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Adaptive Control of Single-Input, 
Single-Output Linear  Systems 

Absrruc-A procedure is presented for designing parameter-adaptive 
control for a  single-input,  single-output process admitting an essentiauy 
unknown but fiied linear model, so ttmt the resulting closed-loop syshn is 
globally stable with zero steady-state tracking error b e e n  the output of 
the process and the output of a prespecified hear reference model. The 
adaptive controller is a differentiator-free dynamical system forced only by 
the process input and output, as well as by a reference input. 

INTRODKCTIOW 

HERE  ARE many examples of physical  processes 
Twhich require feedback control syestems capable of 
functioning at a number of different process operating 
points. In some instances, the parameters of the linearized 
process model upon which  closed-loop control is based 
assume such a wide range of values during process opera- 
tion that a single, fixed-parameter control system proves 
inadequate to regulate the process. In such cases paramet- 
ric changes are often dealt with  by using several  fixed- 
parameter controls and  an  appropriate switching logic; 
alternatively, in some  cases  model parameter values are 
precomputed and stored as  functions of operating point, 
and a single control system  with gains functionally depen- 
dent on stored model parameters is used. If the number of 
process model parameters is  large, if the parameters 
cannot be computed with sufficient accuracy or if “tight” 
control is required to meet  rigid specifications, neither 
type of control system  may  be capable of providing ade- 
quate regulation. 

A promising alternative, potentially applicable in situa- 
tions such as these,  is a parameter-adaptive control sys- 
tem. Roughly speaking, a parameter-adaptive system is an 
adaptive control system  with the capability of adjusting its 
own parameters to compensate for the slow but significant 
changes in process characteristics resulting from process 
transfer from one operating point to another. The idea of 
a parameter-adaptive system  is, of course, not new [ 11-[3]. 
Nevertheless, it  is fair  to say that  the basic principles 
governing the design and operation of such systems are 
only now just beginning to be understood. 
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Fig. 1. Parameter-adaptive  sytstem. 

In this paper we consider the problem of designing a 
parameter-adaptive control system for a single-input, sin- 
gle-output process admitting an essentially unknown but 
fixed linear model, so that  for  any reference input r(t) ,  the 
tracking error e ( t )  between the  output y ( t )  of the resulting 
controlled system (Fig. 1) and the output y,(t) of a pre- 
specified linear reference model is regulated to zero 
asymptotically. We assume that only the process input 
u(t )  and  output y ( t )  can be measured (but not the process 
model state) and we require the controller to be a dif- 
ferentiator-free dynamical system realizable with conven- 
tional analog components. 

Although a great many parameter-adaptive controllers 
have been proposed in the literature, only under very 
restrictive assumptions have any actually been shown to 
result in stable closed-loop systems. For example, in [3] 
Parks puts forth the idea of Lyapunov redesign to achieve 
stable adaptive operation, but the stability analysis given 
there is incomplete and the overall approach is limited to 
process transfer functions of relative degree one. In [4], 
Astrom and Wittenmark propose a parameter-adaptive 
system consisting of an on-line recursive parameter 
identifier and a minimum-variance control law generator; 
the asymptotic properties of such “self-tuning regulators” 
have recently been examined in [5], [6] ,  but global stability 
of these  systems has  not yet been established. In [7], 
Monopoli suggests an alternative configuration (a simpli- 
fication of which  is  used in this paper) based on the 
important observation that under certain conditions it is 
not necessary to separately identify process model param- 
eters and control feedback gains; but the arguments in [7] 
concerning stability contain errors and  do not justify the 
paper’s main claims [8]. In addition  to these references 
there are numerous others dealing with parameter-adap- 
tive control, but for one reason or another none apparen- 
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tly  give an adequate answer to the following fundamental I. SYSTEM  STRUCTURE 
question: Do parameter-adaptive controllers which  yield 
globally stable closed-loop  systems actually exist for sin- 
gle-input, single-output linear processes? 

The  purpose of this paper is to provide an affirmative 
answer to this question by presenting what we believe is 
the first parameter-adaptive control configuration, appli- 
cable to a reasonably large class of linear process  models, 
which is known to result in a globally stable closed-loop 
system  in  which all signals and gains are guaranteed  to 
remain  bounded.  The  proposed controller requires no 
differentiators and  can  be realized  with integrators, 
summers,  gains, and multipliers. The only assumptions 
made  about the process are  that it admits a transfer 
function model  with  left-half plane zeros, and  that: 1) an . 
upper bound for the transfer function’s  “dimension,” 2) 
the “relative  degree” of the transfer function, and 3) the 
sign of the transfer function’s  “gain” are known. 

In Section I the general structure of the controller is 
discussed as are the crucial process  model assumptions 
upon which it is based; an interpretation of this structure 
in state-space terms reveals that the function of the con- 
troller  is, in essence, to adaptively shift one subset of 
process  model  poles to prescribed locations, while adap- 
tively cancelling process transfer function zeros  with the 
others. Detailed descriptions of the control parameter 
adjustment law and the auxiliary control signal  needed to 
guarantee system stability are given  in  Section 11. Finally 
in Section I11 it is  shown that application of the controller 
to any process satisfying the assumptions of Section I 
results  in a globally stable closed-loop system  which 
follows a prespecified linear reference  model  with zero 
steady-state output tracking error. 

Notation 

It is perhaps most natural to think of a  parameter-adap- 
tive controller as a system  consisting of two distinct sub- 
systems-one  which dynamically generates asymptotic 
estimates act) and 2 ( t )  of process  model parameters p and 
state x ( t )  respectively, the other which generates an esti- 
mate A t )  of desired feedback gains f as a function of 
estimated model parameters d(t) .  However, in spite of its 
intuitive appeal, this particular configuration is dfficult  to 
analyze and  at present is not well understood. There  are 
at least three reasons for this. 

1) Known results [9]-[ll] characterizing the behavior 
of dynamic identifiers (e.g., adaptive observers) are not 
directly applicable, since  such  results  usually require all 
identifier inputs to be  bounded; in the present situation, 
neither the process input u nor output y can  be assumed 
bounded a priori, since  the identifier is in feedback  with 
the process. 

2) The relationship between  process  model parameters 
p and desired feedback gains f is typically a complicated 
nonlinear functionf(p). Roughly  speaking, this is because 
the type of parameterized model  which  is amenable to 
on-line identification and  state estimation is a linear sys- 
tem  which  is  observable for all  values of its free parame- 
ters,  whereas the type of parameterized model  which 
might conceivably yield a linear relationship between its 
parameters and desired  feedback gains is one which must 
remain controllable for all  values of its free parameters. 

3) f(p) is  usually not well-defined at those points in 
parameter space at which the parameterized model  used 
for identification is not controllable; thus, if the control 
generator shown  in  Fig. 2 is a memoryless  realization of 
this function, then the possibility of an unbounded gain 
vectorjcannot be ruled out [lo]. 

