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Abstract— This paper addresses the problem of parsimonious g(r)
sampling of filtered signals. A vector of bandlimited signas is f(t) L
passed through a MIMO filter and then sampled. Conditions > >
on the sampling rates are presented that allow for perfect .
reconstruction of the original signals. We extend previousesults _"" H (co) W
in two aspects. First, we allow for different bandwidths in sgnal : -
vector entries while previous results were restricted to tle same —
bandwidth in all entries. Second, we emphasize the parsimaous .
aspect of the sampling. Namely, in each case, including the®s
previously treated, we highlight the gains which can be madeia
downsampling. Fig. 1. The vector sampling expansion setup.

Index Terms— Sampling, generalized sampling, reconstruction

removed. Thus, we allow for a different bandwidth in each
entry of the measured vector signal and discuss potential
I. INTRODUCTION resulting gains.

It is well known that a bandlimited signal can be completely
reconstructed from its samples if the sampling is suffidgyent Il. PROBLEM SET UP

“dense”. In many applications, a signal is measured (Ve e consider the situation where a vector of signals is passed

through a number of channels and then sampled. An obvigygogh a multi-input multi-output (MIMO) filter and then

question of interest is, given the configuration of the Cle&IN 53 mpled. The core question of interest is: “What can be daine

(which could be viewed as filter bank), what would be thg, sampling rates if the number of outputs is larger then the

most beneficial sampling policy while maintaining the abili , ,mpber of inputs ?”. A number of applications where this

to reconstruct the observed signal. By beneficial we mean %blem arises has been discussed earlier and in [7].

least possible sampling rates. . More specifically, consider the setup in Figure 1. The signal
A cornerstone result in this area is the, so-called, geizexal ¢ (t) e RN, ¢ € R, passes through a MIMO filter denoted by

sampling expansion (GSE) due to Papoulis [6]. This reswt har (w) € CMXN with g(t) € RM as the output. We then

been further generalized in several directions. For examphaye in the frequency domain, that

there has been work on efficient ways of implementing the Pa- R

poulis reconstruction [1], results on multidimensionarsils, g(w)=H (w)f(w) 1)

i.e. functions of several variables, [2], [3] and resultsventor . -~ .
. . . : Here, and elsewhere in the paper,’a 6n a variable denotes
signals, i.e. vector functions of a scalar variable, [7], Bur . .
its Fourier transform.

focus in the current paper is on the latter class of problem e assume that each of the input vector entrig€t), is

which are referred to as vector sampling expansion (VSE:);md limited with the bandwidti’. n — 1.2, N. We

problems. Th_e investigation of vector Samp“ng EXPaNSIORz o nsider both the cases whe¥E, = IV (a constant) and
(VSE) is motivated by many practical scenarios - multiac- : . :
. o where W,, depends om. Earlier work, as described in [7],
cess wireless communication systems, radar or sonar syst . .
. . . : . , deals only with cases where all entries of thput vector
with multiple transmitters and multiple receivers, RGB arol

acquisition systems, to name a few £(2), have thesamebandwidth.
9 oystems, 1o T ' , We wish to emphasize here that our concern in each scenario
Our contribution consists of two parts. In the first part we

IS, whether a perfect reconstruction is possibledioy MIMO

reyisit the cases treate_zd in [7], .[8] in a more general S‘?tti.r?il'%?r H (w). Namely, we assume that one has the freedom
using a more convenient nqtaﬂon. These_ cases are I|m|E% choose this filter as desired. All the conditions prestnte
by the requirement that all input vector signal entries ha\ﬁeere are such that, if satisfied, a filter exists for which gerf
the same bandwidth. In the second part of our contribution ' '

. -~ reconstruction is possible.
we present novel results for cases where this constraint 'Sl' . . )
he layout of the remainder of the paper is as follows: In
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possibilities for the output sampling rates in IV-A and 1V-B

— b

Through some examples we highlight the value of recognizing 2. (0)
the different bandwidths at the input. Finally, in Section V i) ; -
some concluding remarks are provided. e

OV e il

_bH(a)) : (7)

