with a control
law (1.2) and closed loop eqns. (1.3). If (X, Q) is a pair of admissible sets
for this synthesis, then the admissibility conditions z(f)eX and w(t)eQ need
to be constantly verified during the course of the closed loop system’s opera-
tion. This verification may require quite cumbersome computations unless
the sets X and Q have very simple geometry and easily verified boundary
conditions. Since one of the main objectives for control synthesis is to
minimize the need for manual (or computational) supervision of the system’s
operation, it is, in practice, necessary to select admissible sets X and Q of
the simplest and most easily computable geometries. Hence, it will be assumed
throughout that X and Q are rectangular and take the form

X = {weR"|z; <2;<T;, 1=1, 2, ..., n} (2.1)
Q= {weR™|w; <w; <W;, 1=1,2, ..., m} (2.2)

where z; and Z; are the lower and upper saturation values of the ith component
of the state vector, and w; and w; are the lower and upper saturation values
of the ith component of the external control.

Since the magnitudes and relative ranges of operation are usually quite
well known, it will also be assumed that

Oy & (F =2y, oo By m )T =8t (2.3)
Vo (W —wy, ..., Wy — W (2.4)

for some scalars sy and sq, where ¢ and 7 are fixed (prescribed) unit vectors :
(Euclidean norm equals 1) and where (- )T denotes transpose. Hence, the
vectors ¢ and 7 are considered as part of the problem’s data, and in computa-
tion of the admissible sets it is only necessary to determine the scalars sy, sq
and the  centre points ’ z,=3(Z+z) and w,=}(w+w) of the admissible sets
X and Q.

With the above framework in mind, we can now make the following :

Definition 2.1

Let F and G in (1.2) be fixed and let U, ¢ and n be given. Then a pair
(X, Q) of the form (2.1) and (2.2) is admissible (with respect to the above
data) if (i) Fx+ GweU for each xeX and weQ, and (ii) there exist scalars sy
and sq such that (2.3) and (2.4) are satisfied. The pair (X, Q) is mazimally
admissible if it is admissible and if given any other admissible pair (X', Q')
that satisfies both syx.>sy and sq. >s$q, then sy, =8y and sq.=$q.
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If X and Q are sets satisfying (2.1)—(2.4) then the vertices of these sets at,
i=1,...,2" and wi, j=1, ..., 2™ are the vectors (appropriately enumerated)
which satisfy the condition that for each component k, either x, =7, or &, =2,
(respectively, w,/ =, or w,/ =w;). The diagonal directions of X and Q are
then given by vy = (¢ —a,)/||a* —x,|, i=1, ..., 2" and vl = (Wi —w,)/|w! —w,|,
j=1,...,2m These diagonal directions can, of course, be directly computed | 3
from the vectors £ and 7 if the latter are known. ‘ 1
Assume now that & and » are fixed and that U is a given compact and
convex: restraint set. If (X, Q) is an admissible pair satisfying (2.1)-(2.4),
then Fxt+ GuicU for every pair of vertices 2 and w?, =1, ..., 2%, j=1,.., 2™
In order for (X, Q) to be maximally admissible, it is clearly necessary that
Fai+ QuwicdlU at least for some pair of vertices (x%, w’). This last fact will
be used as a main tool in the computation of maximally admissible sets below.
Tt will be assumed throughout the paper that the set U is compact and
convex and has non-empty interior.

3. Maximally admissible sets

We begin by considering the case where the external control takes on a
fixed preassigned single value, ie. Q={wy} (for example, w, may be zero,
which corresponds to the case of no external control at all). In this case
clearly so=0 and the control u takes the form wu(t) = Fa(t)+ Gu,.

Let U be the compact convex restraint set for the control and assume that
U has non-empty interior. Then the translated set U = {veR™|v + GuwyeU}
is also compact convex with non-empty interior, and for fixed ¢, a set X
satisfying (2.1) and (2.3) is admissible if and only if X< X9 where X°=
{weR"|FzeU}. Since any admissible set is uniquely defined by its centre z,
and by the scalar sy, these are then the values we seek for maximal admis-
sibility.