By adopting a somewhat different concept of a parame- 

are two x matrices of time functions, we write M =  ble to avoid the preceding  problems. The key idea is to 
(E) if each element of the matrix M -  is a linear combi- generate a feedback control without utilizing distinct 
nation of decaying exponentials. If a(s) is a po lyno~al ,  estimates of desired feedback gains f and process  model 

function a ( s ) / p ( s ) ,  written ( a ( s ) / P ( s ) ) O ,  is the  integer adaptive system be described- 

ear system  with inputf(t)  and transfer function a(s) /p(s )  the process input and Output y can be by a 
is sometimes written as (a/Plf(t). A dynamical system of canonical (i.e., controllable and observable) linear system 
the form f = g(x, r )  with  piecewise-continuous input r(t)  is 
smooth if g( .) is a  continuous function of its arguments; 
such a system is global& stuble if for each  initial  time A t > =  c,x,(t> 

In the sequel, prime denotes transpose. If M ( t )  and N ( t )  ter-adaptive system  than that in Fig. 2, it is POssi- 

(a(s))O denotes its &gee.  The relative degree of a rational state x(t)* In the the general structure Of such an 

( p ( s ) ) o  - (a (s) )o .  m e  zero-state output response of a fin- Our basic assumption is that the relationship between 

ip ( t )=ApXp( t )+   b ,u( t )  

to> 0 and  state x,,, the state response x(x,, t , t)  exists for 
t > t o  and the Euclidean  norm IIx(xo, to, tll is bounded  by  a with strictly proper transfer function 

finite constant not depending  on to. In the  special  case of 
a linear system, stable means asymptotically stable (i.e., all T , ( s ) = g , p P o  
system  eigenvalues are in the open left-half  plane.) Simi- 
larly, a  polynomial transfer matrix or square matrix is  where gp is a constant gain and $(s) and p,(s) are 
stable if its zeros,  poles, or eigenvalues,  respectively,  lie in coprime  monic polynomials. For reasons to be  made clear 
the open left-half plane. in the sequel, we make the following 

4 (s) 
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I proper transfer functions, respectively. To understand  the 

I I role of this representation, which has its origin in [7], first 

e ( t )  = y ( t )  -Y,(f) ( 5 )  

GEXETUTCI + CONTROLLER observe that (4) implies that the output tracking error 

Fig. 2. A parameter-adaptive system  with separate identification and 
control. can be written as 

Process Model Assumptions 

1) o$(s) is a stable polynomial. 
2) The following data  are known: 

a)  The sign of g,; 
b) An integer n > (P,(s))O; 
c) The relative degree n*=(o$(s)/pp(s))O. 

The principal function of the adaptive controller shown 
in Fig. 1 is to force the process output y to approach and 
track the output y, of a prespecified linear reference 
model. The reference model  is a stable, canonical linear 
system 

with strictly proper transfer function T,(s) and bounded, 
piecewise-continuous, reference input r( t). To determine 
what  else is required of Z, for zero tracking error to be 
possible,  let us note  that if the adaptive controller shown 
in Fig. 1 were replaced by any linear dynamical (i.e., 
differentiator-free) compensator Z with reference input r, 
measured input y and  output u, and if Tz were the 
resulting closed-loop transfer function from r to y ,  then 
the relative degree of T2 would not be less than n*. 
Indeed, this fundamental constraint on Tz can be relaxed 
only by incorporating differentiators in 2. Clearly, any 
reference model not respecting this constraint must in- 
volve  some form of differentiation. Since  we have stipu- 
lated that our adaptive controller be differentiator-free, 
we must require that (T,(s))O >n*. 

The process model assumptions imply that the process 
can be represented in an especially  useful  way. To de- 
scribe this representation, let a(s), b ( ~ )  and y(s) be any 
three polynomials which have been  selected  with  knowl- 
edge of n and n* so that 

a) a(s ) ,p (s )  and  y(s) are monic and stable. 
b) a ( s )  and p(s) are coprime and ( a ( s ) / / ? ( ~ ) ) ~  = n*. 
c) a ( s )  divides y(s) and (y(s))" > n  - 1. i 

(3) 

where T(s)r (b(s)/a(s))T,(s); the assumptions on T,(s) 
(i.e., stability and (T,(s))O >n*), together with the con- 
straints on a(s) and p(s)  dictated by (3a) and (3b) 
guarantee that T(s) is a stable, proper transfer function. 

Next, observe that since  S,(s)/y(s) and G,(s)/y(s) are 
strictly proper and proper transfer functions, respectively, 
it is possible to write 

and 

where  the ki are  constants, ny = (~(s) ) " ,  and 
{y,(s);  ,y,(s)}  is any preselected basis for the vector 
space of polynomials of degree less than nr (e.g., yi(s)= 
si-').' The implication of these  expressions  is that it is 
now  possible to rewrite (6) as 

where k [ k,, k,, . - - , k,,, + ,, 1 /g,]' is a vector of unknown 
constants; t9(t)r[Ol(t),02(t),. . ,02%+,(t)]' is a vector of 
known sensitivity functions obtained by passing u, y ,  and 
r through the stable, canonical, linear system 

x,: { } (8) 
~ e ( t ) = A B x e ( t ) + b , u ( t ) + b , y ( t ) + b , r ( t )  

B ( t )  = Cexe ( t )  + dYy( t )  + drr(t) 

with transfer matrix To=block diag { T,,T,,,T}, where 

The expression for e( t )  in (7) shows that If k  were 
known, then zero-output tracking error could be achieved 

Tu=[Yl/Y,- - .  ,Y,/Yl' and Ty =[YI/Y,'. - ,Y,,/YI 1Y. 

It be shown in the that if p('> and Y(') IIf (?(s))">n- 1, hen Gy(s ) /y (s )  turns out to be strictly proper [cf. 
are SO defined, then there must exist polynomials 6Js)  and Proposition 11; thus, in this  case k%+, =o. 
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(asymptotically) by setting u(t )  = O'(t)k. Since k is not to select polynomials a, P, and y for which (4) is guaran- 
known, what we shall do instead is to set teed  to hold, it  is not only sufficient to know n* and n ,  but 

necessary as well. Thus, even though process model 
u ( t ) = B ' ( t ) L ( t ) + a ( t )  (9) assumptions 2b) and 2c)  may appear somewhat severe, 

where i ( t )  is a suitable defined estimate of k and g( t )  is they are unavoidable consequences of  any approach 
an auxiliary whose  sole function is to guarantee based on system representation (4). Whether or  not  one 
system stability. In Section 11 we explain how to select can design an adaptive system under weaker hWotheses 
i ( t )  and a( 5 )  SO that for any reference input r(t) ,  all (e*& bY only assuming bounds for n* are known, rather 
system  signals are  bounded  and e(t)+O as t - w .  than n* itself)  is  very  much an open matter. 

