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Abstract

Typical sensors (CCD or CMOS) used in home digital camcorders have
the potential of generating high definition (HD) video sequences. However,
the data readout rate is a bottleneck which, invariably, forces significant
quality deterioration in recorded video clips. This paper describes a novel
technology for achieving a better utilization of sensor capability, resulting
in HD quality video clips with esentially the same hardware. The tech-
nology is based on the use of a particular type of nonuniform sampling
strategy. This strategy combines infrequent high spatial resolution frames
with more frequent low resolution frames. This combination allows the
data rate constraint to be achieved whilst retaining a HD quality out-
put. Post processing via filter banks is used to combine the high and low
spatial resolution frames to produce the HD quality output. The paper
provides full details of the reconstruction algorithm as well as proofs of
all key supporting theory.

1 Introduction - Current Technology
In many digital systems one faces the problem of having a source which gen-
erates data at a rate higher than that which can be transmitted over an asso-
ciated communication channel. As a consequence, some means of compression
is required at the source. A specific case of this problem arises in the current
technology of digital home camcorders.
Figure 1 shows a schematic diagram of a typical digital camcorder. Images

are captured on a two dimensional sensor array (either CCD or CMOS). Each
sensor in the array gives a spatial sample of the continuous image, a pixel, and
the whole array gives a temporal sample of the time varying image, a frame. The
result is a 3D sampling process of a signal having two spatial dimensions and one
temporal dimension. A hard constraint on the spatial resolution in each frame is
∗Department of EE, Technion, Israel 32000
†Deartment of EE, Technion, Israel 32000
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Figure 1: Schematics Diagram of a Typical Digital Camcorder.

determined by the number of sensors in the sensor array, while a hard constraint
on the frame rate is determined by the minimum exposure time required by the
sensor technology. The result is a uniformly sampled digital video sequence
which perfectly captures a time varying image whose spectrum is bandlimited
to a box as shown in Figure 2. We note that the cross sectional area of the
box depends on the spatial resolution constraint, whilst the other dimension of
the box depends on the maximal frame rate. As it turns out, the spectrum
of typical time varying images can reasonably be assumed to be contained in
this box. Thus, the sensor technology of most home digital camcorders can, in
principle, generate video of high quality (high definition).
However, in current sensor technology, there is a third hard constraint,

namely, the rate at which the data from the sensor can be read. This turns
out to be the dominant constraint since this rate is typically lower than the rate
of data generated by the sensor. Thus, down sampling (either spatially and/or
temporally) is necessary to meet the read out constraint. In current technology,
this down sampling is done uniformly. The result is a uniformly sampled digi-
tal video sequence (see Figure 1) which can perfectly capture only those scenes
which have a spectrum limited to a box of considerably smaller dimensions. This
is illustrated in Figure 3 where the box in dashed lines represents the full sensor
capability and the solid box represents the reduced capability resulting from
the use of uniform down sampling. The end result is quite often unsatisfactory
due to the associated spatial and/or temporal information loss.
With the above as background, the question addressed in the current paper

is whether a different compression mechanism can be utilized, which will lead to
significantly less information loss. We show, in the sequel, that the technology
we present achieves this goal. An important point is that the new mechanism
does not require a new sensor array, but, instead, achieves a better utilization
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Figure 2: Sensor Array Potential Capacity.

Figure 3: Digital Camcorder Actual Capacity.
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of existing capabilities. The idea thus yields resolution gains without requiring
major hardware modification. (The core idea is the subject of a recent patent
application by a sub-set of the current authors [5].)
Previous relevant work includes the work done by Shechtman, Caspi and

Irani, [8]. In the latter paper, the authors use a number of camcorders record-
ing the same scene, to overcome single camcorder limitations. Some of these
camcorders have high spatial resolution but slow frame rate and others have
reduced spatial resolution but high frame rate. The resulting data is fused to
generate a single high quality video sequence (with high spatial resolution and
fast frame rate). This approach has limited practical use because of the use of
multiple camcorders. Also, the idea involves some technical difficulties such as
the need to perform registration of the data from the different camcorders. The
idea described in the current paper avoids these difficulties.
The layout of the remainder of the paper is as follows: In Section 2 we

describe the spectral properties of typical video clips. This provides the basis
for our approach as presented in Section 3. Note that we describe our approach
both heuristically and formally. In Section 4 we present experimental results
using our approach. Finally, in Section 5 we provide conclusions.