Let vgd, j=1, ..., 2" be the diagonal directions of X determined by the
given vector ¢, and consider the set U=UNZ(F). If U'=¢ then the set
X0 is empty and no admissible set X exists (this can happen as a result of
improper selection of w,). Hence assume U%# ¢ and let ueU°® beé any vector.
By definition of U° there then exists xz€X° such that u= Fx and if vy’ is any
diagonal direction such that vx/¢A"(F), there exists a finite non-negative
real number o;(u) defined by

o;(u) =max {teR|u +tFv iU} (3.1)
Since the vectors vy/, j=1, ..., 2 span R, the set I £ {j|vyi¢A"(F)} is non-
empty whenever F#0. In case F=0, X=X°=R" is admissible and the

maximal admissibility problem is trivial. Hence, we may assume F#0 so
that I# ¢ holds.

For each jel we can now define the function o, : U°—R where a;(u) is as
in (3.1). In view of the compactness of U the functions o;( - ) are well defined
and bounded.

Lemma- 3.1

If U is compact and convex then for each jel the function a; : U°—R defined
by (3.1) is concave.
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Proof
Let u;, u,cU° be any two vectors and let

?,LOI = 'ul + a](ul)FvXJEU
Uy =y + 0 (Us) Fv €T

Then by the convexity of U, .
Ug(A) 2 Nty + (1= Nttgy = Xty + (1 = Ayt + [ Aoty (vg) + (1 = A)ot(up) | Fv x'€U
for every real 0<A<g1l. Also

Mtgy + (1 — NugeU
Mg+ (1= Nu,eU
and it follows immediately from the definition of o;( - ) that
Aog(uy) + (1 — Aes(ug) < oj(Aug + (1 — A)ug)

Hence a - ) is concave as claimed. 1
Assume now that F#0 and that U° is non-empty. Then I is a non-
empty set, and define the function o : U°—R by

a(w) =min {o;(u)|jel’} (3.2)

Since the function o« - ) is defined as the minimum of a finite collection of
concave functions, «( - ) is also concave, Rockafellar (1970), and hence attains
a maximal value on the compact set U°. We can now state the following
result on maximally admissible sets :

Theorem 3.2

Let U be a given compact convex restraint set with non-empty interior. Let &,
F, G and w, be fixed and let the feedback law be given by wu(t)= Fa(t)+ Gu,.
Assume that U° is non-empty and that F#0, and let u cU° be any vector which
satisfies a(u,)=max {a(u)|ucU°} where a( +) is defmed by (3.2). Then there
exists x,£X° such that u,= Fx,, and the set X determined by the cenire x., by
the vector ¢ and the scalar sx = 2a(u,) is a maximal admissible set contained in
X0, :

Proof

We will first show that X< X° Let vy, j=1, ..., 2" be the diagonal
directions determined by £. Then the vertices of X are given by

Y=x,+a(u vy, j=1,2,..,2"

- and every zeX can be Written as a convex combination of these vertices, i.e.

2"
r= Z A, 0 A<, Z A=1
By (3.1) and (3.2) We have

uo+a(u,)FoxleU forallj=1, ...,
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and since U is convex (and so is also U?),
9n
Fe= ¥ Mucto(u)Foy/1eU
j=1
and hence xeX"?. Since xeX was arbitrarily chosen it follows that X < X0
Consider now any set X’ < X0 satisfying (2.1) and (2.3) with centre at x,

. . Sxr ..
and vy =sy'é. The vertices of X’ are then x’7=xc’+§ vxd, j=1,..., 2"
and

Fa'i=Fz, +8—)2" Fodel, jel

Hence, sy /2 < o;(u,’) for every jel where u’ £ Fz,, and by the maximality
of a(u,) it follows that s ' < 2a(u,’) < 2¢(u,) = 5x which concludes the proof. 1

The preceding analysis can now be summarized as follows. In order to
compute a maximally admissible set X in X°, one has to solve the problem

Find max «(u)
(3.3)
uelU

and apply Theorem 3.2. In view of the fact that «(u) is a concave function
on the compact convex set U, this maximization problem is a standard convex
programming problem, Mangasarian (1969), for which many efficient com-
putational algorithms are known.