The structure of the control law (9) is motivated prim- Remark 1: It is of Some interest to know whether Or 
k l y  by the expression for e in (7) which, in turn, is a not a particular selection of a, P ,  and Y proides a 
consequence of  (4). T~ establish the validity of (4), first ''minimal parameterization," i.e., a parameterization in 
note that since y(s) is a stable polynomial, y( t )  and u(t)  which ap and consequently k are uniquely determined 
will  satisfy  (4) just in case y ( t )  is a solution to  the by g p .  $9 and P p .  It  can be shown that if & and Y are 
differential equation chosen to satisfy  (14),  (15), and the hypotheses of Proposi- 

tion  1, then for any pair of coprime, monic polynomials o$ 
f i ( s ) y ( s ) ~ ( t ) = g p a ( s ) ( ( y ( s ) - G U ( s ) ) u ( t ) - 8 , ( s ) y ( t ) )  (E). and Pp satisfying (12) there exist unique polynomials 6, 

and 4 satisfying (13) provided: 1) a and 5 are coprime, 
(lo) and 2) either y"=(P,)"- 1 or yo =(/?')" and (13b)  is 

Since process model assumption 1) asserts that %(s) is required to hold with inequality. While coprimeness of a 
stable, (1)  will  imply  (10) if and only if and L$ can be guaranteed by simply choosing a = 1, it is 

clearly not possible to choose y to satisfy 2) above, unless, 
-- 4 s )  4S)(Y(S) - aU(s))  (11) of course, if (j3')" is known exactly. 
PPW - Y(S)P(S)+8p(s)ay(s) . 

Justification of (4) thus amounts to showing that if a(s), 
P(s) and y(s) are polynomials satisfying (3), then there Before concluding this section we briefly outline an 
must  exist polynomials 8Js) and 6Js) such that (1  1) holds alternative approach leading to (9), based on state-space 
where du(s)/y(s) and G,(s)/y(s) are strictly proper and considerations. This approach, which  was what originally 
proper transfer functions respectively. The following pro- led us to (9), provides further insight by characterizing (9) 
position implies this and more. as an estimate of a desired state-feedback control law. For 

simplicity, we outline the approach under the assumption 
that the polynomials a(s), P(s),  and y(s) satisfying (3) 

(y(s))" = n ;  we further assume that T,(s)=g,/P(s),  where 
g, is a constant. 

The approach is based on two  easily proved facts: First, 

acteristic polynomial of A ,  then there exist  n-vectors hp 
and bp such that 

State-Space  Interpretation 

Proposition I :  Let a,& y be fixed monic polynomials 

fixed  positive integers with n > n*. For  each  nonzero  con- 
stant gp and  each pair of  monic  and  coprime polynomials 05 
and Pp satisfving 

with a and P ''Prime and ./P Proper; and let and n* be have been selected so that a(s)= 1, (P(s))O = n* and 

( $ l P p ) "  = n* (12a) if ( c l x n , A n x n )  is any observable pair, with y(s) the char- 
and 

(P,)" Qn (12b) 
o$ (4 

there exist polynomials 8, and 8, satisfving c(s l -A-h,c)- 'b ,= - B p ( 4  * (16) 

(44/Y)O>O (13a) Second, for at least one pair (hp,bp) satisfying (16), there 
@,/Y)" 2 0 (13b) exists a row vector f, such that A + hpc + bpgJp is stable 

and (1 l), i f  and  oniy if a divides y, 
and 

(14) ( a / P ) " = n * ,  c (sI -A-h,c-bpgJp)- 'bp=- .  P(s )  (17) 
1 

and Equation (1 6)  implies that 
(y)" > n -  1 (15) 

i p ( t ) = ( A  +h&,(t)+b,g,u(t) 
If a, f i  and y have the  required properties and if the y ( t )=cxp( t )  

inequality in (15) is  strict, then  there exist 8, and 6, satisfv- 
ing (11) and (13) for which  the inequality in (136) is strict. is a process  model. sine ip cafl also be written as 

A proof of this proposition appears in the Appendix. 
The proposition clearly implies that in order to be able i p  ( t )  = ( A  + hpC+ bpg&)Xp ( t )  bpgp ( u ( t )  - f , X p ( t > )  
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and since A + h,c + bpgJp is stable, we can use  (17) to 
obtain 

By assumption, y,(t) =(g,/P(s))r(t), so the output track- 
ing error can now  be  written as 

e(t> = B P - ( U ( t )  -f,x,(t) - (g,/gp)r(t)) ( 4  (19) 
P(s )  

This suggests that desired  system behavior might be 
achieved  by setting u(t)=f(t)f(t)+g(t)r(t)  wheref(t),I(t) 
and g ( t )  are suitably defined estimates of f,, x,(t) and 
g,/g,, respectively-but as mentioned  at the  beginning of 
this  section,  this approach leads to difficult problems 
which so far have not been  overcome. 

The alternative approach pursued  here is to use an 
estimate of the product f , x , ( t )  rather than the product of 
estimates off, and x,(t), respectively. The structure of the 
proposed estimate is motivated by  the fact that the state 
xp( t )  of system (1 8) can be  written as 

.,(t)= Eu(t)bpgp + Ey(t)h, + eA‘q  (20) 

where E,([)  and E,(t) are any pair of solutions to the 
matrix differential equations 

& ( t ) = A E , ( t ) + l u ( t )  
ky ( t )=AEy( t )+Zy( t )  (21) 

root set of %(s)P(s). The  more general situation, when a, 
/I, y, and T,(s) are not constrained by  these special 
assumptions, admits  a similar state-space interpretation, 
provided  system  (18) is replaced  with a more general 
linear model, representing the process  together  with a 
dynamic  compensator. 

11. CONTROL EQUATIONS 

To complete our description of the proposed adaptive 
system, we first  select a($) and P(s) so that (3) holds, and 
in addition so that P(s)= P*(s)S(s),  where P*(s) is monic 
and a(s)/P*(s) is a strictly proper, strictly positive real 
transfer function. It is  easy to check that these constraints 
imply that S(s) must be  a monic, stable polynomial of 
degree n* - 1. 

It turns out in what follows that nothing essential  is  lost 
if a(s) /P* (s )  is assumed to  be the transfer function of a 
one-dimensional system,  i.e., a ( s ) / P * ( s ) =  l/(s +xo> for 
some b>O. For the sake of simplicity we henceforth 
make  this assumption; the more  general situation in which 
a(s)/P*(s) is the positive real transfer function of a higher 
dimensional system can  be treated along similar lines 
using  the Kalman-Yakubovich lemma. 

These assumptions together  with (5)  and the control law 
defined by  (9)  imply that the output tracking error e(t) 
can be written as 

I is the n X n identity and q is a constant vector depending  where is the parameter error 
on the initial values of x,, E,, and E, [lo]. Since A is a 
stable matrix by hypotheiis, it followifrom (20) that Z ( t ) = J c ( t ) - k .  

f,xp(t)=f,E,(t)b,gp+f,E,(t)h, (€1- (22) We  wish to develop a  parameter  adjustment law for k(t) 
and  an expression for a(t). Since  these equations are 

for the case n* = 1, these  cases  will be treated separately. 
Using just (21),  (22), and the Of A ,  it is not considerably more  compficated for the n* > 1 than 
difficult to verify that f ,x,(t)  can also be written as 

will yield an estimate off,x,(t)+(g,/g,)r(t) provided &(t) 
is an estimate of ki for iE{1,2,...,2n}  and k(2n+I)( t )  is 
an estimate of  l/g,. 