2 Video Spectral Properties
The technology that we present here is based on the premise that the data
readout rate, or equivalently, the volume in Figure 3, is a hard constraint.
We deal with this constraint by modifying the down sampling scheme (data
compression) so as to better fit the characteristics of the data. We do this by
appropriate use of non-uniform sampling so as to avoid the redundancy inherent
in uniform sampling. Background to this idea is contained in [1] which discusses
the potential redundancy frequently associated with uniform sampling (see also
[9]).
To support our idea we have conducted a thorough study of the spectral

properties of over a 150 typical video clips. To illustrate our findings, we show
the spectrum of one of these clips in Figure 4. (We show only one of the spatial
frequency axes with similar results for the second spatial frequency.) We note in
this figure, that the spectral energy is concentrated around the spatial frequency
plane and the temporal frequency axis. This characteristic is common to all
clips studied. We will see in the sequel that this observation is, indeed, the
cornerstone of our method.
To further support our key observation, we passed a large number of video

clips through three ideal low pass filters having spectral support of a fixed vol-
ume but different shapes. The first and second filters had a box like support
representing either uniform spatial or temporal decimation. A third filter had
the more intricate shape shown in Figure 5. The outputs of these filters were
compared both quantitatively (using PSNR) and qualitatively (by viewing the
video clips) to the original input clip . On average, the third filter produced
a 10dB advantage over the other two. In all cases examined, the qualitative
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Figure 4: 3D Spectrum of a typical video clip (shows only the ωt and ωx axis).

Figure 5: Spectral Support Shape of Video Clips.
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Figure 6: Non-Uniformaly Sampled Video sequence.

comparisons were even more favorable than suggested by the quantitative com-
parison. Full details of the study are presented in [6]. Our technology (as will
be shown in the sequel) can accommodate more intricate shapes which may
constitute a better fit to actual spectral supports. Indeed, we are currently ex-
perimenting with the dimensions and shape of the filter support as illustrated in
Figure 5 to better fit the "foot-print" of typical video spectra (see also Remark
4 below).

3 Non-Uniformly Sampled Video

3.1 Heuristic Explanation of the Sampling Strategy

By examining the spectral properties of typical video clips, as described in
the previous section, we have observed that there is hardly any information
which has simultaneously both high spatial and high temporal frequencies. This
observation leads to the intuitive idea of interweaving a combination of two
sequences: one of high spatial resolution but slow frame rate and a second,
with low spatial resolution but high frame rate. The result is a non-uniformly
sampled video sequence as schematically depicted in Figure 6. Note that there
is a time gap inserted following each of the high resolution frames since these
frames require more time to be read out (see Remark 5 below). In the remainder
of the paper, we will formally prove that sampling schemes of the type shown in
Figure 6 do indeed allow perfect reconstruction of signals which have a frequency
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domain “foot-print” of the type shown in Figure 5.