Frequently, the set U is not an//arbitrary convex set but rather is poly-
hedral and sometimes even symmétric. In these special cases, as we shall
see below, the computation of maximally admissible sets is considerably
simplified.

3.1. U is polyhedral

Assume now that the set U is given by U = {u|Hu<h} where heR? is a
fixed real vector and H is a real matrix of appropriate dimensions. Assume
further that U s bounded (and thus compact and convex). The set U is

then given by B
U = {veR™|Hv < h%}

where k0 2k — HGw,, and the sets X° and U?°, respectively, are defined by

X0 = {xeR"|HFx < h%
and
U= {u=Fx|xeX}

Let vy/, j=1, ..., 2* be the diagonal directions of X. By (3.1), for each
ueU°, the vector v;%(u)2u+o;(u)Fvy? is on the boundary of the set U° and
~ hence lies in at least one of the hyperplanes £, £ {veR™| Hw=W,%}, k=1, ..., p
(where H, is the kth row of H and %,° is the kth component of A°). The
assumption that U is bounded (and non-empty) implies that 4"(H)=0 and
hence HFvyi+0 if and only if jel. Thus, for jel the vector v;%u) is in Z}
whenever
Hi(u+ oj(u) Fog?) =y
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from which it follows that
h0—Hu
W) =Ty
We now define the list S(j) by
S(j)2{r|H,Fvyi>0,r=1, ..., p}
and it is readily verified that for each jel

, hkO—Hku}
(u)= min { ———— 3.4
fZ]( ) keSO { HkaXJ ( )

. ) hk"—Hku}]
w)=min | min §———-r 3.5
=y [kesm { H Fox! (39
Define now the list P={k|H,F#0, k=1, ..., p} and relable the rows of
H such that keP for k=1, ...,p (p<p). Yor each keP define

sp=max {H; Fvy'}
jel

Clearly s, >0 for all keP since for each vector vx’, the vector (—)vx’ is
also a diagonal direction of X. The expression for «(u) can then be written

as
bl —Hu
Sk

o{u) =min {

keP
for each ueU°, and thus

Hou+s(u)<h0; keP

Define now the p x (m + 1) matrix E and the vectors c, yeR™+1 by
_ 0_1

0

0

1

and the computation of u, and a(u,) reduces to the following problem :
{Find max c¢Ty

subject to By <h®

This is a standard problem in linear programming and can readily be
solved using the simplex method. This problem is clearly simpler than the
convex programming problem (3.3).

3.2. U symmetric
Definition 3.3

A set UcRm is called symmetric with respect to a point of symmetry ueR™
if and only if ueU implies that @ =2%—ueU.
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Proposition 3.4

Let U<R™ be a compact convex set, symmetric with respect to a point @icU.
Then o(@t) =max {«(u), ucU}.

Proof

Let ueU be arbitrary and let uw=2#—uclU. For an arbitrary jel, let k
be such that vy*= —vy/. Then u+o;(u)Fvy'eU and %+ (%) Fv*eU which
in turn imply that 2@ — [& — o;(u) Fv /€U and 2i —[u— oy (@) Fvx*1eU. Since
u— o (u)Fvoyi =u+au)Fog*elU and also u— oy (w)Fox®=u+ ey (u)Foxiel it
is readily verified that a,(u)<oy(#) and o (@) < «;(w) implying that a, (@)=
aj(u). It thus follows immediately that «(#)=o(u). By the concavity of
o( - ) on U we have

(1) = Ao() + (1 — N)oe(®) < e M+ (1 — A7)

for all 0<A<1, and by taking A=} it follows that a«(u)<«(@#). Since uelU
was chosen arbitrarily, the result follows. |

Proposition 3.4 implies that in case U is a symmetric set, any point of
symmetry qualifies as u,. By application of (3.1) and (3.2), «(u.) can then
be immediately computed. In case U is in addition a polyhedral set, the
computation is further simplified since a«(u,) can then be computed by the
formulas (3.4) and (3.5) which is a straightforward calculation.

