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Abstract

This paper addresses the problem of optimal control of constrained linear systems
when fast sampling rates are utilised. We show that there exists a well defined
limit as the sampling rate increases. An immediate consequence of this result is
the existence of a finite sampling period such that the achieved performance is
arbitrarily close to the limiting performance.
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1 Introduction

An increasingly common strategy to deal with constraints in control is Reced-
ing Horizon or Model Predictive Control (MPC) strategies [4,5,9,7,12,15–17].
This is a form of (discrete-time) control in which the current control action is
obtained by solving on-line, at each sampling instant, a finite horizon optimal
control problem for the open-loop plant using the current (observed) state as
initial condition. The first component of the optimal control sequence is ap-
plied to the system, and the procedure is repeated again at the next sampling
instant. One of the key advantages of these strategies is that constraints can be
taken into account in the optimization procedure, for example, via Quadratic
Programming (QP) [18].
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Traditionally, MPC has been applied to systems having long time constants,
e.g. petrochemical processes. However, recent advances in this area and in-
creasing computer speeds have opened the door to short time constant appli-
cations including aerospace, automobile control and electromechanical servo
problems. These applications typically use fast sampling rates and a common
design goal is that the sample-hold nature of the input should have minimal
impact on the achievable performance. This goal is consistent with the control
of linear systems in the absence of constraints. Indeed, it is common for the
sampling rate to be chosen so that the response of the sampled-data control
system is practically indistinguishable from the corresponding continuous-time
solution. The goal of constrained control will often be similar, i.e., it is de-
sirable to choose a sampling period such that the artifacts of sampling are
practically unobservable.

The analysis presented in this paper shows that there exists a finite sampling
period such that the sampled-data response of a finite horizon constrained
linear controller is arbitrarily close to the response which would be achieved by
a continuous-time constrained linear controller. For background on constrained
optimal control, the reader is referred to [2,19], for the continuous-time case,
and [4,5,9,7,12,15–17] for discrete-time case.

Previous work having a connection with our work has been reported in [10,14].
Reference [14] deals with unconstrained problems, while reference [10] consid-
ers finite horizon constrained LQR problems in continuous-time using spectral
properties. In their approach, however, the constraints are satisfied only at a
finite set of points over the control horizon. By way of contrast, we show that
the continuous-time solution, with constraints imposed for all time, can be ar-
bitrarily approximated using a standard discrete-time approach provided one
chooses a suitably fast sampling rate and, possibly, tighter constraints at the
sampling instants.

The layout of the remainder the paper is as follows: in Section 2 we present
the continuous-time optimal control problem P , and an associated sampled-
data problem P∆. Section 3 gives some preliminary results. Section 4 presents
the main result of the paper, namely that the cost achieved by solving the
discrete-time sampled-data problem converges to the limiting cost achievable
in a continuous-time framework. An illustrative example is presented in Sec-
tion 5. Finally, in Section 6, we briefly discuss the receding horizon version of
the problem. Conclusions are presented in Section 7.
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2 Fixed Horizon Problem Specification

Before considering the moving horizon problem, we first address the fixed hori-
zon case. The latter problem is usually solved in discrete-time MPC strategies
at each sampling instant. We consider two related problems, one defined in
continuous-time and an associated discrete-time sampled-data problem.

2.1 Continuous-time problem

As a benchmark problem, we next consider a fixed horizon constrained control
problem P , defined in the continuous-time domain as follows:

(i) A continuous-time model:

ẋ(t) = Ax(t) + Bu(t) ; x(0) = xo (1)

y(t) = Cx(t) (2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n.