Ill. EQUAL BANDWIDTHS OF INPUT ENTRIES :
—
Here we revisit the cases treated in [7], [8]. Specifically,

we assume all input entries have t@me bandwidtnamely,
W, = W for n = 1,2,..., N. When the ratioM /N is an
integer, it has been shown in [8] thgtt) can be sampled at
a M/N slower rate whilst ensuring that perfect reconstruction
(PR) is possible. This is repeated in [7] with the additionz'a:I, > Equival " on with | i
claim that for uniform sampling this is a necessary conditio '9. 2. Equivalent configuration with equal output sampling

as well. Here we rederive these results using an alternative

argument based on straightforward algebra. In fact, we ma\‘jging (4), this implies

a more general statement covering the case when the ratio

M/N is not an integer and show that a gain|df//N| can M

be made in sampling rate while PR is still possible. NQ < Z B ®)

m=1

el

()

We next convert this problem into an equivalent one with
equal sampling rates at the output. To do this, we employ
the polyphase representation (see e.g. [9]). We generate th

A. Output entries sampled at the same (uniform) rate

Suppose all entries of the output vectpft) , are sampled
uniformly at the interval

vectors
T, =a— @) g ()
" gm (t+Tpp)
Under these conditions, we can establish: gm (t) = : eR™  (6)
Theorem 1:Let f (¢), g (t), andT, be as above. Then, per- :
fect reconstruction (PR) of () from the data{g (k75,)}, 5, gm (t+ (R — 1) Tp)

is possible if and only itx < | X ].

. . . . and concatenate them to obtain
Proof: The proof is provided in Appendix A.

Remark 2:The result in [7] for this case applies to the %1 E?
choicea N _ _ o (1) = _ € R m—1 Bm @)
Remark 3:For discrete time signals a statement similar to :
Theorem 1 can be made. PR of the input vector sequence, in s (t
. , > e o . gn (1)
this case, is possible if the decimation (down samplinghef t . _ _
Output sequence is by antegerfactorg L%J . Whel’egm is the mth entry of g. It is read"y seen that the
original data, i.e{{gn (kam)}kmez}le, is equivalent to
B. Output entries sampled at different (uniform) rates the data{{gm (kTo)}%zl}kGZ- Thus, we have converted the

In this subsection we again consider the case where all infieblem of non equal output sampling rates to a problem with
entries are of the same bandwidth, but each entry of the uniform sampling. We want PR df(¢) from g () sampled at
output vectorg (t) may be sampled at a different samplindo- By (6) we observe that the transfer matrix frdhit) to
rate. Specifically, we assume that theth output entry is & (?) is given by

led at int I ,
sampled at intervals . Ho (w) = C(w) H (W) € C(Zh—i Bm ) xN (8)
Qm
Ty = =2 — 3
G (3) where
1
where Q,,,, R,, are coprime integers. Lep) =1cm (Qm) i@ Tm Ry
. Ix
then (3) can be rewritten as C (w) = diag : e C(Zm=
- oo
TwRyn = Q— W (R —1)Tm
v ©)

= T ) This is illustrated in Figure 2. The problem now is a familiar
Clearly, a necessary condition for PR is that the ratesfgati®ne. ~
the following inequality We know that PR is possible if the matri¥ (w) €

M

C(Zn=1 Bn)*QN ag defined in the proof of Theorem 1
(see (39) in Appendix A, withM, replaced by@ and

M
oNw < 30 2T .
= T Hq (w) replacing H (w)) has a full column rank for all



we =W, QT—” — W ). We thus investigate whether or not thidhave a solution has been given by Hall in [4] (or in [5]). This
matrix can be made to have full column rank by a choice épndition, stated in our terms, is as follow: solution exists

H (w). From (8) and (9) we observe that the matrix if and only if rank[ F,,, F,, --- ,F,, |>JN forall
5 subsets of/ blocks, { F, }'j]:l, 1 < J < Q. This leads to the
H (w) = {HQ (w), Hg <w + _7T> e following sufficient condition for the result of Theorem 4:
Ty Theorem 6:Under the conditions of Theorem 4, PR is
Ho (w L2 (C; - 1)” (10) Possible if (5) holds and
. ’ M Q — J
can be rewritten as Z . <(Q-J)N foral 1<J<Q (18)
= . . 2mq m=1| | R,
H (w) = diag {G, ()} - F - diag {H (W T )} Proof: We provide the proof in Appendix C. (See also
§ [7]) u