The preceding development shows, at least under the 
special assumptions  on a, P, y,  and T,(s), that the term 
eyt)L(t)  appearing in  (9)  is  really an estimate off,x,(r)+ 
(g,/g,)r(t) where f ,x,(t)  is a state feedback law, whch if 
applied to process  model  (18),  would  have the effect of 
shifting the model’s poles from the root set of P,(s) to the 

Z,-: i ( t )= -(sign(g,))@(t)e(t), (26) 

where Q is any prespecified,  positive definite, constant 
gain  matrix, then for any reference input r(t),  bounded for 
t > 0, and  for any initial time to > 0 and state xz(to), the 
state response xx( t )  = (x,( t) ,  x,( t) ,  xs(t),  k( t ) )  of the result- 
ing  closed-loop adaptive system Z described by (I), (2), 
(5),  (8), (9), and (26)  exists for t >to and is bounded 
uniformly in to. To understand why this is so, first  observe 
that we can now  use  (24)-(26) to write 
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E( t )=  -(sign(gP))Q8(t)e(t) (2%) 

where e ( t )  is a linear combination of strictly decaying 
exponentials. Next observe that since Z is smooth dy- 
namical system, for any initial time to > 0 and any initial 
state x;, there must be a nonempty interval [to, T )  of 
maximal length on which xz( t )  exists. If the derivative of 
the nonnegative time function 

is evaluated on [to, T )  there results from (27) 

(29) 
Since pQ 0 and V > 0, it must  be that 0 Q V(t)  < V(to); this 
and (28) clearly show that e( t )  and E(?) are bounded on 
[to, T )  by a constant not depending on to or T. Bounded- 
ness of E(t) and (25)  imply boundedness of &t), whereas 
boundedness of r( t )  for t > 0 and stability of Z, imply 
boundedness of x,(t); the latter together with bounded- 
ness of e( t )  and ( 5 )  imply boundedness of y(t). To prove 
that x,(t) is bounded, it is therefore enough to establish 
boundedness of u(t ) ;  in  view  of (9) and the hypothesis 
E ( t )  = 0, u(t)  will be bounded provided O(t) is.  Since both 
r ( t )  and y ( t )  are bounded and since  (8)  is a stable system, 
it  follows that 8( t )  [and xe(t)] will be bounded provided 
(sZ - A,)-’b,u(t)  is;  but (sZ - A,)-’b,u(t) = ((sZ - 
A,)-’b,(s+ l))(l/(s+ l ) )u ( t )  ( E )  and sl-A,)-’b,(s+ 1) is 
a proper transfer matrix. To establish boundedness of 
(sZ- A,)-’b,u(t) it is therefore enough to show that (l/(s 
+ l ) )u ( t )  is bounded. To do this we make explicit  use of 
process model assumption 1) and the hypothesis n* = 1 to 
conclude that (1 /(s + I))( G(S))-’ is a stable, proper trans- 
fer function. Since (1 /(s + l))u(t) = (1 /(s + I))( T,(s))- 5(t) 
(E), and since y ( t )  is bounded, it  follows that (I/(s + 
I))u(t)  is bounded as  well. 

The preceding argument shows that xz( t )  exists and is 
bounded on [to, T )  by a constant not depending on to or 
T. The  latter property together with the smoothness of Z 
ensure that xz(t) can be extended to [ T,  cc) so that for all 
t E [ to, m), xz( t )  satisfies Z’s state equation and is bounded 
uniformly in t,. 

To show that e(t)+O as t+m we first use (28) and (29) 
to conclude that V(t)  is a monotone nonincreasing func- 
tion of t ;  since, in addition, V(t)  > 0, it  must be that 
V,,=lim,,,V(t) < co. This shows that the integral 
lCV(7)dr converges.  Since, in addition, (29) and (27) 
imply that both v(t) and p(r) are bounded on [to, co), it 
follows that lim,+, f ( t ) = O ,  and hence with  (29) that 
e(t)-+O as t+m. The following theorem summarizes what 
has been established thus far. 

Theorem I :  If n* = 1, if r ( t )  is any reference input, 

bounded and piecewise-continuous on [0, co), and if Z is the 
closed-loop adaptiue system described  by (l), (2), (5), (S), (9), 
(26), and E ( r )  = 0, then for arbitraly initial time to > 0 and 
initial state x; and for all t >to, the state response 
x,(t ,  to,.;) of Z exists and is uniform& bounded in t,. In 
addition, along  any  such state response, the system’s output 
tracking error satisfies 

lim e( t )  = 0. 
r + c o  

General Case n* > 1 

For  the remainder of this paper we focus attention on 
the more general and considerably more difficult case 
when n* > 1. Since 6(s) is  now  necessarily of positive 
degree, implying that  the transfer function 1 /((s + h)6(s))  
in (24)  is no longer positive  real, to proceed it becomes 
necessary to introduce auxiliary filters of much the same 
structure as those first proposed by Monopoli [7]. These 
filters are described by the equations 

E i ( t ) = A H ( t ) +  bO’(t) (304 
+‘( t ) = cH( t ) (30b) 

and 

where (c ,  A ,  b)  is an (n* - 1)-dimensional realization of 
l/S(s), H ( t )  is an (n* - 1) X (2n, + 2) matrix, and x(t)  is an 
(n* - 1)-vector; specific equations for k^(r)  will be given in 
a moment. 

Using (24), (30), (31), and the assumed stability of A ,  it 
is straightforward to verify that 

Thus, if F ( t )  is an auxilialy error defined by  the equations 

2%: [ i o ( t ) =  -X,+o(t)+g(t)cx(t) (324 
a( t )=x , ( t )+e( t )  (32b) 

where g( t )  is a signal intended to estimate g,, then it is 
possible to write 

i ( t ) =  - & ~ ( t ) + g , + ’ ( t ) E ( t ) + c x ( t ) g ( t ) + E ( t )  (33) 

where 

a t )  = 2 (1) - g,. (34) 

and c ( t )  is a linear combination of strictly decaying ex- 
ponential time functions. The significance of (33) is that  it 
has much the same structure as (27a). This suggests that 
system stability might be achieved by setting ir( t )  = 0, 