3.2 Perfect Reconstruction from Non-Uniform Sampled
Data

To develop the associated theoretical results, we will utilize ideas related to
sampling lattices. For background on these concepts the reader is referred to
[2], [1] and [4]. A central tool in our discussion will be the mulit-dimensional
Generalized Sampling Expansion (GSE). For completeness, we have included a
brief (without proofs) exposition of the GSE in Appendix A. A more detailed
discussion can be found in e.g. [7], [1] and [3].
In the sequel, we will first demonstrate that the sampling pattern used (see

Figure 6) is a form of recurrent sampling. We will then employ the GSE tool. In
particular, we will utilize the idea that perfect reconstruction from a recurrent
sampling is possible if the sampling pattern and the signal spectral support are
such that the resulting matrix H (see eqn. (21) in Appendix A) is nonsingular.
Specifically, we will show that the sampling pattern in Figure 6 allows perfect
reconstruction of signals having spectral support as in Figure 5.
To simplify the presentation we will consider only the case where one of the

spatial dimensions is affected whilst the other spatial dimension is untouched
during the process (namely, it has the full available spatial resolution of the
sensor array). The extension to the more general case is straightforward but
involves more complex notation. Thus, we will examine a sampling pattern
of the type shown in Figure 7. Furthermore, to simplify notation, we let z =∙
x
t

¸
. We also use ∆x and ∆t to represent full spatial and temporal resolution.

However, we note that use of these sampling intervals in a uniform pattern would
lead to a data rate that could not be read off the sensor array.
Also, to make the presentation easier, we will ignore the extra time interval

after the high resolution frames as shown in Figure 5. (See also Remark 5
below). More formally, we consider the sampling lattice

LAT (T ) =
©
Tn : n ∈ Z2

ª
where

T =

∙
(2L+ 1)∆x 0

0 (2M + 1)∆t

¸
(1)

In each unit cell of this lattice we add 2 (L+M) samples,½∙
c∆x
0

¸¾2L
c=1

[½∙
0

m∆t

¸¾2M
m=1

to obtain the sampling pattern

Ψ =

2(L+M)+1[
q=1

{LAT (T ) + zq} (2)
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Figure 7: The non-uniform sampling pattern considered.

where

zq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for q = 1∙
(q − 1)∆x

0

¸
for q = 2, ..., 2L+ 1∙

0
(q − 2L− 1)∆t

¸
for q = 2 (L+ 1) , ..., 2 (L+M) + 1

(3)

As shown in the Appendix this constitutes a recurrent sampling pattern. More-
over, we readily observe that this is exactly the sampling pattern portrayed in
Figure 7 (for L = 2 and M = 3). (Note that, for these values, every 7th frame
has full resolution whilst, in the low resolution frames, only every 5th line is
read.) The unit cell we consider for the reciprocal lattice, LAT

¡
2πT−T

¢
=©

2πT−Tn : n ∈ Z2
ª
, is

UC
¡
2πT−T

¢
=

½
ω : |ωx| <

π

(2L+ 1)∆x
, |ωt| <

π

(2M + 1)∆t

¾
(4)

This is illustrated in Figure 8 (Note that the dashed box in the figure represents
the sensor data generation capacity which, as previously noted, exceeds the data
transition capability). We next construct the set

S =
2(L+M)+1[

p=1

©
UC
¡
2πT−T

¢
+ cp

ª
(5)
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Figure 8: Unit cell of reciprocal lattice.
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Figure 9: The spectrum covering set S.

where

cp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for p = 1"
2π(p−1)
(2L+1)∆x

0

#
for p = 2, ..., L+ 1"

2π(L+1−p)
(2L+1)∆x

0

#
for p = L+ 2, ..., 2L+ 1"

0
2π(p−2L−1)
(2M+1)∆t

#
for p = 2L+ 2, ..., 2L+M + 1"

0
2π(2L+M+1−p)

(2M+1)∆t

#
for p = 2L+M + 2, ..., 2 (L+M) + 1

(6)

This set is illustrated in Figure ??. We observe that the set in Figure ?? is, in
fact, a cross section of the set in Figure 5 (at ωy = 0). We are now ready to
state our main technical result:

Theorem 1 Let I (z) be a signal bandlimited to the set S as given in (5) and
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let this signal be sampled on Ψ as given in (2). Then, I (z) can be perfectly
reconstructed from the sampled data {I (ez)}z∈Ψ.
Proof. See Appendix B.
Theorem 1 establishes our key claim, namely, that perfect reconstruction is

indeed possible using the proposed non-uniform sampling pattern. We next give
an explicit form for the reconstruction.