M
€ C(Znas Bm)xNQ (11) Remark 7:The sufficient condition given in Theorem 6

holds when allfzm =1, since then, allR,, divide Q and

where
1 0 0 M Q-J M Q—J M _J
0 et 0 > |27 - 2|94 < 3
Gm (w) = : : . . WRm m=1 \‘%J m=1 % m=1 %
)0 . e(Rm—)Tm M iy
0 0 e _Q-J S Ry < Q ON
€ Cltmxfm (12) Q —= Q
(M, R~ )i The following Theorem provides a special case of the above
F=[F - Fg1|eRZmaln (13) result which generalizes Papoulis’ GSE result [6] to thescas

of non equal sampling in the output vector.
. Theorem 8:Under the conditions of Theorem 4, whah=
[ el ear (€))7 ] 1, PR is possible if and only if (5) holds. . -
. Proof: We have already argued that this condition is
' necessary. So, we only need to establish sufficiency. Since
T M y

Fy=1| el an, (M) | € R(Tmoa B )M (14) 1, (5) becomes"™ | R,, > Q. Define for every) <

: g < @ the integerl < m, < M such that

Wg,, is the R,,, dimensional DFT matrix and

T
L emeod Ras (edf 1) | mg = 1 for 0<g< Ry

We remind the reader that herd? denotes the(r + 1)th mg = 2 for By <q<Ri+R

column of the R dimensional identity matrix. With this as :

background, we are now in a position to establish the follow- M—1 M

ing: mg = M for Y R,<q<) Rn
Theorem 4:Let T,,, R, F, Q, M and N be as above. m=1 m=1

M . .
Then, PR off (t) from {{gm (kmTw)}x, ez },,_, 1S POSSbIE Then we observe from (14) that the unit vector
if and only if there exists a set subspade®}* ' such that (35— i) is such that

= mg—1

(q mod quJer:l Ry,

Sy Cspan {Fy} (15)
. FT ( %:l Rm) _ 6 M
dimS, =N forevery 0<¢g< Q-1 (16) » e(q 0d Ry 537 Rm) = 0p—g€m,—1
and N where 0,_, is the Kronecker Delta. This means that
So+Si+..+Sg-1 = R® a7 (SM_, Ry) _
m=t — is one of the columns ofy,. If we
(by span { F,} we mean the subspace spanned by the columngy med Ry +37%7" R .
of the matrix ). _ o _ chooseS, = span (=t fom) - } the condi-
Proof: The proof is provided in Appendix B. [ (¢ mod Rig+XmZi Rm . .
Remark 5:Going back to the definition of the blockg, in  tions of Theorem 4 are clearly satisfied and PR is possible.
(14) we E)bsMerve t)hat each block consistsidfdistinct unit This completes the proof of the Theorem. u
2m=1 Bm

vectorse, . Hence, using Theorem 4 the question
of PR translates to whether, in every blogk, out of its M
columns, one can choose a subset\bfcolumns not chosen  We next consider the case where each input entry may have
in any other block. This restatement of the problem can lze different bandwidth. Specifically, let theth input entry
recognized as a well known problem in combinatorics, namelg;, (¢) be of bandwidthiV,,. One possible approach to this
the Hall marriage problem.This was observed and stated irproblem, would be to choose the largest bandwidth of the
[7]. A necessary and sufficient condition for this problem tmput entries as the bandwidth of the whole input and thus

IV. DIFFERENT BANDWIDTHS IN EACH INPUT ENTRY



convert the problem to one dealt with earlier in Section llwith e, being thenth column of theN dimensional identity
However, this is clearly not the best utilization of the féwat matrix. In Appendix D we establish that, wifth (w) as defined

M > N. In the sequel we propose a more efficient approacibove, there exists aH (w) such thatH (w) is full column
We again discuss two possibilities for sampling of the outpwank for all 0 < w < £

entries. Since from (19) we havE 1L, <M, having H (w) full
rank for all0 < w < #- guarantees that (21) has a solution.
A. Output entries sampled at the same (uniform) rate Let & (t,w) be a squtlon of (21). Define
Suppose all output entries are sampled at a uniformTate T [ _
Let {L,}._, be a set of integers such that o (t) = ?"/ P (t,w) e?“tdw € RV*2M (25)
0
N
M > ZL" (19) Then, from (21) and (24), we note that(t + 27,,w) =