%: i ( t ) =  -(sign(g,))Q+(t)P(t) (35) 

and 
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where Q is any preselected  positive definite, constant, gain M , = ( C , P - ' C ; ) - '  
matrix, and q is an arbitrary positive constant. Indeed, for 
any choice of ii(t), (35) and (36) imply that 

i -  1 
M ; = ( c j P - ' c ; ) - l  I i x i -  x C i P - q l y E J , ,  

j =  1 

L ( t ) =   - ( s i g n ( g p ) ) Q 9 ( t ) c ( t )  (37) 1 
&t)=  - qcx( t ) e ( t )  (38) 

and thus with (33) that the time derivative of the nonnega- 
tive function 

( e  ( t ) - t l g p l k " ( t ) Q - ' E ( t ) + - g 2 ( l )  
1 

2 4 
V(t )= L -2 

For the same reasons as before, it can  be  concluded  from 
(39) and (40) that F(t), &to, and g( t )  are bounded time 
functions on some interval [ to ,T)  of finite length; how- 
ever,  from  these  two equations and (32) it is not possible to 
conclude that e(t) is bounded  since  there is no guarantee  that 
cx(t) is. Indeed  one  can construct an example with ti(t)= 
0, for which cx( t )  is not bounded assuming x ( t )  is a 
solution to (31) [SI. However,  since  this  example  uses a 
contrived H ( t )  rather than one known to satisfy (30a), the 
example  does not really demonstrate system instability. 
On the other hand, the example does show that  much 
more elaborate arguments involving the equations which 
generate both H(t )  and O(t) are required to prove 
boundedness, at least for the case E(t)=O. Although we 
have recently obtained results  suggesting that the adaptive 
system obtained by setting G(t)=O [with &(t) and g( t )  as 
defined  in (35) and (36)] actually has a bounded  state 
response for any  bounded reference input [ 121, this  issue  is 
not yet settled. 

To achieve a  bounded  state response, we shall continue 
to use the parameter  adjustment laws for &t) and g ( t )  as 
given  by (35) and (36), but we shall no longer take ~ ( t )  to 
be zero. Instead we shall set 

where f ( H )  
elements of 

U = f ( H ) x  (41) 

is a row-vector of polynomial functions of the 
H ;  f(-) and is defined as follows.  With 

#En* - 1 
and Po any preselected A X  ff positive definite matrix, write 
P for the unique positive definite solution to the equation 

i ~ { 2 , - * . , A }  (48) 

- ( C A i - ~ + g ; - , c ; - , ) N , ,  i E { 2 , . .  * ,a} (49) 

where 
I 

N i =   P - '  2 q M .  J w.w!M.'E. J J J J , l  . (50) 
j -  1 

and 

Ri+ 1 = [O"ix i ] ;x( i+  1); (5  1) 

hij is the j th  column of CiH and agi-, /ahi- ,,; is the 
( i  - 1) X j  matrix of partial derivatives of g i -   ' ( C i -   I H )  with 
respect to the elements of hi- ld .  It is important to note 
that these definitions imply that g,, w,, and hence Nj are 
matrices of polynomial functions of the elements of CiH. 

Next observe that  because of the structure of matrices 
Ejj  defined  by (45), the A X  A matrix 

0 
g,J%n 

g2E2, iz G= I +  

- gii- 1%- 1,n 

PA + A'P= - Po. is lower triangular, with ones on its diagonal. From this 
(42) and the aforementioned function dependence of gi on 

For k {  1,. , E } ,  let Mi denote  the i x  i matrix CiH, it follows that G - ' exists and  that the elements of 
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both G and G are polynomial functions of the elements 
of H .  Hence, iff is  now  defined as 

then f is a row-vector of polynomials in the elements of 
H.2 Our specific reason for defining f in this way will 
become apparent in  the  next section. 

To summarize, the proposed adaptive controller for the 
case n* > 1 consists of the reference  system Z, defined  by 
(2), the output tracking error (5),  the  sensitivity function 
system Z, defined by (8), the control law (9), the filtered 
sensitivity function system E,, defined by  (30), the aux- 
iliary error system Zx0 defined  by (32), the parameter 
adjustment laws  (35) and (36), and the  system 

Z , : i = ( A  -b f (H) )x -HQH'c 'F(s ign(g , ) )  (54) 

which  results  when the expressions for i, 9, and ii given 
by  (35),  (30b), and (41) respectively, are substituted into 
(31). Careful examination of the equations involved  re- 
veals that the resulting adaptive control system  consisting 
of Zr, Zp, Z,, Z,, Z,,  Z,, EL, and Z, is a well-posed 
dynamical system  in that within  each feedback loop, there 
is a strictly proper transfer function. 

111. SYSTEM STABILITY 

Our main  result is as follows. 

Theorem 2: If n* > 1, i f  r( t )  is any  reference input, 
bounded, and piecewise continuous on [0, X I ) ,  and if Z is the 
closed-loop adaptive  system described by (I), (2), (51, (8), (9), 
(30/, (32), (35), (36), and (54), then for arbitrary initial time 
to > 0 and initial state x: and for all t > to, the state response 
xz(t,  to,xg) of Z exists and is bounded  uniform& in t,. In 
addition, along  any  such state response, 

lim e(t)+O 

lim x(t)+O 

I - t o C  

r-tm 

lim xo( t)+O. 
I+W 

The adaptive system Z can  be viewed as a dynamical 
system of the form 2z=p(xz , r ) ,  where x x  is a composite 
state vector  consisting of subvectors k, e, xp, x,, X,,  H ,  x ,  
and xo, and p is a continuous function of xz and r .  
Theorem 2 clearly  implies  for any fixed, bounded r(t) ,  
that the zero solution to the differential equation $= 
p(i?,r(t))-  p(Xo(t),r(t)) is globally,  uniformly stable, jSo(t) 
being  the (bounded)  state response of Z to r ( t )  assuming a 
zero initial state  at time to = 0. It is in this sense that Z can 
be characterized as a Lyapunov stable adaptive system. 

In view  of the preceding theorem and the structure of R 
as defined by (41), it is clear that is(t)+O as t+co. On the 
other hand, it cannot  be  concluded  from  Theorem 2 (or 
Theorem 1) that the parameter errors F(t) and g(t)  tend  to 

'Note that C; is nonsingular because (c,A) is observable. 

zero as t+m.  In fact, these errors can  be  expected to go 
to zero only if the process  model on which controller 
design is based  is  minimally parameterized (see Remark 
1). If this is the case and if r ( t )  is in some sense "per- 
sistently  exciting," then it is at least plausible that  both 
&t)  and g( t )  will asymptotically approach zero. It appears 
likely that this can  be shown to  be so without too much 
difficulty  using (for example)  the  results of [ 1 1 1 .  

The proof of Theorem 2 depends  on six lemmas. The 
first describes certain algebraic relationships which  exist 
between a positive-definite  matrix P and matrices Mi 
defined  by  (43). 

Lemma 1: 

R 

P =  2 c,IMjcj 
J= 1 

(55) 

and 

Prooj The definition of Mi in (43) implies that 

If both sides of this equation are postmultiplied by Ci and 
if C, is then substituted for Ek,;Ci, there results 

Equation (55)  is obtained by premultiplying each side of 
(57), at i = R ,  by P(CB)-' .  

To establish  (56), replace i with j in (57) so that 

If,  for j > i ,  both sides of this equation are premultiplied 
by Eij and if Ci is then substituted for E&, there results 

Subtraction from (57) thus yields 

from which  (56)  follows. 0 
The next lemma is a simple consequence of (30) and of 

the definition of (c ,A,b) .  