Theorem 2 With assumptions as in Theorem 1, perfect signal reconstruction
can be achieved using

I (z) =
X
n∈Z2

2(L+M)+1X
q=1

I (Tn+ zq)ϕq (z−Tn) (7)

where ϕq (z) has the form:

ϕ1 (z) =

∙µ
1

2L+ 1
+

1

2M + 1
− 1
¶
+

1

2L+ 1

2 sin
³

πLx
(2L+1)∆x

´
cos
³

π(L+1)x
(2L+1)∆x

´
sin
³

πx
(2L+1)∆x

´ +

1

2M + 1

2 sin
³

πMt
(2M+1)∆t

´
cos
³

π(M+1)t
(2M+1)∆t

´
sin
³

πt
(2M+1)∆t

´
⎤⎦

sin
³

πx
(2L+1)∆x

´
πx

(2L+1)∆x

sin
³

πt
(2M+1)∆t

´
πt

(2M+1)∆t

(8)

and

ϕq (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin( π

∆x (x−(q−1)∆x))
π
∆x (x−(q−1)∆x)

sin( πt
(2M+1)∆t )
πt

(2M+1)∆t

for q = 2, ..., 2L+ 1

sin( πx
(2L+1)∆x)
πx

(2L+1)∆x

sin( π
∆t (t−(q−2L−1)∆t))
π
∆t (t−(q−2L−1)∆t)

for q = 2 (L+ 1) , ..., 2 (L+M) + 1

(9)

Proof. See Appendix C.
The reconstruction formula (7) can be rewritten as

I (z) =
X
n∈Z2

2(L+M)+1X
q=1

Iq (Tn)ϕq (z−Tn)

=

2(L+M)+1X
q=1

"
Iq (z)

X
n∈Z2

δ (z−Tn)
#
∗ ϕq (z)

=

2(L+M)+1X
q=1

Idq (z) ∗ ϕq (z) (10)
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Figure 10: The reconstruction process.

where Iq (z) = I (z+ zq) is the original continuous signal shifted by zq and
Idq (z) = Iq (z)

P
n∈Z2 δ (z−Tn) is its (impulse) sampled version (on the lattice

LAT (T )). We see that the reconstruction can be viewed as having 2 (L+M)+1
signals, each passing through a filter with impulse response ϕq (z). The outputs
of these filters are then summed to produce the final result. A further em-
bellishment is possible on noting that, in practice, we are usually not interested
in achieving a continuous final result of the type described above. Rather, we
wish to generate a high resolution, uniformly sampled video clip which can be fed
into a digital high resolution display device. Specifically, say we are interested
in obtaining samples on the lattice {I (T1)}m∈Z2 where

T1 =

∙
∆x 0
0 ∆t

¸
Note that LAT (T ) is a strict subset of LAT (T1). Thus, our goal is to convert
the non-uniformly sampled data to a (high resolution) uniformly sampled data.
This can be directly achieved by utilizing (10). Specifically, from (10), we obtain

I (T1m) =

2(L+M)+1X
q=1

X
k∈Z2

eIq (T1k)ϕq (T1 (m− k)) (11)

which is the discrete equivalent of (10). eIq (T1k) denotes the zero padded (in-
terpolated) version of Iq (Tn) (This is easily seen since LAT (T ) ⊂ LAT (T1)).
This process is illustrated in Figure 10.

Remark 3 The compression achieved by use of the specific sampling patterns
and spectral covering sets described above is given by:

α =
2 (L+M) + 1

(2L+ 1) (2M + 1)
(12)

Remark 4 Heuristically, we could achieve even greater compression by using
more detailed information about typical video spectral "foot-prints".On going
work is aimed at finding non-uniform sampling patterns which apply to more
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Figure 11: Alternative spectral covering set.