(ii) A fixed time horizon Tf < ∞.
(iii) A quadratic cost function:

J(u) = J1 + J∞ (3)

where:

J1 =
∫ Tf

0

(

x(t)T Qx(t) + u(t)T Ru(t)
)

dt (4)

J∞ = x(Tf )
T P x(Tf ) (5)

with Q ≥ 0, R > 0, and where the final state weighting matrix, P , gives
rise to the infinite horizon optimal unconstrained cost associated with the
cost J1 when the initial state is x(Tf ). Thus P satisfies the continuous-
time algebraic Riccati equation:

0 = Q + AT P + PA − PBR−1BT P (6)

(iv) And a set of constraints for the state and/or the input signal, written in
the following general form:

Lu u(t) ≤ Mu

Lx x(t) ≤ Mx
(7)

for all t ∈ [0, Tf ]. Note that Lu will typically have rank m whilst Lx will
have rank less than or equal to n.
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Let U ⊂ R
m and X ⊂ R

n be the sets of all possible values of u(t)
and x(t), t ∈ [0, Tf ], such that (1) and (7) are satisfied. Then, the only
requirements on Lu, Lx, Mu, and Mx are that the sets U and X are
bounded (possibly as a function of xo in the case of X ) and contain the
origin of the respective space — see [6]. Note that this implies that all
entries in both Mu and Mx are positive.

Given (i)–(iv), the continuous-time problem P is to find the optimal control
signal u∗ = u∗(t) such that the cost function (3) is minimised, i.e.:

u∗(t) = arg min
u(t)∈U

J(u) (8)

Remark 1 There has been substantial work, spanning three centuries, but
particularly since the 1950’s, on the general conditions under which optimal
control problems such as P have a solution. These results give necessary and
sufficient conditions under which a solution is truly a minimiser. Moreover,
existence theorems for this minimiser assume that the problem is feasible,
i.e., that the class of admissible pairs {u(t), x(t)} which satisfy the system
dynamic equation (1) and constraints (7) is non-empty. This is discussed,
for example, in [2] and [19]. We will thus assume the existence of a solution
of the continuous-time constrained optimal control problem P, even though
an explicit expression will not be obtained. Instead, we show that, subject to
existence, the solution can be approximated to any desired degree of accuracy
by solving an associated sampled-data constrained optimal control problem P∆

(described in the next subsection).

Remark 2 Note that it is common in Receding Horizon Control to utilise a
final state weighting matrix as in (5) (see also equation (14) below) [6,9,12].

2.2 Sampled-data problem

A natural way to approximate the continuous-time problem P is to use a
(small) sampling period ∆ together with a Zero Order Hold (ZOH) approxi-
mation to the input signal, that is, for a given sampling interval ∆:

u(t) = uk ; k∆ ≤ t < k∆ + ∆ (9)

where k ∈ Z. Furthermore, we assume that the sampling interval is an integer
fraction of the fixed time horizon Tf , i.e.:

∆ =
Tf

N
⇐⇒ N∆ = Tf (10)

for some N ∈ N.
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We next define a discrete-time contrained optimal control problem P∆, which,
in fact, corresponds to a sampled-data version of problem P . We consider:

(i) A discrete-time model:

xk+1 = Aqxk + Bquk ; xo as in (1) (11)

yk = Cqxk (12)

where k ∈ Z, and the system matrices are given by [1,13]:

Aq = eA∆ ; Bq =
∫ ∆

0
eAηB dη ; Cq = C (13)

which ensures that xk = x(k∆) and yk = y(k∆).

(ii) A fixed discrete-time horizon N =
Tf

∆
.

(iii) A quadratic cost function:

J∆(uk) =
N−1
∑

k=0

[

xT
k uT

k

]







Qq Sq

ST
q Rq













xk

uk





+ xT
NP∆ xN (14)

where:

Qq =
∫ ∆

0
eAT tQeAt dt (15)

Sq =
∫ ∆

0
eAT tQh(t) dt (16)

Rq =
∫ ∆

0
h(t)T Qh(t) dt + R∆ (17)

h(t) =
∫ t

0
eA(t−τ)B dτ (18)

and where P∆ satisfies the following discrete-time algebraic Riccati equa-
tion:

P∆ = Qq+AT
q P∆Aq−

(

AT
q P∆Bq + Sq

) (

Rq + BT
q P∆Bq

)−1 (

BT
q P∆Aq + ST

q

)

(19)
(iv) And a set of discrete-time constraints for the state and/or the input

signal, written in the following form:

Lu uk ≤ α(∆)Mu

Lx xk ≤ α(∆)Mx
(20)

for all k ∈ {0, . . . , N − 1} and where α(∆) ∈ (0, 1] is a scaling factor,
whose choice will be discussed in the next section.