Lemma 2: 

+'= C , H  (584 

CiH=Rj+ lCj+ lH i E { 1 , 2 , . . - , ~ - 1 }  (58b) 
c ~ f i - l H = c ~ f i ~ + ~ '  (584 

Pro08 Equation (58a) is a direct consequence of 



(30b) and (44). Since (c ,A,b)  canonically realizes 1/6(s), of '2:i. Thus CA'-'Sw equals g;-1'Vi-1 PIUS the ith row of 
it must be true that CA A- lb = 1 and  that c~ i-1b =o, i E wj .  From this and the definition of w, in (48) it  follows that 
{ 1;  . . ,A- I > .  The former and (30a) imply  (58c),  whereas (69)  is true for this  value  of i. 
the latter clearly show that C;.b=O, i E { l , - . * , E - l } .  The preceding argument proves that (69) holds for 
Hence  using (30~1, c,a = CJH, i E { 1,. . . , E -  1 ) ; from i E { 1, . . , A } .  Since ( c , A )  is an observable pair, we have 
these  expressions and the identity R,+ , Cj+ , = C,A, it h w n  that (64)  is true. 
follows that (58b)  is true. 0 Next consider the expression 

The following lemma describes the key algebraic rela- I 

tionships upon which our stability proof is based. N , c ; = P - I  x qMjc,wiv'c,",'c,, iE{1,2;-,E} 
;= 1 

Lemma 3: I f  S E (CJ- 'GC, and 

z = s - ' x  

then 

which  is  what results if both sides of (50) are postmulti- 
plied by Cj and if cj and CJw are then substituted for 

(59) E,.,C,, and y, respectively.  In view  of (56) and the defini- 
tion of X in  (66), it follows that 

...=(C,)-'\l?,-. (62) To develop similar expressions for cA 'S, i >  1, we first 

Proof: In view  of (54) it is enough to show that 
use the identity [ g , _ , , l ] C j = c A ' - ' + g , _ , C i - , ,  i E { 2 ; . * ,  
E}, together with  (68) and (70) to obtain 

cs= c 

Sw = - HQH'c'(sign (g , ) )  (64) 
(63) ( c A ' - ' + g , _ , ~ , - , ) ~ 7 ~ ~ , = c ~ i - ~ ~ ~ ,  i E { 2 ; * - , A ) .  

(72) 
and Next we exploit the fact  that for i E ( 2 , -  . . ,E>, g,- , de- 

S + S ( A - X ) = ( A - b f ) S  (65) pends only on Cj -,  H .  This enables us to write 

where 

x= P - I  x c;M~c,ww'C,";c~. (66) 
i =  I where hi- ,., is the j th column of C , - , H .  Using (58b) 

which impkes that h ' i - l , j =  RjhjJ,  i E ( 2 , .  ,E}, we can 
From (45) and (48), wj = Ej,nwn, i E {I ,  2, * - ,E}; hence write 

by (62), w, = Ej,nCnw. Since (44) and (45) provide the 
identities C;. = Ei,nCA, i E { 1,2,. . . ,E>,  we can write * ( f l y  + 1) 2 h,!,R,'- i E  (2; , E } .  ag; - 1 

w ; = c ; w ,  iE{1,2;-,E}. (67) ;= 1 ah,- ' 

The definition of G in (52) implies that c is the first row 
of GC, and,  for i>  1, that cA'-'+g,E,,,C, is the ith row. 
Since GC,=  CAS, the  ith row of CAS, namely cA'-'S, 
must satisfy (63) for i = 1 and cA '-IS = cA ' - I  + 
gi- lEi- l ,RCn for i >  1; using the identity C j P l  = Ei-l,ACn, 
i E (2,  . ,E>,  the  latter can be written as 

c~i - l s=c~i - l  +g,-,c,-,, i E { 2 , - * * , ~ } .  (68) 

Since c = C,, (63) and (67) imply that cSw=  wI;  from 
this and (46) it follows that the equation 

cA '-'SW = - CA '-'HQH'c'(sign (g , ) )  (69) 

holds for i = 1. Now  fix i E (2 , .  . ,A> and use  (67) and 
(68) to obtain c A ' - ' S ~ = c A ' - ' w + g , ~ ~ w , ~ ~ .  Note  that 
cA '-Iw is the ith row of C,w which  by  (67)  is the ith row 

Since E;- , , /Cj = C,- it  follows that 

If for i E (2; . ,E} the expression defining g, in  (49)  is 
postmultiplied by Cj and if (72) and (73) are then sub- 
stituted into the result, one obtains the expression 

g j C j = g j _ l C j ~ , + g , _ , R , C j - c A ' - l S X ,  i E { 2 ; - . , A ) .  

Addition of CA ' to both sides, followed  by substitutions of 
C j - , A  for R,C,, cA'-'S for cA'- '+g; . - ,C , - , ,  and cA'-'S 
for g, -  ,Cj-  , yields 
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For iE{2,... , R -  l}, (68)  implies that the left side  of 
(74) can  be replaced  by CA 'S. This together  with  (71) 
allows  us to write 

CA'S=CA' - ' (S+S(A-X) ) ,  i € { l ; * - , E - ~ ) .  

As noted in the proof of Lemma 2, CA '- 'b = 0, i E 
{ I ,  - . - , R -  1 } ; thus the preceding expression can be writ- 
ten as 
cA i -  I ( A  - b f ) S = c A ' - ' ( $ + S ( A  -X)), 

i E  { 1;. . ,E- 1). (75) 

The definition off in (53) implies that fS+ CA "+g,C, 
= CA "S. Since CA "b = 1,  we can write CA "- ' (A  - bf)S = 
cA"+ g,C,. From this and (74), it is  now clear that (75) 
also holds for i= E. Since ( c , A )  is observable, it follows 
from (75) that (65) is true. 

Lemma 4: 

C;~=R,+,C;+IZ+W;~-C,N;EI, ;+ lC ;+ l~ ,  
iE{l,..-,A-1}. 

Proof: From (61),  (66), and (70) it follows that 

C,i= C,Az+ C,WE- CiNic . z ,  i E  { 1,- - .  ,R- I}. 

To obtain the desired  result, substitute &.+ Ci+ for C,A, 
Ei , i+lCi+,  for C,, and use  (67) to replace C,w by wi. 

Lemma 5: It is possible to write 

e(')=E4.(P,~g,x,C,H,Ciz,Ei), i € { l ; . - , A >  (76) 

where  e('? is the  ith derivative of e, E, is a linear combination 
of decqving  exponential  time  functions, and p j  is a continu- 
ous function of its arguments. 