Figure 12: Frames from original clip.

general spectral covering sets. Figure 11 illustrates a possible spectral "foot-
print".

Remark 5 As noted earlier, we have assumed in the above development that
a fixed time interval is used between all frames. This was done for ease of
exposition. A parallel derivation for the case when these intervals are not equal
(as in Figure 6) has been carried out and is presented in [6]. Indeed,this more
general scheme was used in all our experiments.

4 Example
To illustrate the potential benefits of our approach we chose a clip consisting
of 320 by 240 pixels per frame at 30 frames per second - Figure 12 shows six
frames out of this clip. The pixel rate of this clip is 2304000 pixels per second.
We create a non-uniformly sampled sequence by using the methos described in
Section 3 with L = M = 2. The resulting compression ratio is (see (12)) 9

25 .
The reconstruction functions in this case are:
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Figure 13: ϕ1 (z)

ϕ1 (z) = 5

∙
−3 +

2 sin 2πx
5∆x cos

3πx
5∆x

sin πx
5∆x

+
2 sin 2πt

5∆t cos
3πt
5∆t

sin πt
5∆t

¸
sin πx

5∆x
πx
∆x

sin πt
5∆t
πt
∆t

ϕq (z) =
sin π(x−(q−1)∆x)

∆x
π(x−(q−1)∆x)

∆x

sin πt
5∆t
πt
5∆t

for q = 2, 3, 4, 5

ϕq (z) =
sin πx

5∆x
πx
5∆x

sin π(t−(q−5)∆t)
∆t

π(t−(q−5)∆t)
∆t

for q = 6, 7, 8, 9

Figures 13 and 14 show ϕ1 (z) and ϕ5 (z).Using these functions we have recon-
structed the clip. Figure 15 shows the reconstructed frames corresponding to
the frames in Figure 12. We observe that the reconstructed frames are almost
identical (both spatially and temporally) to the frames from the original clip.
To illustrate that our method offers advantages relative to other strategies,

we also tested uniform spatial decimation achieved by removing, in all frames,
3 out of every 5 columns. This results in a compression ratio of ∼ 0.4

¡
> 9

25

¢
.

While the compression ratio is larger (less compression), the resulting clip is
of significantly poorer quality as can be seen in the frames of Figure 16. We
also applied temporal decimation by removing 3 out every 5 frames resulting
again in a compression ratio of 0.4. Temporal interpolation was then used to
fill up the missing frames. The results are shown in Figure 17. We note that
the reconstructed motion differs from the original one (see 4th and 6th frames
from the left).

5 Conclusions
This paper has addressed the problem of under-utilization of sensor capabilities
in digital camcorders arising from constrained data read-out rate. Accepting the
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Figure 14: ϕ5 (z)

Figure 15: Frames from reconstructed clip.

Figure 16: Frames from the spatially decimated clip.

Figure 17: Frames from the temporaly decimated clip.
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data read out rate as a hard constraint of a camcorder, it has been shown that,
by generating a non-uniformly sampled digital video sequence, it is possible
to generate improved resolution video clips with the same read-out rate. The
approach presented here utilizes prior information regarding the "foot-print"
of typical video clip spectra. Specifically, we have exploited the observation
that high spatial frequencies seldom occur simultaneously with high temporal
frequencies. Reconstruction of an improved resolution (both spatial and tem-
poral) digital video clip from the non-uniform samples has been presented in a
form of a filter bank.
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6 Appendices

A Multi-Dimensional GSE

A.1 General

Consider a bandlimited signal f (z), z ∈ RD and a sampling lattice LAT (T ).
Assume that LAT (T ) is not a Nyquist lattice for f (z), namely, the signal
cannot be reconstructed from its samples on this lattice. Let UC

¡
2πT−T

¢
be a

unit cell for the reciprocal lattice LAT
¡
2πT−T

¢
. Then, there always exists a

set of points {cp}Pp=1 ⊂ LAT
¡
2πT−T

¢
such that

suppport
nbf (ω)o ⊂ P[

p=1

©
UC
¡
2πT−T

¢
+ cp

ª
(13)