Given (i)–(iv), the sampled-data problem P∆ is to find the optimal control
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sequence u∗ = u∗
∆,k such that the cost function (14) is minimised, i.e.:

u∗
∆,k = arg min

uk

J∆(uk) (21)

Remark 3 It is well-known, by using the delta operator [8,13], that:

Aq − I

∆
→ A,

Bq

∆
→ B,

Qq

∆
→ Q,

Sq

∆
→ 0,

Rq

∆
→ R, P∆ → P

(22)

as the sampling period ∆ tends to 0. This means that the unconstrained

sampled-data problem given by (i)–(iii) converges to the description of the un-
derlying unconstrained continuous-time problem given by (i)–(iii) in Section
2.1.

We next consider the corresponding constrained case, together with additional
requirements on the scaling factor α(∆) in (27)–(29) (below). We show that
the formulation of the sampled-data problem P∆ converges, as ∆ → 0, to the
formulation of problem P, defined in continuous-time. 2

3 Preliminary Results

While the explicit solution of the continuous time problem P is very difficult to
obtain, solving P∆ for a given sampling period ∆ is relatively straightforward
using standard numerical procedures, e.g., QP [9]. Our goal is to relate the
solution of P∆ to the solution of P .

We first introduce some definitions and notation that will be used in the sequel.
For a given sampling interval ∆, we define u∆(t) as a piece-wise constant
continuous-time signal of the form:

u∆(t) = uk ; k∆ ≤ t < k∆ + ∆ (23)

where k ∈ Z.

It can be readily shown (see, for example, [1]) that the choices (15) to (19)
ensure that:

J(u∆) = J∆(uk) (24)

where J∆(uk) denotes the discrete-time cost value, as defined in (14), when the
control sequence {uk} is applied to the system (11)–(12), and J(u∆) denotes
the continuous-time cost value in (3)–(6) when u∆(t), as defined in (23), is
applied to the continuous-time system (1)–(2).
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We next discuss the scalar α(∆) introduced earlier, in equation (20), as a
scaling factor associated with the discrete-time constraints.

Given the continuous-time system (with its initial condition xo) in (1), and
the constraints (7), we define the following sets:

S = {u ∈ L2[0, Tf ] : Lu u(t) ≤ Mu and Lx x(t) ≤ Mx , ∀t ∈ [0, Tf ]} (25)

and:

S∆ =
{

u ∈ L2[0, Tf ] : Lu u(t) ≤ α(∆)Mu , ∀t ∈ [0, Tf ]

and Lx x(k∆) ≤ α(∆)Mx , ∀k ∈ {0, . . . , N − 1}
}

(26)

Remark 4 Note that S contains all possible signals u(t) among which we
need to find the one that minimises the cost function J(u) in (3)–(6), i.e.,
u∗(t). On the other hand, every sequence uk (including u∗

k, the solution of P∆)
satisfying the difference equation (11) and the constraints (20) will generate a
piece-wise signal u∆(t), as in (23), that belongs to S∆.

However, even if the scaling factor α(∆) is chosen less than 1, u∆(t) ∈ S∆

does not necessarily imply that u∆(t) ∈ S, because of the intersample state
trajectory. Thus, we next impose further requirements on the scalar α(∆). 2

Given a sequence {∆i > 0}, such that:

∆i > ∆i+1 and lim
i→∞

∆i = 0 (27)

we require the following properties for α(∆i) and for the resulting sequence of
sets {S∆i

}:

lim
i→∞

α(∆i) = lim
∆i→0

α(∆i) = 1 (28)

and S∆i
⊆ S∆i+1

(29)

Condition (28) ensures that, as the sampling rate increases, the sequence of
discrete-time constraints (20) approaches the continuous-time constraints in
(7). Moreover, from the definitions in (25) and (26), we have that:

lim
i→∞

S∆i
= lim

∆i→0
S∆i

= S (30)