® (t,w) so that

Then we may establish the following: T, [To jeo(t—2KT)
Theorem 9:Let £ (¢), {W,}, g(t) and T, be as defined ¢ —2kT,) = _/ D (t = 2kTo,w)e *dw
above. Perfect reconstruction (PR) 6{t) from the data
{g (kT,)},c, is possible (for appropriate choice df (w)) = _/ (t,w) eI@te 7w o gy,
if
L, -
T for n=1,..,N (20) Hence, we see thap (t — 2kT,) are the coefficients of the
Proof: First we note that from (19) and (20) Fourier series ofb (¢,w) /! defined on{o, TL} Namely
N N
jwt _ Jw2kT, < < —
T,Y W, < 73 L D (t,w)e g;pt 2kT,) e forall 0 < w TO
< M (26)
- Then, from (21)-(24) we have
so that ~ -
D (t,w)H, (w)=E,(t) forn=1,2,... Nand0 <w < —
2ZW<M? (t,0) Hy () = En (1) <7

or,forl=—L,,...L, — 1
Namely, the necessary condition relating output sampktesr

to input bandwidths is satisfied. Let us now consider the set ﬁn (w + ZTL) .
of equations D (t,w) o =el Tl
~ ol (wHiF) °h,, (w+lTL)
P(tw)Hw) =[ Ei(t), -~~~ Ex(t)] (21) ™
forn=1,2,..., Nand0 < w < —
for all  and0 < w < 7 where® (t,w) € CN*2M gnd T
Multiplying both sides by7«* and substituting (26) we obtain
~ [ 0 ~ ~
Hw)=| o gorg |[ D@, -~ v | A
€ CHPAEIL L (22) D (b= 2KTy) T by (v +17)
= AR, (w17
where :ef:[_lej(“’*%ol)t
_ By (@ = Lo ) - _
H, (w) = \ ° Since the above result holds for d@ll < w < Tlo and| =
e Jmlnh, (w— LnTLD) o —L,,..,L, — 1 we conclude that
h, (w—(L,—-1)%), - _ _
) (1 ( )To) Z(p(t — 2kT,) eI« o [ JMT/( w) ] = el et
e—im(Ln— )hn(w—(Ln—l)TLO),--- ~ e“Toh,, (w)
- (27)
h, (w +(Ln—1) TL) holds for alljw| < L, Z andn=1,..., N.
eI (Ln=1h (w + (L, — 1) TLO) Using the appropriate definitions, we have,
€ CMx2Ln (23) gw) = H(W)f(w)
R N
h, (w) is thenth column of H (w) and = Z h
Ba(t) = ey [ et i, N
= > 8 (28)

eI (L1t } € CN*2Ln (24) =



and, using (20) for someT, and integersRk,,. Repeating the arguments in
Section 1lI-B leads to the same conclusion, namely, that

N
£(f) = Z fu(t)eN the data{{gn (k:me)},WEZ}MZ1 is equivalent to the data
" {g (KT,)} ez Whereg (t) 1s defined in (6) and (7). Hence, the

n=1
Ny W problem of signals passing through the MIMO fil#r(w) and
= Z _/ fn (w) ej:’_leﬂ'wtdw sampled at different rateg,,, is replaced with the problem of
=2 Jw, signals passing through the MIMO filtdil (w) defined in
N oy fLads _ (8) and (9) and sampled at the same r&je
= Z 2—/ In (w)efj_leﬂmdw We also use ideas similar to those used in Section.IV-A.
n=1 TS Lo f Specifically, Iet{Ln}fL1 be a set of integers such that
Substituting (27) and (28) we obtain M N
N 1 L"TLO —_— Z Rm > Z Ln (29)
= — J— Jw o m=1 n=1
£(t) D et 2kT0)22W/_LLe . | |
kez R n=1 "o Note that}", _, R, is the number of outputs wittif, (w)
h,, (w) ~ as the MIMO filter which makes (29) equivalent to (19). We
ei@Toh,, W) | " (@) rewrite equation (21) for alf and0 <w < 7
O(t,w) H(w)=[ Ei(t), -~ ,En(t) ]