So far in our discussion we assumed that the external control is required
to take a fixed single value w, This assumption is not overly restrictive as
we will now see. Suppose that ( is a compact convex subset in R™ (specifically
Q could be chosen to be of the form (2.2), (2.4) with s, and 7 prespecified).
Define the set

Y = {yeR™|y + QueU for every weQd}

If U is compact and convex, it is readily verified that so is also ¥ and substitu-
tion of U by Y in the previous analysis will yield the required maximally
admissible sets.

Conversely, it might be assumed that the set X (compact and convex)
is prespecified and it is desired to compute Q (of the form (2.2) and (2.4))
such that the pair (X, Q) is maximally admissible. In this case the set U
can be replaced by the set

W = {yeR™| Fz + yeU for every xeX}

The computation beyond this substitution would proceed exactly as
before. The need to prespecify one of the sets X or € is a consequence of
the non-uniqueness of solutions to the admissibility problem because of the
trade-off effect between external control capability and range of validity of
the state equations.

The complexity of computation of ¥ or W will in general depend on the
geometry of the control constraint set U. In case the set U is bounded by
saturation constraints on the individual components the computation becomes
extremely simple as discussed below.
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Consider a compact set V< R™ and define

pint 7eU. Sa(V)={rlo<o<)
J , where v;=min {v;}, #;=max {v;}, i=1,...,m
veV veV

The following properties are then immediate :

jel, let k V =8q(V) for every compact set V
U which

Since
:})X"Eq E’ Sq(Vy+ Vo) =8Sq(V,)+8q(V,)
(%) V,< V, implies Sq( V) =Sq(V,)

In view of these properties we now have :

If V, and V, are any two compact sets in R™ then

Proposition 3.5

. : Consider the set U={ulu<u<@}<R™ and a compact se¢ Y <R™.  Define
bince uclU Yo R™ by

0 £1719/0 70
point of Yo={yly’<y<9}

can then where Y =u~y and J°=%—y, and y and j are defined as in (3.6). Then
1 set, th B - , = . -
dsiy th: y+y°eU for every yeSq(Y) if and only if y°eY°

Proof
s required . -~
rictive as An easy application of (3.7)-(3.9).
pecifically

-~ 4. Example: The regulation of a hovering helicopter
specified).

It was stated in the introduction that one of the chief objectives of this
paper is to emphasize and illustrate the importance of admissible set considera-
tions in practical control design. Below we shall compare the maximally
admissible sets in two regulator designs for a hovering helicopter. Murphy
and Narendra (1969) described the problem of regulating a hovering heli-
copter for which they designed a regulator using optimal control techniques.
Subsequently Wolovich and Shirley (1970) considered the same problem for
which they synthesized a regulator whose objective was to decouple the
system and stabilize it. They also compared the two designs on a simulator
in order to obtain a qualitative comparison based on the ‘ease’ of external
regulation.