Furthermore, the requirement (29) ensures that the sequence of sets {S∆i
}

approach the set S from the interior, i.e.:

S∆0
⊆ S∆1

⊆ . . . ⊆ S (31)
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A particular choice for the sequences {∆i} and {α(∆i)} ensuring that the
above requirements are satisfied, is described in the following result:

Lemma 5 Consider the sequence of sampling intervals {∆i}, defined by:

∆i =
22−i

‖A‖ ln

(√
1 + 4γ2

2γ

)

(32)

Then, one particular choice for the scaling factor α(∆) that satisfies (28)–(29)
is given by:

α(∆) =
1

1 + (2γ + 1)(e‖A‖∆ − 1)
(33)

where γ is a constant given by:

γ =

(

max
i

‖Li
x‖

M i
x

)(

X +
‖B‖
‖A‖U

)

(34)

and where Li
x and M i

x are the i-th row and i-th entry of Lx and Mx respectively,
and where X and U denote upper bounds on the norms of x(t) and u(t) in the
bounded sets X and U respectively.

PROOF. See Appendix. 2

We will need two additional technical results:

Lemma 6 Let u(t) ∈ S. Then, for any δ > 0 there exists a ∆δ > 0 such that,
for all ∆ ≤ ∆δ and u∆(t) such that:

u∆(t) = u(k∆) k∆ ≤ t < (k + 1)∆ (35)

we have:
‖u − u∆‖2 < δ (36)

PROOF. See Appendix. 2

Lemma 7 For any ε > 0 there exists a δε > 0 such that if:

‖u − u∗‖2 < δε (37)

then:
J(u) − J(u∗) < ε (38)
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PROOF. See Appendix. 2

Remark 8 Lemma 6 states that any input signal u(t) ∈ S can be arbitrarily
approximated, in an L2 sense, by the sample-and-hold signal u∆(t). On the
other hand, Lemma 7 establishes that the optimal continuous-time performance
J(u∗) can be arbitrarily approximated by choosing any signal u(t) sufficiently
close, in an L2 sense, to u∗(t). These two facts will be used in the proof of our
main result in the next section.

4 Main Result

In this section we present our main result, namely that the optimal perfor-
mance obtained by solving the continuous-time problem P can be arbitrarily
approximated by solving the discrete-time problem P∆.

First we note that, for any chosen ∆, the corresponding problem P∆ is well
defined and can be solved. We denote the resulting optimal control sequence
by {u∗

∆,k}N−1
k=0 .

We can now state our main result as:

Theorem 9 Provided P has a solution u∗(t) ∈ S, then, for every ε > 0 there
exists a ∆ε, such that:

J(u∗
∆ε

) − J(u∗) < ε (39)

where u∗
∆ε

(t) is generated, using the ZOH (23), by the sequence u∗
∆ε,k , the

solution of problem P∆ε
.

PROOF. Given ε > 0 we know by Lemma 7 that there exists a δε > 0 such
that for every u ∈ L2[0, Tf ] for which (37) holds, (38) also holds.

Since u∗ ∈ S and limi→∞ S∆i
= S , there exists ∆` > 0 for which the set

A = {u ∈ L2[0, Tf ] : ‖u − u∗‖2 < δε} ∩ S∆`
(40)

is not empty. Let ū be in this set. The set {u ∈ L2[0, Tf ] : ‖u − u∗‖2 < δε} is
open. Hence, there exists δ1 > 0 such that:

{u ∈ L2[0, Tf ] : ‖u − ū‖2 < δ1} ⊂ A (41)

Now, using Lemma 6, we know that ū can be arbitrarily approximated in an
L2 sense by a piece-wise constant function. This means that there exists a
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sampling period ∆j < ∆` such that:

‖ū − ū∆j
‖2 < δ1 (42)

Hence, ū∆j
∈ S∆`

⊂ S∆j
⊂ S and ‖ū∆j

−u∗‖2 < δε, as is represented schemat-
ically in Figure 1. By Lemma 7, the latter implies that:

J(ū∆j
) − J(u∗) < ε (43)

u∗

L2[0, Tf ]

S∆`

S∆j

S

ū

A

δε

δ1

ū∆j

Fig. 1. Schematic representation of proof of Theorem 9.