ke n=1 T where E, (t) is as in (24),® (t,w) € CN*2(Xhz Bn) and

8n (W) dw the matrix H (w) is now defined by
e]wTogn (w
N ~ I 0 ~ ~
- Set-mny Y], SO B =4 wny |[ B, v ]
kez L8 ((2k+1)To) 2(2M_ R )x2(2N_, L)
€ " (24T € C\&m=1 tm n=1-1)  (30)
_ _ g (2T,
= Z © (t 2I€To) |: g ((2k + 1) To) :| where
keZ
which is the required reconstruction of the input vectomnfro i B hg.n (w - LnTL) v
the output sampled &t,. This completes the proof. [ | n (W) = efjﬁLnle . (w _ Lnl)
Example 10:We present a simple example to illustrate the R " L)
potential benefit in taking into account the different band- hon (w —(L,-1) Tl)
widths of input entries. Let the input vector consist of two —jm(La-D] I ’ 1)
entries (i.e.N = 2) with bandwidthsiV; = 3W, and W, = € Qn (w —(In = )T_o) o
2WO (for somelV, > 0) and the output vector of five entries le_n (w +(Ln —1) Tl)
(i.,e. M = 5). We assume here that all outputs are sampled . 1 A °
at the same sampling raf¢, and are interested in finding the eI (En=Vhg , (w + (Ln —1) TL)
largestT, possible which still enables reconstruction with an c C2(Zh—1 Bm)x2Ln (31)

appropriate MIMO filter H (w). One approach would be to

consider both input entries as if they had the same bandwidilyq le_n (w) is the nth column of Hy (w). We may then
max {W,,} = 3W,. Then, using Theorem 1 we have thagstaplish the following:

T, < |¥|& = 2:%~. As an alternative, let us try the Theorem 11:Let f (¢), {Wy}, g(t), {Tim}, {Rm}, {Ln}

approach suggested in Theorem 9. We chobse= 3 and and T, be as above. Perfect reconstruction (PR ¢f) from

L, = 2 which clearly satisfy (19). Then, by the theoremy,, 4ata EoT M- or equivalently. the data
we haveT, < Tl = 7Lz — = . clearly larger than we Hom (knTom) by, 7}y OF €0 Y

. WL T W W, . : g (KT5) }1.cz) is possible if
got with the first approach. We wish, though, to point ou
that conditions on the MIMO filter may be different in both T < mLy for n=1... N (32)
approaches. The key point being that, in each approachea filt T W T

enabling PR exists for the correspondifig and the matrixtd (w) has full column rank for all < w < #-.

Proof: The proof is similar to the proof of Theorem 9.
B. Output entries sampled at different (uniform) rates ]
Finally, we tackle the most general case for contiguousThe crucial difference between the results in Theorems 9

bandwidths - i.e. with different bandwidth&/,,, at the input @nd 11 is related to the rank of the matdik (w). While in

entries and different uniform sampling rat@s,, for the output the case dealt with in Theorem 9 this matrix can be made
entries. We assume. as we did in Section 11I-B that full column rank by proper choice of the original MIMO filter
H (w), this is not not necessarily true for the case treated

T,=TnR, for m=1,2,...M in Theorem 11. We will next investigate the possibilities



for achieving this property using arguments akin to those finding the most parsimonious data in each case treatede whil

Section 1lI-B. preserving the ability to get a perfect reconstruction (BR)
Without loss of generality, we assume that> L, > ... > the original vector signal. In particular, conditions foR For

L. Let us define the mtegel{qu qul as the case which allows for different bandwidths in each input

vector entry are presented with examples which highlight th
N, = {number ofL,, > % + ‘q + %’} potential benefits.
< N (33) APPENDIXA
Note that Ny, 1, = NL1 —2p—1 and ZL] "'Nop_1, = PROOF OFTHEOREM 1
Yrto! No,—2p-1 =Y, Ln. We may then establish: Proof: We note first that, as the total rate of the output

Theorem 12:Let {F, }L1 ! be defined as in (14). Thenhas to be at least equal to the total rate of the inputnwst

H (w) can be made full column rank by choice &f (w) if havea < X The proof vyill (_:onsist_of two parts. We will
and only if there exists a set of subspa<§6§}Ll Isuch that first show that reconstruction is possible for< [£]. In the
second part we will show that reconstruction is impossible f
Sy C span {F, } (34) || <a.
(35) Part 1. Let us denotex < || = M, so thatT, < M, %

dim S, = Nyp_r, forevery 00 <p<L;—1 .
i op 2l yhispsia We then introduce thenatrix of functions ¢ (t) € RY*M

and defined by
So+ S+ .. +Sp,_1 = REw=1 Le (36) (o)
Proof: The proof is given in Appendix E. [ ] (t) = To E P (w,t) e/t dw (37)
Remark 13:As in Section I1I-B, we note that the blocks, 2m ) Mex

consist of unit vectors. Hence, the existence of the sulespag arep (w,t) € CN*M gre the solutions of the following set
Sp is equivalent to the ability to choose, in each bldgk a ¢ jinear equations

subset ofNy,_ 1, columns which are not chosen in any other - . .