Suppose now that the signal is passed through a bank of shift invariant filtersnbhq (ω)oQ
q=1

and the filter outputs fq (z), are then sampled on the given lattice

to generate the data set {fq (Tn)}n∈ZD,q=1,...,Q. We then have the following
result:

Theorem 6 The signal f (z), under assumption (13), can be perfectly recon-
structed from the data set {fq (Tn)}n∈ZD,q=1,...,Q if and only if the matrix

H (ω) =

⎡⎢⎢⎢⎢⎣
bh1 (ω + c1) bh2 (ω + c1) · · · bhQ (ω + c1)bh1 (ω + c2) bh2 (ω + c2) · · · bhQ (ω + c2)

...
...

. . .
...bh1 (ω + cP ) bh2 (ω + cP ) · · · bhQ (ω + cP )

⎤⎥⎥⎥⎥⎦ ∈ CP×Q (14)

has full row rank for all ω ∈UC
¡
2πT−T

¢
. The reconstruction formula is given

by:

f (z) =

QX
q=1

X
n∈ZD

fq (Tn)ϕq (z−Tn) (15)

where

ϕq (z) =
|detT |
(2π)

D

Z
UC(2πT−T )

Φq (ω, z) e
jωT zdω (16)

and where Φq (ω, z) are the solutions of the following set of linear equations

H (ω)

⎡⎢⎢⎢⎣
Φ1 (ω, z)
Φ2 (ω, z)

...
ΦQ (ω, z)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

ejc
T
1 z

ejc
T
2 z

...
ejc

T
P z

⎤⎥⎥⎥⎥⎦ (17)
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A.2 Perfect Reconstruction from Recurrent Sampling.

The above GSE result can be applied to reconstruction from recurrent sampling.
By recurrent sampling we refer to a sampling pattern Ψ given by

Ψ =

Q[
q=1

{LAT (T ) + zq} (18)

where, w.l.o.g. we assume that {zq} ⊂ UC (T ). (Otherwise, one can redefine
them as zq − Tnq ∈ UCT (T ) and Ψ will remain the same.) The data set we
have is {f (ez)}z∈Ψ and our goal is to perfectly reconstruct f (z).
Let us define bhq (ω) = ejω

T zq , then fq (z) = f (z+ zq) and

{fq (Tn)}n∈ZD,q=1,...,Q = {f (ez)}z∈Ψ (19)

Thus, we can apply the GSE reconstruction. In the current case

H (ω) =

⎡⎢⎢⎢⎢⎣
ej(ω+c1)

T z1 ej(ω+c1)
T z2 · · · ej(ω+c1)

T zQ

ej(ω+c2)
T z1 ej(ω+c2)

T z2 · · · ej(ω+c2)
T zQ

...
...

. . .
...

ej(ω+cP )
T z1 ej(ω+cP )

T z2 · · · ej(ω+cP )
T zQ

⎤⎥⎥⎥⎥⎦
= H · diag

n
ejω

T z1 , ..., ejω
T zQ

o
(20)

where

H =

⎡⎢⎢⎢⎢⎣
ejc

T
1 z1 ejc

T
1 z2 · · · ejc

T
1 zQ

ejc
T
2 z1 ejc

T
2 z2 · · · ejc

T
2 zQ

...
...

. . .
...

ejc
T
P z1 ejc

T
P z2 · · · ejc

T
P zQ

⎤⎥⎥⎥⎥⎦ ∈ CP×Q (21)

Note that the matrix diag
n
ejω

T z1 , ..., ejω
T zQ

o
is always nonsingular, hence, by

Theorem 6, perfect reconstruction is possible if and only if H has full row rank.
Clearly, a necessary condition is Q ≥ P . For simplicity, one often uses Q = P .