If we now consider u∗
∆j ,k, the solution of the problem P∆j

, we know that:

J∆(ū∆j ,k) ≥ J∆(u∗
∆j ,k) (44)

where ū∆j ,k is the sequence with the values taken by ū∆j
(t). Using (24), we

then have that:

J(ū∆j
) ≥ J(u∗

∆j
) (45)

and equation (39) follows by choosing ∆ε = ∆j. This completes the proof of
the theorem. 2

The theorem above establishes our main claim in this paper, namely, that there
exists a finite sampling period ∆, such that the performance achieved with the
optimal fixed horizon discrete-time constrained controller is as close as desired
to the performance achievable by the optimal fixed horizon continuous-time
constrained controller.
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5 Example

We illustrate the results in Section 3 by a simple example:

Example 10 Consider the second order system:

ẋ =







−2 0

1 −1





 x +







4

0





u ; xo =







0

2





 (46)

y =
[

0 1

]

x (47)

with continuous cost function (3), where Tf = 5, Q = CT C, R = 0.1, and
where P is the solution of the algebraic Riccati equation (6). We impose con-
straints on the input and on one state as follows:

|u(t)| ≤ 1 ⇐⇒







1

−1





u(t) ≤







1

1





 (48)

|x1(t)| ≤ 1 ⇐⇒







1 0

−1 0





 x(t) ≤







1

1





 (49)

The matrices of the discrete-time sampled model (11)–(12) are obtained from
equation (13). Similarly, the matrices for the sampled-data cost function (14),
are obtained from equations (15)–(19).

Figure 2 shows the evolution of the cost function as N increases (i.e. ∆ de-
creases), for the constrained and unconstrained cases. Note that a logarithmic
scale has been used. For the unconstrained case, it can be seen that the value of
the cost function approaches the continuous time optimal result. Similarly, for
the constrained case, we can see that beyond N = 16, the minimum achievable
for the cost function is almost constant. This is also confirmed in Figure 3,
which shows the convergence of the (ZOH or piece-wise constant) control and
state signals for the constrained case.

6 Receding Horizon Problem

We finally make some brief comments on the moving horizon control problem.
An issue here is that usually, in discrete receding horizon strategies, only the
first element of the fixed horizon control solution is applied at each step. The
problem is then solved again at the next sampling instant.
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Fig. 2. Cost function values v/s N
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−0.5

0

0.5

u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

−0.5

0

0.5

x 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

x 2 =
 y

Fig. 3. Control and state signals for N = 1, 4, . . . , 256

If we take the limit of this procedure as ∆ tends to zero, we end up with an
ill-defined control law because the optimal continuous-time solution is only
unique up to an L2 equivalence.

To address this issue, we will adopt a form of discrete MPC which mirrors the
common strategy suggested for continuous-time predictive control [3], namely,
the control input to the plant is changed every ∆ (seconds), but the fixed
horizon optimization is done only every ∆̄ (seconds), where ∆̄ > ∆.

Let ` be an integer, and define:

u∗
FH(`∆̄, τ) = u∗(τ) ∀τ ∈ [0, ∆̄[ (50)
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where u∗(τ) is the solution to the fixed horizon constrained continuous-time
problem on the interval τ ∈ [0, Tf ].

We then define the continuous time moving horizon optimal solution in terms
of (50) as:

u∗
MH(t) = u∗

FH(`∆̄, t − `∆̄) ∀t ∈ [`∆̄, (` + 1)∆̄[ (51)

We then have the following result:

Theorem 11 . The discrete-time approximation of the receding horizon strat-
egy defined above, where the control is restricted to be piece-wise constant over
every interval [k∆, (k + 1)∆), converges to the continuous-time result, i.e.:

lim
∆→0

‖ u∗
MH ∆(t) − u∗

MH(t) ‖2 = 0 (52)

PROOF. The result follows immediately from the definitions of u∗
MH in (51)

and (50), and the previous convergence result in Theorem 9 2

7 Conclusions

This paper has explored the use of fast sampling rates in the control of con-
strained linear systems. We have shown that, as the sampling period ap-
proaches zero, the optimal continuous-time problem can be approximated ar-
bitrarily close by a corresponding discrete-time sampled-data problem.