block. This again, can readily be recognized as a slightlyemo @ (w,t) H (w) = [IN,ejtT_OIN, e ,6'7t(M°_1)T_°IN} (38)
general but well known problem in combinatorics called the Mom (2 M)

bi-marriage problem Hall's condition [4] for the existence defined for allt and forw e [—=2%, TD)' In denotes
of a solution to this combinatorics problem, stated in odhe N - dimensional identity matrix and/ (w) € CM*NM,

terms, is: For every set of blocks, { F,,, }J 1<J<L;, Isgivenby

rank[ p1 szv ) FP7}>ZJ 1N2PJ —Lq- fad [H(w),H< 27T>

Example 14:We again, give an example to demonstrate H(w) = w+ T, o
the potential advantage of Theorem 12 over Theorem 4. o (M, — 1)
Consider the same system and inputs as in Example 10. H (w—i-#)} (39)
However, here, not all the outputs are sampled at the same °
rate. SpeC|f|caIIy, lethh, = Ty, = T3 = % and T, = With proper choice o (w), ( ) can be made full column
T5 = 3W . We note that, assumin§y’ = max{W,} = rankforevery € [— A;’” (TM) This guarantees that the

3W,, with R1 = Ry = R3s = 4, Ry = R5 — 1 and set of equations (38) has a solution (not necessarily upiasie
Q = 7 the conditions (4) and (5) hold fdf, = 37 | 2| < &) which is both sufficient (see e.g.[6]) and necessary
ever as rank[ Fy, F, F, F,, Fs, Fg } = 11 < (see [3]) condition for PR. The reconstruction formula isrth
JN = 6 x 2 = 12, which implies according to Theoremgiven byf (t) =", , ¢ (t — kT,) g (kT,)

4 that there exist no MIMO filter for which PR is possi- Part 2. Let us assume now thgtld | < o = % < &
ble. However, if we use the result in Theorem 12 we cahhen, we haveRT, = Q. Using a polyphase representation
verify that for every set ofl < J < 7 block {F, } o ([9]), we observe that the datgg (kT,)},c, is equivalent to

rank[ s Fpoy 0y Fp, } > 23_121 N2pj*L1 Specif- the data{g (ZQ%) = E(ZRTO)}IGZ where
ically, for the case Hall's Theorem failed above, we get~ .7 T T T

' ' ) =gt t+T7,) ,---,gt+(R-1T,
mor B R A 1U g gt +T)" - glt+(R-1) )(40)

{5 mocifed form. This ceery demonatates that ignoring t HICS: We ave converted the problen of PR 00 from
g (t) sampled aff, to the PR off (¢) from g (¢) sampled at

different bandwidths of the input entries may lead to thengro RT, = Q.. (See Figure 2 with all polyphase blocks identical

conclusions. and output components shuffled). Using (40) we observe that
the transfer function fronf (¢) to g (¢) is given by
V. CONCLUSION
This paper has addressed the problem of perfect reconstruc- ej“l)T"
tion of a vector signal from samples of a (vector) filtered Hp () = _ ® H (w) (41)

version of the signal. The results presented here furtheerge :
alize previously published results in this area with the aim ew(B-1)To



where® denotes the Kronecker product. Then, (38) becomes APPENDIXB
) (Q-1)2 PROOF OFTHEOREM 4
7 _ JtH— Jt(Q—-1) 57—
P (w,t) H (w) = [IN767 Ho Iy, e o IN} Proof: As seen in the preamble to the theorem, PR is

possible if and only if the matrix{ (w) as defined in (10)
is full column rank for everyw € |—W, 2T—: — W). Using

o (11) we note thatdiag {G,, (w)} is square and nonsingular
H(w) = |:HR (w),Hr (w + 5T ) e for all w. Hence, the result reduces to the question of whether