Proof: Observe from (32b) that e = P -  x,. If this ex- 
pression  is differentiated, if (32a) and (33) are used to 
eliminate derivatives, and if (34), (58a), and (60) are then 
used to eliminate 2, +, and cx, the resulting expression  is 
~ = p l ( P , ~ , g , ~ o , C I H , C 1 ~ , ~ l )  where p1 is an infinitely dif- 
ferentiable function. If this expression  is, in turn, differen- 
tiated, and if (32)-(34), (37), (38), Lemma 2, and Lemma 
4 are used to express e in terms of E,,,g,x,, C2H, C2z,c2, 
w , ( C , H ) ,  and N , ( C , H ) ,  then  there results e =  
~ ( E , ~ , , g , x , ,  C,H, C2z,e2) where 1fl2 is an infinitely differen- 
tiable function of its arguments. Repeating this process 
and making  use of the fact that wj and Nj depend  only  on 
C,H, one obtains a sequence of infinitely differentiable 
(and  hence continuous) functions for which (76) is  true. 

0 
Lemma 6: There exist  proper,  stable  transfer  matrices 

T(s), T,(s) ,  . * , T,(s) such  that 

cA'H=(T(s)e( ' )+T, (s )r ) '  (E), ~ E { O ; . . , A - I }  

(774 
and 

P=( T(s)e(')+ ~ , ( s ) r )  -CA 'IH (e ) .  (7%) 

Proof: Definitions (8) and (30) of 8 and H ,  respec- 
tively,  imply that 

1 TUU x]  
(78) 

where 1/6, Tu, Ty, and T are stable, proper transfer 
matrices.  Since Tu is actually strictly proper and since 
(l /S)"=(T,)"-I,  it follows that  (l/8)(T,)-'Tu is a 
proper transfer matrix; by process model  assumption l), 
(1 /a)( T,)- 'Tu is also stable. In addition, since y = Tpu we 
can write (l /S)T,u=(l/S)(T,)- 'T~ ( E ) .  Substitution in 
(78) then yields 

where Tr(l/&)[( T,)-lT;, T,',O]' is a stable, proper trans- 
fer  matrix. From (2) and (5), y = e +  T,r; substitution in 
(79) thus provides 

where To TT, + [0, 0, (1 / 6)  TI'. Since,  by assumption, T, 
is a stable transfer matrix satisfying (T,)" 2 (T,)", and 
since A = (T,)" - 1, it follows that To is a matrix of proper, 
stable transfer functions, each of relative  degree no 
smaller than A. Thus if q ( s )  is now defined to  be s'T,(s), 
i E { 1,. - - , iT}, then T, must  be stable and  proper and by 
(80), the ith derivative of cH, written cH", must satisfy 

But Lemma 2 implies that cH(')= cA'H, i E  (0;. ,E- 1 )  
and  that C H ( ~  = 8 ' + CA 'H.  From these relations (80) and 
(81) it now  follows that the lemma is true. 0 

Proof of Theorem 2: Let r(t) ,  to> 0 and x; be fixed. 
The  smoothness of Z implies that for some T >to, the 
state response xz( t )  exists on [to, T).  With E(t) as in (33), 
let V(t )  denote the nonnegative time function 

+ kJffie2(?)d7 + Y z ' P z .  (82) 1 :  
Differentiation of V,  elimination of resulting derivatives 
using (33), (37), (38), (61), completion of the square in e 
and E, and substitution of Po for - (PA + A ' P )  yields 

Using (55) to eliminate P from the preceding expression, 



followed  by completion of squares, provides 

Equations (82) and (83)  clearly  imply that V,  E, E, 8, and z 
are  bounded on [to, T )  by a constant not  depending on to 
or T. It will  now  be shown  in six steps that the eight 
constituents k, $, x,, H, x ,  x,, xp, X, of the state response 
of I: are each  bounded  on [to, T) .  

1) Boundedness of k̂  and 2 are direct consequences of 
(251and (34),  respectively , together  with the boundedness 
of k and g,  respectively. 

2) Boundedness of x,-Boundedness of z and (60) im- 
ply that cx is bounded;  from this  (32a) and the bounded- 
ness of it follows that x, is bounded. 

3) Boundedness of H-Boundedness of .? and x,, 

of F, z, and H clearly  imply the former, it is enough  to 
establish the latter. Differentiation of the expression in 
(83)  shows that is a continuous function of the quanti- 
ties P, E, w, z ,  ;, <, w ,  and i. Boundedness of ; follows 
from (33) together with the boundedness of e, E, x, E, E, 
and +’(= cH). Boundedness of i is obvious,  since E is a 
linear combination of decaying  exponentials.  Recall that 
wE is a polynomial function of the components of H ;  since 
w = C,w,, this and boundedness of H and H (which is a 
consequence of (30a) and boundedness of 6) imply 
boundedness of G. Boundedness of i follows from (61) 
and the boundedness of t, w, and Z. Thus v(t) is bounded 
for I > 1,. 

The preceding argument proves that V(f)+O as t+m. 
Examination of (83) reveals that this can  occur only if 
and z approach zero as t+m. Since from (59) x = Sz and 
since S depends continuously on H ,  it follows that S is 
bounded and thus that x( t)+O as t+m. This together 
with  (32a) and the boundedness of $ imply that x,(t)+O 
as t-00. It now  follows from (32b) that e(t)+O as t+m. 

n 
together  with  (32b)  imply boundedness of e; since r is also 
bounded, it follows from (77a) that cH (i.e., C , H )  is 
bounded. If for fixed i <A, e(’-’) and CiH are bounded, 
then by Lemma 5 e(i) is bounded, and thus by Lemma 6 
CA ‘H and  hence Ci+ ,H are also bounded. By induction, 
C,H and thus H are bounded. 

4) Boundedness of x-By Lemma 3, x=  Sz. Since S 
depends continuously on H and since both H and z are 
bounded, it follows that x is bounded. 

5 )  Boundedness of x, and x,-Boundedness of Y and 
stability of X, clearly  imply boundedness of x,. This 
together  with (5 )  and boundedness of e imply bounded- 
ness of y .  Since X, is a canonical system  with a  bounded 
output, to establish boundedness of  xp it is enough to 
show that u is bounded.  For this,  first  observe that 
boundedness of H together  with Lemma 5 imply 
boundedness of e(@; thus by  (77b), 0 is bounded.  Next 
observe that (9) and (41)  imply that u depends continu- 
ously on k, e , ~ ,  x, and f; since 6, e, and x are  bounded 
and since f depends continuously on H, which  is also 
bounded, it  follows that u and therefore xp are  bounded as 
well. 

6)  Boundedness of is a consequence of the stability of 
Z, and the boundedness of u, y ,  and r.  

The preceding arguments prove that x,(t)  is bounded 
on [to, T )  by a constant not  depending  on to or T. From 
this and the smoothness of 2 it follows that x=([) can  be 
extended to [T,  00) so that for all t > to ,  xz(t) satisfies 1’s  
state equations and is bounded uniformly  in I,. 