A Appendix

Proof of Lemma 5

We show that the choice of {∆i} and α(∆) given in (32)–(34), satisfies the
requirements (27)–(29).

With ∆i as in (32) we clearly have (27), and, as a consequence, α(∆) in (33)
satisfies (28).

To show that (29) holds, let us take any u ∈ S∆i
, which by definition (26)
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inplies that:

Lu u(t) ≤ α(∆i)Mu and Lx x(k∆i) ≤ α(∆i)Mx (A.1)

Since α(∆i) < α(∆i+1) we have that Lu u(t) ≤ α(∆i+1)Mu (recall that the
entries of Mu are positive). Furthermore, solving the differential equation (1)
for t = σ + k∆i , 0 ≤ σ < ∆i, we have:

Lx x(t) = Lx

(

eAσx(k∆i) +
∫ σ

0
eA(σ−τ)Bu(τ + k∆i) dτ

)

= Lxx(k∆i) + Lx

(

(eAσ − I)x(k∆i) +
∫ σ

0
eA(σ−τ)Bu(τ + k∆i) dτ

)

≤ α(∆i)Mx +















‖L1
x‖

‖L1
x‖
...















(

∥

∥

∥eAσ − I
∥

∥

∥ ‖x(k∆i)‖ +
∥

∥

∥

∥

∫ σ

0
eA(σ−τ)Bu(τ + k∆i) dτ

∥

∥

∥

∥

)

≤ α(∆i)Mx + Mx

(

max
r

‖Lr
x‖

M r
x

)

(

(e‖A‖σ − 1)‖x(k∆i)‖ +
∫ σ

0
e‖A‖(σ−τ) ‖B‖ ‖u(τ + k∆i)‖ dτ

)

(A.2)

From the definitions of the bounds X and U and equation (A.1) we have:

‖x(k∆i)‖ ≤ α(∆i)X and ‖u(τ + k∆i)‖ ≤ α(∆i)U (A.3)

Then:

Lx x(t) ≤ α(∆i)Mx + α(∆i)Mx

(

max
r

‖Lr
x‖

M r
x

)

(

e‖A‖σ − 1
)

(

X +
‖B‖
‖A‖ U

)

≤ α(∆i)Mx

(

1 + (e‖A‖∆i − 1)γ
)

= Mx
1 + γ(e‖A‖∆i − 1)

1 + (2γ + 1)(e‖A‖∆i − 1)

≤ Mx
1 + γ(e2‖A‖∆i+1 − 1)

1 + (2γ + 1)(e2‖A‖∆i+1 − 1)
(A.4)

We show next that:

1 + γ(e2‖A‖∆i+1 − 1)

1 + (2γ + 1)(e2‖A‖∆i+1 − 1)
≤ 1

1 + (2γ + 1)(e‖A‖∆i+1 − 1)
= α(∆i+1) (A.5)
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for:

0 < ∆i+1 ≤
1

‖A‖ ln

(√
1 + 4γ2

2γ

)

⇐⇒ 1 < e‖A‖∆i+1 ≤
√

1 + 4γ2

2γ
(A.6)

After some manipulation, the inequality (A.5) is easily seen to be equivalent
to:

γ(2γ + 1)e2‖A‖∆i+1 − (γ + 1)e‖A‖∆i+1 − 2γ2 ≤ 0 (A.7)

The left hand side is negative for both e‖A‖∆i+1 = 1 and e‖A‖∆i+1 =

√
1+4γ2

2γ
,

hence it is negative in the whole range which verifies (A.6). In (A.4) we then
have that, for all t ∈ [0, Tf ]:

Lx x(t) ≤ α(∆i+1)Mx for u ∈ S∆i
(A.8)