27 (Q — 1) the matrix /- diag < H (w + QTﬂ)} can be made full column
HR <w + T)} € CMRXQN (42)

with ® (w,t) € CN*ME and

rank for everyw € |—W, QT—: - W). We note that this product

of matrices consists of th€ blocks F, H w+2TLDq .
(i) Sufficiency. Suppose that the subspaces defined in
l$15) to (17) exist. ThenH w+2TLD“) can be chosen

Hence, PR is possiblé (and only if) the matrixﬁ(w) is
full column rank for allw € |—W, }%2_; — W ). However, we
will show that this matrix can never have full column ran

independent of the choice df (w).From (41) we have for so that Span{FqH (w—l— 2%)} = S, for every w €
¢=01,.,@—1 [—W, - W). Hence, by (17)F - diag {H (w + 2%)} is

full column rank for everyw € |—W, 2T—” -W).

H <w+ 27Tq) _ (i) Necessity.Suppose there exist&l (w) such thatF -
RT, : diag{H (w—f—%)} is full column rank for allw €

o (@t 77 ) (R=1)T,

o (w775 ) To

—W,QT—’:—W. Then we can define, for anyw €

27Tq 27
-W,Z£ —W ) andg=0,1,...,Q — 1
® H (w + RTO) T q Q
2
.1,@ Sy —span{FqH (w—i— ﬁq)}
. e/’ T,
= | diag {eJWT" } . . . .
: which clearly satisfy (15) andim S, < N. Furthermore, since
eI 2R (R—1) F-diag{ H (w + QTﬂ)} is assumed to have full column rank
9 we must have
®H (w + RZ? > o
. o span{F-diag{H (w—i— q)}}
= (diag {ej‘"T"} WRef mod R) T
21q = S+& +...+8Q_1 = RON
®H (w + )
RT, hence,dim S, = N. This completes the proof. n
whereWr is the R - dimensional DFT matrix;n mod R =
m — | 44| R andef denotes thgr + 1)th column of theR APPENDIXC
dimensional identity matrix/z. Then we have from (42) PROOF OFTHEOREM 6
~ ) jorT, ~ Proof: Recall that each block;, consists ofM distinct
H (w) = ((diag {e’*™"" } W) ® Ins) Hy (w) unit vectors. Let us call thenth one in each block unit
here vector of typem. From the structure of each block (see
w (14)) we observe that the unit vector of typein block F,
_ " " o (¢g=0,1,...,Q — 1) is of the form
Hl(w)_{eo ®H(w),e1 ®H(w+RT0)’ B OR] i
27 (Q — 2) :
R
(@-2) RT, efin | eR(En-Rn)
R 2m (Q — 1) oo
e(Q_l) mod R QH||w+ T (43)
ORM J

H M .. .
From (43) and smcef%J = | %] < % we observe that the Hence, there are exactl,, distinct unit vectors of typen.
first M rows of H, (w) contain % +1 non zero blocks, If two blocks contain the same unit vector, it has to be of

of dimension} x N each. Hence, sincé[%J PN > the same type ant_j each such vector appea SR% blocks.
M, these columns must be linearly dependent and the matrfzt US thus consider a set af < J < Q blocks. For a

H, (w) cannot be full column rank. This completes the prodfarticular unit vector of typen to be excluded from this
of the theorem. m Set, the complementary set must contain all P@J blocks



which contain it. Since the complementary setf J blocks APPENDIXE
—J PROOF OFTHEOREM 12

may containat most{ = such unit vectors, the set of
Ea Proof: By substituting from (9)

J
blocks hasat leastR,,, — Q distinct unit vectors of type o ( ™ ) o ( T ) 0 ( T )
Tor n|\wWw+aqg= | = wtqg—|hy |w+qg—=
m. Hence, the total number of distinct unit vectors must be @ qTo qT qT

larger or equal to>""_, <Rm - fQ . Thus, from (5) we can rewrite (31), using the fact th&},, T, = T,
Rm,

and (18) we obtain
e~ ImlnC (w — LnTlo) h, (w — LnTLO) yro
7 w

M Q-J
q2"'FQJ]ZZ(Rm_ {%J‘) C(w—(Ln—l) D)ﬁn —(Ln—l)Tlo)..,

ON - (Q—J)N eJ”L’lC'(w—(L —1) ﬁn(w—(Ln—l)l)---

C(w+ (Ln—1) %) B
Thus, Hall's necessary and sufficient condition [4] is d@mtis ~ oin(L.—1) ( 4+ (Ln —1)

and the ‘marriage problem’ has a solution which completes u
the proof of the claim. n € C2(Zhizt Rm)x2Ln