B Proof of Theorem 1.
The sampling pattern described in (2) is clearly a recurrent sampling pattern.
We can thus apply the result of Theorem 6. As the discussion in Appendix
A.2 concludes, all we need show is that the matrix H in (21) is non-singular.
We note that here we have Q = P = 2 (L+M) + 1. By the definitions of
{zq}2(L+M)+1

q=1 and {cp}2(L+M)+1
p=1 in (2) and (6) respectively we observe that the

resulting matrix H can be written as

H =

"
1 1T2(L+M)

12(L+M)
eH

#
(22)
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where 1P denotes a P dimensional vector of ones and

eH =

∙
A 12L1

T
2M

12M1
T
2L B

¸
(23)

Ap,q =

(
ej

2π
2L+1 qp for p = 1, 2, ..., L

ej
2π

2L+1 q(L−p) for p = L+ 1, 2, ..., 2L
q = 1, 2, ..., 2L (24)

Bp,q =

(
ej

2π
2M+1 qp for p = 1, 2, ...,M

ej
2π

2M+1 q(M−p) for p =M + 1, 2, ..., 2M
q = 1, 2, ..., 2M (25)

From (22) we can readily show that

H−1 =

⎡⎢⎣ 1 + 1T2(L+M)

³ eH − 12(L+M)1
T
2(L+M)

´−1
12(L+M)

−
³ eH − 12(L+M)1

T
2(L+M)

´−1
12(L+M)

−1T2(L+M)

³ eH − 12(L+M)1
T
2(L+M)

´−1³ eH − 12(L+M)1
T
2(L+M)

´−1
⎤⎥⎦ (26)

Hence, H−1 exists if and only if
³ eH − 12(L+M)1

T
2(L+M)

´−1
exists. Using eqn.

(23) we can write (24) and (25) as³ eH − 12(L+M)1
T
2(L+M)

´−1
=

" ¡
A− 12L1T2L

¢−1
0

0
¡
B − 12M1T2M

¢−1
#
(27)

Hence, we need to establish that
¡
A− 12L1T2L

¢−1
and

¡
B − 12M1T2M

¢−1
exist.

Using the definition of A and B in (24) and (25) we can readily show that

AHA = AAH = (2L+ 1) I2L − 12L1T2L
BHB = BBH = (2m+ 1) I2M − 12M1T2 (28)

and

A12L = AH12L = −12L
B12M = BH12M = −12M (29)

where ()H denotes the transpose conjugate of (). Hence,

A−1 =
1

2L+ 1

¡
A− 12L1T2L

¢
B−1 =

1

2M + 1

¡
B − 12M1T2M

¢
(30)

so that ¡
A− 12L1T2L

¢−1
=

1

2L+ 1
AH (31)
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and ¡
B − 12M1T2M

¢−1
=

1

2M + 1
BH (32)

This establishes that these inverses exist. Hence, the inverse of H also exists.
This completes the proof.

C Proof of Theorem 2.
The proof follows from a straightforward application of the GSE results of The-
orem 6 to the case at hand.
We first combine (26), (27), (29), (31) and (32) to obtain

H−1 =

⎡⎣ 1− 2L
2L+! −

2M
2M+1

1
2L+11

T
2L

1
2M+11

T
2M

1
2L+112L

1
2L+1A

H 0
1

2M+112M 0 1
2M+1B

H

⎤⎦ (33)

Denoting

γ1 (z) =

⎡⎢⎢⎢⎢⎣
ejc

T
2 z

ejc
T
3 z

...
ejc

T
2L+1z

⎤⎥⎥⎥⎥⎦

γ2 (z) =

⎡⎢⎢⎢⎢⎣
ejc

T
2(L+1)z

ejc
T
3 z

...

ejc
T
2(L+M)+1z

⎤⎥⎥⎥⎥⎦ (34)

we can use (17) and (20) to obtain⎡⎢⎢⎢⎣
Φ1 (ω, z)
Φ2 (ω, z)

...
Φ2(L+M)+1 (ω, z)