To prove  that e, x ,  and x, approach zero as f+m, it 
will  first  be  shown that Fi(t)+O as t+m. For this,  observe 
from (83) that p< 0; thus V(t )  is a monotone nonincreas- 
ing function of t, bounded below  by  zero. This implies 
that l i n~ , -~  v(t)< 00 and thus that the integral Jc p(t)dt 
converges. Therefore v(t) will approach zero provided 
p(t) and v(t) are  both  bounded for t >to; since  (83) 
together  with the continuous  dependence of w on H [i.e., 
w = C,w,(C,H)] and the already established boundedness 

U 

CONCLUDING REMARKS 

In this paper we have outlined a procedure for  design- 
ing a parameter-adaptive controller capable of causing the 
output of a process to approach and track the output of a 
prespecified reference model  with zero steady-state error. 
While the controller is admittedly complex, to  our knowl- 
edge it is the only differentiator-free dynamical adaptive 
controller proposed thus far which, without making  un- 
necessarily restrictive process  model assumptions, has 
been  shown to provide globally stable closed-loop opera- 
tion  when applied to a single-input, single-output linear 
system. Whether or not global stability can also  be 
achieved  with other, possibly  less  complex adaptive con- 
trollers (e.g., the one considered in  this paper with U=O) is 
an interesting question for further study. 

The principal result of this  paper-that it is actually 
possible to adaptively control a linear system  with zero 
steady-state tracking error-is contrary to our earlier ex- 
pectations [lo]. The reservations expressed in [ 101 are 
prompted by the observation that with certain adaptive 
configurations, unbounded controller gains  might  result as 
current estimates of process transfer function coefficients 
approach values  for  which the estimating transfer function 
has a pole and zero in common. What this paper shows is 
that this problem  can  be avoided  by applying to the 
process a control signal  which, in effect, is an estimate of 
the product of desired  feedback gains and process state 
rather than the product of distinct estimates of desired 
feedback gains and process state. At present, the genera- 
tion of such a control signal  seems  possible  only for those 
desired feedback laws  which, if applied to the process, 
would cause all process transfer function zeros to be 
cancelled. For this  reason, it is not clear if the possibility 
of unbounded gains can be  avoided  in those situations 
where “adaptive-zero cancelling” cannot  be employed 
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(i.e.,  when the process transfer function has right-half 
plane zeros.) 

Since Theorems 1 and 2 are true, independent of the 
stability of the open-loop process model, the results pre- 
sented here are potentially applicable to the problem of 
identifying process  models not assumed to be open-loop 
stable. Recent simulation experiments have shown, that 
for such  models, the overall  set of differential equations 
describing the adaptive system can be quite sensitive to 
computer roundoff errors unless the initial parameter 
errors are small. Such problems, which we believe to be 
characteristic of all parameter-adaptive algorithms, can 
apparently be minimized  by appropriately choosing the 
various gains associated with the adaptive algorithm. Sys- 
tematic techniques for selecting these  gains to reduce 
sensitivity or to increase convergence rates are obviously 
needed, but so far have not been developed. 

APPENDIX 

Proof of Proposition 1 

Sufficiency: Suppose that a, p, and y satisfy  (14) and 
(15)  with a dividing y. Write o and p for the unique 
quotient and remainder of by divided by a@,; thus 

PY=aPpo+P (All 

where po <(a&,)". Since  by hypothesis, a divides y, it 
follows from (Al) that a divides p; thus p= ap where 
j j 0  <( p,)". If 8, is  now defined so that 6, = -(l/g,)p, then 

PY = - g,6,. ( a  
and (6,)" < ( p,)". The latter together with  (12b) and (15) 
ensure that 8, satisfies (13b); and if (15) is a strict inequal- 
ity, then so is  (13b). 

Since po <((up,)", (Al) implies (a/?,o)" =(py)"; thus 
(ap,u%)" = (pyq)". In  addition, since (12a) and (14)  im- 
ply (pq)" =(&x)", it follows that (ap,u%)" =(yp,a)"; 
hence, (ug)" = yo. Since (Al) also implies that o is monic 
and thus that ug is monic, if 8, is defined as 

8u=y-acup ( f w  

then (13a) must be true. Elimination of o from (A2) and 
(A3)  now  yields  (1 1)  which is the desired result. 

Necessity: Let 4 and pp be polynomials satisfying the 
proposition's hypotheses with 4 and a coprime and (P,)" 
= n ;  such polynomials clearly  exist. Suppose that 8, and 
8, are polynomials satisfying (1  1) and (13).  Since a and 4 
are coprime, it follows from (1 1) that a divides y p ;  but a 
and p are coprime by hypothesis, so a must divide y as 
the Proposition asserts. 

Since q and aP, are coprime, (1  1)  will hold provided 

up=y-6, 644) 

o.P, = Y P  + g@y (A51 

and 

For some polynomial o. From (A4) and (13a) it follows 
that 

y"=(oq)".  

By hypothesis, both a /P  and 8,/y are  proper; hence 
(UP)" > (UP +gpa8y)o- This and (A51 imply (YP)" > 
(aap,)"; but from the relation (oap,)" =(uap,cup)" - (%)" 
and (A6) there follows (oap,)" > (yap,)" -(%)". Thus 
( yp ) "  > (yap,)" -(g)". This and (12a)  imply that 8" >a" 
+ n * ;  but n* >0, so po>ao.  From this, (M), and (13b), it 
now  follows that 

Substitution of (A6) in (A7) and elimination of common 
factors yields (a@" = (gB)"; from this and (12a), it now 
follows that (14)  is true. 

Since  (15)  must  necessarily hold for n = 1, assume n > 2 
and suppose (15) is false. Then yo < n - 2; since ( p,)" = n, 

(@,)"-y0>2. (A8) 

From(12a)  and (14), / 3 " = ( ~ , ) " + a o - ( ~ ) 0 .  Since (A6) 
implies (4)" < yo, it follows that 

p" > ( p p ) o  +ao -yo* 

Choose p so that 

p o = a o + l  (AW 

and so that p - p  has a root as s = 0. Since  (A8) and (As) 
imply p" >a"+2, it follows from (A10) that p " > p " ;  
hence ( p  - p ) "  = P o .  Therefore, from (A9) ( p  - p ) O  > (P,)" 
+ a" - y o .  Since ( P  - p )  has a real root, it  follows that 
there is a factorization 

p - p = a  (A1 1) 

e o = ( p p ) o + a o - y o .  ( A m  

where 8 is a monic factor satisfying 

From this and (A8), there follows 8" >a" +2. Therefore 
from (A10) 8">p". This and  (All) can be  true only if p is 
the unique remainder of least degree of p divided by 8. 

Since a divides y, there must be a polynomial & such 
that a& = ye. Since  (A12)  implies that (6)" =( p,)" and 
since PP is defined independent of p,, we can assume that 
pp was selected at the outset so that pp =$. Thus (upp= 
y8. Hence from (A5), oy8 = y p  + gPa6,. Thus we may write 

p=eu+c (A131 

where 5 is a polynomial satisfying 

c y  = - gpaGy. 

Since p was shown to be the unique remainder of least 
degree of /3 divided by 8, it follows from (A13) that 
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f i o , j j o .  This and (A14) imply that a”+(S,)” >y”+po. 
Hence from (A10) ao+(S,,)O>yo-!-ao+l; thus (Sy)o>yo 
+ 1 which contradicts (13b). Hence (15) is true. 0 

[41 

[51 

181 

[91 
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