)

H, (w) = C(W—Ln%)ﬁn(w—Ln%),...

rank[F,

and, recalling that we assumed (without loss of generatiig)
APPENDIXD Li>Ly>..>Ln,

RANK OF MATRIX H (w) IN EQUATIONS (22) (23) N C (w -~ LnTL)
, H, (w) = °
Going back to eqn. (22) and (23) we note that sinté = () e—ITLn (w _ LHTL) e
(—1)" we can write °
O(w—(L _1)1)---
_ h, LpZ), - e—im(Ln—1) _ 1)
H, () = o (uj To) i C (w (L, —1) To)
Bo (w= (Ln=1) F) e DC (0 + (Lo~ 1) F )
1-L,) 1 T
(1) By (w = (La =D ) C(o-Lif).
h, (w+(L —1)Tl) N e—.jWLlc(w_LlTlo)7...
—1 s
()" D by (wt (L= 1) £) C(om(Li-DF)
c (CQMXQLTL (44) e —jm(L1— I)C (w _ (Ll _ 1) TL) .
Namely, we can choose a permutation matfixso that C (w + (L —1) 1)
~ ~ edm(Li=1) (w + (Ll — 1) 1)
~ ~ H H s
Hy(w)---Hy (w)} pP= ;:;(W) ;}2 (w) 1 .
i) ) 4@ | e
c (CQMXQ Some1 Ln (45) 0
= N ) where
where H; (w) € CMxX.=ilnconsists of all R
~ N s
the columns {hn (w + qu) 1q odd} and hy, (‘*’ - L"T_o) 0
~ ° n=1 ~ "
Hy(w) € CMxX:liluconsists of all the columns A, (w)= 0 by (w ~In—1) T_o)
~ N : :
{hn (w—i—qu) i q even} . Hence, by proper choice : :
=y In=l 0 0

of H (w), Hy (w),Hs (w) can each be guaranteed to be full

column rank for all0 < w < . This in turn guarantees that 8
[ Iil (,‘;") fh_f:) ] is full column rank :

(-1) 1HIN(W) (=)™ ~H2 (w) B h, ( + (L, —1) L)
andso are H; (w) --- Hy(w) } and H (w) as required o

fOI‘ PR. c (CQJWLH X2Ly, (47)



Hence, with an appropriate permutation matrix and
N N
P e RCEI L) x(2520, In) e can write 1 0
~ 0 eH(erli—DF)Tn
~ ~ - H; (w) = diag _
[Hl (W) Hs () -~ Hy (w)] :
= = 0 0
(- Hy(w) (-1 7Y Hy () 0 _
Wk,
where oI (W (L1 =1) £ ) (R —1)Trn
- F-diag{Br,-1 (w),Br,-3 (W), ..., Bi_, (W)} (52)
ﬁl () = {C (w L1T )B L (@) whereWpy,  is the R, dimensional DFT matrix,
C(w—(Li-2) TL) F=[F, F, -, Fp]
C (w (L1 —2) )BL and F,, is as defined in (14). From here, by using arguments
12 . identical to those used in the proof of Theorem 4 we can
€ C(Xh= fm)x (EnzlL”) (49) conclude that bothH; (w) and Hs (w) can be made full
column rank if and only if (34) - (36) hold. This in turn means
g that so doe§ 77, (w), Ha(w). . Hy(w) | and, by
(30), so isH (w), which completes the proof of the theorem.
]
Ha (w) = {C wtli =) F ) Bria @), REFERENCES

O w+(L1—3)TlO BL173 (W)"' [1]
C(w=(Li=1)F) B, @)]
e (X Ru)x (200 Ln) - (50) 2

3
The that each blockB, (w) B

e CMxNa (N, as defined in
(33) and recall thab """ Nop—r, = Y00 Niygpy = 4
SN | L,) consists of unique entries which are entries g
the MIMO filter H (w) shifted to different frequency bins.
Hence, each such block can be selected at will by

lecting H (w) appropriately. Furthermore, using arguments)
similar to those used in Appendix A, to guarantee that

| () Ha(w) Hy (w) | has full column rank we [

need to guarantee that both; (w) and H, (w) have full 9]
column rank.

We next observe from (9) that we can write
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