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An Unstable Dynamical  System Associated with Model 
Reference Adaptive Control 

k FEUER, B. R. BARMISH, AND A. S. MORSE 

Abstract-It is shown that a certain system of differential equations of 
importance to the proof of stabiity of the  adaptive  system  proposed in [ 11, 
admit unbounded solutions. The implication of this resnlt is that a much 
more  elaborate  argument than heretofore thought necesary is required to 
prove that the adaptive  system of [l] is stable. 

In studying the asymptotic  behavior of the adaptive control system 
proposed in [I], one encounters equations of the  form 

where as in [I], q, 6, wl, and cp are the augmented  error, parameter error, 
auxiliary  signal, and sensitivity function, respectively, of the adaptive 
system.  These particular equations result if one assumes  (for  simplicity) 
that D,(p)=(p+I)D,(p) ,  D,(p)=p+l, N = 4 ,  6,(t)~6,(t)=6,(?)=0, 
and 6( t )=  4 ( r ) ,  where Dm, D,, D,, N and the 6, are as defined  in [I] .  

To prove that the adaptive system of [l] is stable, it is  necessary to 
show that q, 6, and w are bounded. Since the structure of the adaptive 
system makes it difficult to deduce very  much about Q unless q, 6, and 
w1 are known a priori to be bounded, the approach in [ I ]  and elsewhere 
has been to try to establish  the  boundedness of q,6,wl without  first 
assuming that Q is bounded. To get  some idea of what  is  involved, 
observe that for continuous Q the  time function 

satisfies 

from  which  boundedness of q and 6 directly  follow. This and (2) imply 
that the output of any stable first-order  linear  system with input 911, is 
bounded. It is thus reasonable to expect that wI,  the output of a stable 
first-order linear  system  forced  by qQ2, will be bounded as well. The 
following  counterexample  shows that h s  is not the case. 

Proposition: If 

cp=i+(sine)(cose) (6) 

where 

e=e-fsin2(e6r) (7) 

then  there exists an unbounded soluion to (1)-(3). 
Since the sensitivity function + actually  generated by the adaptive 

system of [ 11 is not, in fact, arbitrary, the  preceding is  not a counterex- 
ample to the  claim of stability of the adaptive system  proposed in [l]. On 
the  other hand, the  example does imply that a much  more elaborate 
argument  involving  the  differential equations which generate + is  re- 
quired to prove that the adaptive system is stable. 

To prove the proposition,  first  observe  from (I), (2), and (7), with 
q(O)=sin(sinl)and6(0)=cos(sinl),thatg=SsinBwhere6=ScosBand 
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Hence, 

q $ 2 =  3+2sinB.  

The  definition of 6' in (5 )  implies that 

sine > e2/2 0 

and that lJ2 G e - a ;  from  the last inequality, the trigonometric relation 
sin2@< B2 and (8) it follows that { ( t ) >  ~ , = e - ' / ~ .  This (9) and (IO) thus 
yield q~~ > cl@2sin0. Using  (4)  to substitute for Q, we obtain 

q ~ 2 ~ c , ~ i n e ( i 2 + 2 i  (sine)(cose)+(sin2e)(cos2e)). ( 1 1 )  

Now  observe that from (9 ,  i+ B=6e5' sin(2y) where 

y = e6'. ( 12) 

Hence, 

e2sine=(6e5'sin2y)2sine-(2ei+e2)(~ine). (13) 

If  we now  define 

b , = ( ( ~ i n 2 ~ ) ( ~ ~ 2 e ) - e 2 ) ~ i n e ) c l  
b , = ( 2 / 3 ~ i n ~ e + 2 ( 8 c o ~ e - s i n e ) ) ~ ,  

then  using (1 1) and (12), 

q+'> ~ , s i n ~ ( 6 e ~ ' s i n 2 y ) ~ + b ~ + b ~  

From (IO), and then (7, and (12) 

~in8(6e~'sin2y)~>  1882e10r~in22y 

= 18es'(sin4y)(sin22y) 

= 18e8'(1 - c o ~ ~ y ) ~ ( s i n ~ 2 y )  

> 18es'(l-2cos2y)(sin22y) 

= - 18esr(cos2y)(sin22y) 

= - re2'd(sin32y). 
2 d t  

This and (15) thus show that 

qQ2 > - c2e2(- (sin32y) + b, + 6, d 
dt 

where c2 = c1/2 >O. 
From the easily  verified  identities 

and 

3e3'sin32y=  -b + -b3 3 1 '  
4 3  4 

where 

b 3 = e - 3 ' ( ~ c o ~ 3 2 y - c ~ ~ 2 y  

it follows that 
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where 

Since  (14) and (17)  show that bl,b2 and b3 are bounded, b(t)  is  a 
bounded function as well. 