This implies, by definition, that u ∈ S∆i+1
. Hence (29) follows. 2

Proof of Lemma 6

We consider the sequence of decreasing sampling periods {∆i > 0} in (27).
For every ∆i, the piecewise constant signal u∆i

(t) belong to L2[0, Tf ], because
it is obtained by sampling and holding the signal u(t), which belongs to S ⊆
L2[0, Tf ]. Thus, the sequence of functions {u∆i

(t)} converges point-wise almost
everywhere (i.e. except on a set of zero measure) to u(t). By Theorem 1.6 in
[11], this implies that {u∆n

(t)} converges to u(t) in an L2 sense, i.e.:

lim
i→∞

‖u − u∆i
‖2 = lim

∆i→0
‖u − u∆i

‖2 = 0 (A.9)

This gives the result. 2
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Proof of Lemma 7

We consider the Hilbert spaces V = L2(0, Tf ; R
m) and Z = R

n×L2(0, Tf ; R
n),

with inner products:

〈f1, f2〉V =
∫ Tf

0
fT

1 (t)f2(t) dt ; f1, f2 ∈ V (A.10)

〈g1, g2〉Z =
(

g0
1

)T
g0
2 +

∫ Tf

0

(

g1
1(t)

)T
g1
2(t) dt

; g1 =







g0
1

g1
1(t)





 , g2 =







g0
2

g1
2(t)





 ∈ Z (A.11)

We rewrite the response signal as:

z =







z0

z1(t)





 =







P 1/2 x(Tf )

Q1/2 x(t)





 =









P 1/2
∫ Tf

0
eA(Tf−ξ)Bu(ξ) dξ

Q1/2
∫ t

0
eA(t−ξ)Bu(ξ) dξ









∈ Z (A.12)

Note that this formulation is similar to that employed in [10].

The cost function (3) and the system dynamics can then be expressed, respec-
tively, in the form:

J = ‖R1/2u‖2
V + ‖z‖2

Z (A.13)

z = Fxo + Gu (A.14)

where F and G are linear operators defined by:

Fxo =







(F∆xo)
0

(F∆xo)
1(t)





 =







P 1/2eATf xo

Q1/2eAtxo





 ; t ∈ [0, Tf ] , xo ∈ R
n (A.15)

Gu =







(Gu)0

(Gu)1(t)





 =









P 1/2
∫ Tf

0
eA(Tf−ξ)Bu(ξ) dξ

Q1/2
∫ t

0
eA(t−ξ)Bu(ξ) dξ









; t ∈ [0, Tf ] , u ∈ V (A.16)

We can then rewrite (A.13) as:

J = J(ũ) = Jopt + 〈ũ , (R + G∗G)ũ〉 (A.17)
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where:

ũ = u − uopt (A.18)

uopt = −(R + G∗G)−1G∗Fxo (A.19)

Jopt = xT
o F∗(I + GR−1G∗)−1Fxo (A.20)

We note that uopt and Jopt are the unconstrained optimal control signal and
cost.

The operator R + G∗G in (A.17) is a compact bounded self-adjoint operator.
It can thus be expressed as:

R + G∗G = S∗S (A.21)

We then have that, for u1, u2 ∈ L2[0, Tf ]:

|J(u1) − J(u2)| = |〈 ũ1 , S∗Sũ1 〉 − 〈 ũ2 , S∗Sũ2 〉|
= |〈 Sũ1 , Sũ1 〉 − 〈 Sũ2 , Sũ2 〉|
=
∣

∣

∣‖ Sũ1 ‖2 − ‖Sũ2 ‖2
∣

∣

∣ ≤ ‖Sũ1 − Sũ2 ‖2

≤ ‖S‖2 ‖ ũ1 − ũ2 ‖2 ≤ σmax‖u1 − u2‖2 (A.22)

where σmax > 0 is the largest singular value of the operator S.

Lemma 7 then follows by taking u2 = u∗, δε =
√

ε/σmax , and on recalling

that u∗ is the optimal control signal, so J(u) ≥ J(u∗) for all u. 2
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