The (linearized) dynamical equations for the hovering helicopter are
‘ given by
bxactly as [ 0016 —005 0-0025 00 00 —00001 00 00 —0-0047 ]
L quence of 00 00 10 00 00 00 00 00 00
bse of the 1-97 00 —0542 1.0 00 0548 00 00 0736
alidity of 0-0 00 0-00018 —0-3242 00 00 00 00 00
1 ; 0-0 0-0 0-0 0-0 0-0 1.0 0-0 0-0 0-0
nd on the 2-61 00 —194 —0163 00 —196 00 001l —725
punded by 00 00 00 00 00 00 00 10 00
) becomes 0016 00 —0-0083 —0-193 00 —0-0043 00 —0-303 559
5 0-0047 0-0 —0-0024 —0:0007 005 —0-0025 00 0-0009 —0-003 |

il substitu-
naximally

d convex)
and (2.4))
ithe set. U




A. Feuer and M. Heymann

0-05 0-005 0-0 0-0 —‘
0-0 0-0 0-0 0-0
—6-15 0-69 0-0 0-0
00 —0424 00 0-0
B= 0-0 0-0 0-0 0-0
00 —213 21-81 0-3465
0-0 0-0 0-0 0-0
0-0 513 0-174 —17-48
L 0-0 0-01 0-05 0-022

Tcoo oo
coooOo~=HO
coo0oo0 o
coOoHOO
coROOO
coo0O®
O OO O®
coo0oQ0 OO
—o o0 Oo®

of the physical variables.)
the regulator equations were of the form
u=Fx+Gw
where in Murphy and Narendra (1969) F and G where selected to be

—2-59 028 02 012 —-01 00 —001 00 -—119
005 —001 00 099 0-01 00 0-22 0-28 0-58

1
L 0-02 00 00 215 0-01 00 —009 -—015 —014
1-16 —0-11 001 004 —0-2 —0-07 -—002 —0-01 —2-66
Gt=1

and in Wolovich and Shirley (1970) F and G were chosen as

Fr=

1-0 0-101 0-0 0-0
00 0-9 0-0 0-0
0-0 0-088 1:0 0-015
00 00 0-022 1-0

2=

Feuer (1973)) are given by

U={uly<u<u}

(The reader is referred to Murphy and Narendra (1969) for an interpretation

Both in Murphy and Narendra (1969) and in Wolovich and Shirley (1970)

0-3203 1-463 0-6013 0-3414 0-0 0-0891 0-0 0-0 0-1204

0-0 0-0 0-0004 1-594 0-0 0-0 0-0 0-0 0-0
—0-1195 00 0-0888 0-1461 0-4122 —0-1044 0-0 —0-0208 0-3202
—0:0005 0-0 0-0012 1-096 —0-009 —0-0029 0-0 1-296  0-7540

For the problem at hand, reasonable values for the constraint set U (see

where

Wolovick
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that the
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By prac

Sinc

XcX0

for the



pretation

by (1970)

Admissible sets in linear feedback systems with bonded controls

0-2618
0-0698
0-2618
0-1396

ﬂ: —y:

Wolovich and Shirley (1970) state in their discussion that a reasonable require-
ment (based on practical considerations) is that under no circumstances
should more than 109, of the available control be consumed by feedback and
that the remaining 909, be available for external manoeuvering. Hence
e set Y = {ylur<y<av)
0-02618
0-00698
0-02618
0-01396

where

By practical considerations we are led to choose (Feuer 1973)

[0-1318
0-0316
0-079

0-0079
0-1054
0-5271
0-8276
0-0211
| 0-0216 |

Since U is symmetric with u,=0, 2,=0 and X = {r|]x<x<Z} so that
X< X={x|FzeY} will be

[0-0041
0-0010
0-0025
0-0003
0-0033
0-0165
0-0260
0-0007
| 00010 |

for the controller of Murphy and Narendra (1969), and

[0-01867
0-0045
0-0111
0-0011
0-0149
0-0743
0-1164
0-0030
| 00040 |
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for the controller of Wolovich and Shirley (1970). Obviously, in comparing

the two controller designs, the fact that the admissible set in Wolovich and ‘

Shirley (1970) is approximately four times larger (i.e. sx®x4sx!) than the | An experin
admissible set in Murphy and Narendra (1969) is of considerable practical S . .P .
importance in that the design in Wolovich and Shirley (1970) is much less . identificati
sensitive to control saturation. o CH A
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