Thus, if we take wl( t )  to be the zero  initial condition solution to (3), 
then from (I8), and (12) 

w , ( t ) >  -cze2sin3(2edf)+b(t). 

Clearly w,(t )  is unbounded. 0 
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Parametric Identification of Unstable Linear Systems 

E. GABAY AND S. J. MERHAV 

Abshaet-Identifkation of an unstable  sobsystem operating in a stable 
closed-loop in the presence of noise, is considered. The Equation Error- 
-Input Covariance (EEIC) method is shown to be applicable. The method 
can be implemented  on-line  except for the case where the identified 
system has poles or zeros on the imaginary axis. A simulated example 
demonstrates the results. 

I. I N T R O D U ~ O N  

The difficulty in the direct identification of unstable systems  obviously 
results from the difficulty of obtaining and utilizing  divergent data in 
conventional open-loop identification algorithms. Unstable systems  how- 
ever,  invariably operate in a  closed-loop  together  with additional stabiliz- 
ing  feedback  loops  or  networks. In general, the dynamics of these 
stabilizing  loops are known. In [ 11 and [2] the closed-loop identification 
problem is considered in conjunction with  Least Squares Estimation. It 
is shown in this paper that direct unbiased estimation of an unstable 
system can be obtained by means of the EEIC method, descriied in [3], 
recently  developed  by  the authors. Overall  closed-loop stability is 
assumed- The method is shown to be directly applicable except for the 
case in which the identified unstable system has poles or zeros on the 
imaginary axis, which is treated separately. A simulated  example  demon- 
strates the results for two levels of noise. 

11. DIRECT IDENTIFICATION OF OPEN-LOOP DYNAMICS 

We consider the identification of  the  open-loop  dynamics of the 
subsystem G(s )  which  may  have  right-hand  poles. In t e r n  of Laplace 
transforms it is given  by 
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It is a part of a  closed-loop  system  (Fig. 1) incorporating other known 
dynamical  systems. The system is excited  by  a stationary random input, 
and uncorrelated additive noise is present in the loop.  The  following 
assumptions  regarding  the input, system, and noise are made: 

1) The input u(t) is a  sample of a random stationary mean square 
bounded ergodic  process. Its spectral distribution guarantees persistent 
excitation of all the modes of G(s) .  

2) The closed-loop  system, denoted by T(s) ,  is stable and time  in- 
variant. 

3) The noise nr(t) is a zero mean stationary process uncorrelated with 
4 0 .  

We also assume that the subsystem G (s) has no poles  or  zeros on the 
imaginary axis. T h i s  assumption will be relaxed later. 

It is required to iden* the order and form (n,rn) and parameters 
(a$) of G(s) from u( t )  and the closed-loop  system output z( t )  (Fig.  1). 
We  now  show that the  method  described in [3] is also  valid for an 
unstable G(s). The closed-loop  transfer function relating z(r) to u(t) is 

In time domain z ( t )  is given  by 

wherep’ L d‘ /d l i ,  and 

The  known  subsystems G&) N,(s)/D,(s), i= 1,2,3 and the filtered 
“states”zi(t),i=O,1,~~~,1;uJ(t),~=0,I,~~~,haredefinedin[3].hand1 
determine the higher order open-loop  model [4]. The open-loop parame- 
ters a;, bi in ( 1 )  are defined by the  model parameters 
r col (a l ,az , . . . ,a , ,B~, . . . ,Bh)  and by means of the  “composite 
filtered states” [3] defined by 

and 

where F,(p) ,  Fz@) and F3(p)  are defined  by 

and 

In terms of vi and 6 the equation error is given  by 
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