⎤⎥⎥⎥⎦ = diag
n
e−jω

T z1 , ..., e−jω
T z2(L+M)+1

o

·H−1
⎡⎣ 1
γ1 (z)
γ2 (z)

⎤⎦
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so that by (33)⎡⎢⎢⎢⎣
Φ1 (ω, z)
Φ2 (ω, z)

...
Φ2(L+M)+1 (ω, z)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
e−jω

T z1
³
1− 2L

2L+! −
2M
2M+1 +

1
2L+11

T
2Lγ1 (z) +

1
2M+11

T
2Mγ2 (z)

´
diag

n
e−jω

T z2 , ..., e−jω
T z2L+1

o³
1

2L+112L +
1

2L+1A
Hγ1 (z)

´
diag

n
e−jω

T z2(L+1) , ..., e−jω
T z2(L+M)+1

o³
1

2M+112M + 1
2M+1B

Hγ2 (z)
´
⎤⎥⎥⎥⎦(35)

From (6) and (34) we have

1T2Lγ1 (z) =
2L+1X
p=2

ejc
T
p z

=
LX
r=1

³
ej

2πrx
(2L+1)∆x + e−j

2πrx
(2L+1)∆x

´

=
2 sin

³
πLx

(2L+1)∆x

´
cos
³

π(L+1)x
(2L+1)∆x

´
sin
³

πx
(2L+1)∆x

´ (36)

and similarly

1T2Mγ2 (z) =
2 sin

³
πMT

(2M+1)∆t

´
cos
³

π(M+1)t
(2M+1)∆t

´
sin
³

πt
(2M+1)∆t

´ (37)

Also, from (6), (24) and (34) we obtain, after some algebra,

¡
AHγ1 (z)

¢
r
=

LX
s=1

³
e−j

2πrs
2L+1 ej

2πsx
(2L+1)∆x + ej

2πrs
2L+1 e−j

2πsx
(2L+1)∆x

´

=
2 sin

³
πL(x−r∆x)
(2L+1)∆x

´
cos
³
π(L+1)(x−r∆x)

(2L+1)∆x

´
sin
³
π(x−r∆x)
(2L+1)∆x

´ (38)

for r = 1, ..., 2L, and similarly, from (6), (25) and (34)

¡
BHγ2 (z)

¢
r
=
2 sin

³
πM(t−r∆t)
(2M+1)∆t

´
cos
³
π(M+1)(t−r∆t)
(2M+1)∆t

´
sin
³

π(t−r∆t)
(2M+1)∆t

´ (39)

for r = 1, ..., 2M .
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Substituting (36)-(39) into (35) we obtain

Φq (ω, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 2L
2L+! −

2M
2M+1 +

1
2L+1

2 sin( πLx
(2L+1)∆x ) cos(

π(L+1)x
(2L+1)∆x )

sin( πx
(2L+1)∆x)

+ 1
2M+1

2 sin( πMT
(2M+1)∆t ) cos(

π(M+1)t
(2M+1)∆t )

sin( πt
(2M+1)∆t )

for q = 1

1
2L+1e

−j(q−1)∆xωx
µ
1 +

2 sin(πL(x−(q−1)∆x)(2L+1)∆x ) cos(π(L+1)(x−(q−1)∆x)(2L+1)∆x )
sin(π(x−(q−1)∆x)(2L+1)∆x )

¶
for q = 2, ..., 2L+ 1

1
2M+1e

−j(q−2L−1)∆tωt
µ
1 +

2 sin(πM(t−(q−2L−1)∆t)
(2M+1)∆t ) cos(π(M+1)(t−(q−2L−1)∆t)

(2M+1)∆t )
sin(π(t−(q−2L−1)∆t)(2M+1)∆t )

¶
for q = 2 (L+ 1) , ..., 2 (L+M) + 1

(40)
Substituting (1), (4) and (40) into (16) and, after some further algebra, we
obtain (8) and (9). This completes the proof.
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