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Blind Image Deconvolution Using Machine
Learning for Three-Dimensional Microscopy

Tal Kenig, Zvi Kam, and Arie Feuer, Fellow, IEEE

Abstract—In this work, we propose a novel method for the regularization of blind deconvolution algorithms. The proposed method
employs example-based machine learning techniques for modeling the space of point spread functions. During an iterative blind
deconvolution process, a prior term attracts the point spread function estimates to the learned point spread function space. We
demonstrate the usage of this regularizer within a Bayesian blind deconvolution framework and also integrate into the latter a method
for noise reduction, thus creating a complete blind deconvolution method. The application of the proposed algorithm is demonstrated
on synthetic and real-world three-dimensional images acquired by a wide-field fluorescence microscope, where the need for blind
deconvolution algorithms is indispensable, yielding excellent results.

Index Terms—BIlind deconvolution, deblurring, machine learning, PCA, kernel PCA, microscopy.

1 INTRODUCTION

N image acquired by an imaging system may be
degraded due to numerous reasons. Two of the most
common reasons for image degradation are blur and
statistical noise. Sometimes the blurring operation can be
assumed to be linear and shift invariant and therefore the
acquired image can be modeled as a convolution of the
imaged object with some convolution kernel representing
the imaging system. This convolution kernel is often
referred to as the point spread function (PSF) of the imaging
system. Neglecting the effect of statistical noise, the blurring
is mathematically modeled as a convolution and therefore
the process of inverting this operation is termed deconvolu-
tion. In addition, there are situations where explicit knowl-
edge of the convolution kernel cannot be assumed.
Therefore, inverting the convolution operation under those
circumstances is termed blind deconvolution (BD).
In general, the assumed image degradation model can be
formulated as

g=n(hxf) (1)

and in the discrete case, we formulate (1) explicitly as:

g(x) =n (Z FR)h(x — k)) ,
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where:

e p is the dimension of the image. In this work, we
refer to p = 3,

o Q C IR’ is the support in the object domain imaged
by the imaging system,

e x¢c(is a p-tuple of discrete spatial coordinates

corresponding to the spatial locations sampled by

the imaging system,

f: @ — IR denotes the imaged object,

h: © — IR denotes the imaging system PSF,

g denotes the acquired image,

n denotes a pixelwise noise function,

e x denotes the p-dimensional convolution operator.
The goal of BD algorithms is to estimate f and h from g and
any additional prior knowledge available.

In what follows, we assume that the dominant source of
statistical noise in the imaging system is photon noise.
Photon noise is common to many imaging systems, as it
originates from the stochastic nature of the photon detection
process at the sensor and is distributed according to Poisson
distribution [5], with its parameter being the noise-free gray
level value at each pixel location. The photon noise can be
characterized as follows:

(f = h) (X)H(X)e—(f*h)(x)
g(x)!

It can be easily observed that this type of noise is highly
correlated with the signal, which makes it much more
difficult to handle than additive noise.

It is not difficult to realize that problem (1) is ill-posed, in
the sense that numerous solutions exist. This can be easily
shown even without examining any specific method for
solution. First, we note that the trivial solution f =g, h =6,
where ¢ denotes the three-dimensional Dirac function,
always exists. Second, if we examine (1), even without noise,
from an information quantity point of view we can see that
we have one image g as input, from which we are required to
estimate both f and h. Hence, the problem at hand is

plg(x)[f,h) = (2)
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underdetermined, i.e., there are more unknowns than inputs.
Due to this ill-posedness, all BD methods use some sort of
regularization. Many algorithms regularize the object of
interest, usually by applying some sort of smoothness
constraint see, e.g., [18], [30], [34], [36]. However, in general,
the object we wish to reconstruct is unknown and regulariz-
ing it may have an adverse effect, especially in cases where it
is known to have high frequency structures.

Contrary to that, the PSF we seek is usually directly
related to the imaging system, thus providing us with some
prior knowledge of its form. We note that in BD problems,
although the PSF is not exactly known, it typically belongs
to some distinct class. Therefore, we wish to integrate into
the BD process as much accurate and specific information
about the PSF as possible. Sometimes this information is
theoretically available, since we know the general form of
the PSF, e.g., in the cases of linear motion blur, atmospheric
turbulence blur, and out-of-focus blur [6]. Even when this is
not the case, there are many situations where the PSF can be
experimentally measured under varying acquisition condi-
tions, thus providing us a sampling of the class of PSFs.

We propose regularizing the PSF by attracting it to a space
of admissible PSFs, denoted as PSF-space, known to represent
the imaging system at hand. This is done by first performing
example-based learning of the PSF-space by using linear
principal component analysis (PCA) [49] or kernel PCA
(KPCA) [57]. We then introduce into the deconvolution
algorithm a term that attracts the PSF toward PSF-space.

This approach has never been proposed in the context of
blind deconvolution, to the best of our knowledge. The
inspiration for the proposed approach stems from the
prolific activity in the field of statistical shape priors for
segmentation using active contours in the past decade [13],
[19], [20], [38], [54], [64].

The algorithm presented in this work has been developed
for the specific application of restoring three-dimensional
(3D) microscopic imagery. However, we present it in a
general enough form to facilitate the application of the
proposed algorithm for other uses of BD, as well.

We now outline the contents of this paper. In Section 2,
we briefly review related work in the field of BD. Section 3
contains the main results of the Bayesian BD formulation
used as a framework for the proposed method. Section 4
contains the main contribution of our work, which is a
novel PSF regularization method, utilizing learning-based
algorithms. Section 5 briefly discusses the convergence of
the proposed algorithm. In Section 6, we provide the
necessary details about wide-field fluorescence microscopic
imaging, which is required for the understanding of the
numerical experiments depicted in Section 7, which are
conducted in order to validate the proposed algorithm.
Finally, we conclude our work and suggest some further
research topics in Section 8.

2 PRevious WORK

In general, BD algorithms can be divided into two
categories: a priori blur identification methods and joint
blur identification and image restoration methods [6]. The
first category consists of algorithms which separate BD into
two stages. The first stage consists of identification of the
PSF. Once the PSF estimate is available, a nonblind
deconvolution is carried out.
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The earliest methods in this field are [7], [61], which
assume that the PSF is of known parametric form and is
completely characterized by its frequency domain zeros,
which is frequently not the case. Another popular BD method
in this field is zero sheet separation [37], in which the PSF is
identified by separating the two-dimensional (2D) Z-trans-
form of the corrupted image into two convolutive factors. In
[56], the authors suggest calculating several restorations of
the acquired images, using different PSFs. Those PSFs are
obtained by acquiring, in advance, small, point-like objects
under different imaging conditions. Then, the best image is
selected either by some numerical measure or by visual
inspection. Two other related methods for blur identification
include generalized cross validation (GCV) [52] and kurtosis
minimization [40]. Both methods assume an underlying
parametric model for the PSF, perform multiple deconvolu-
tions with different PSF parameters, and choose the PSF
which leads to minimization of the GCV prediction error in
[52] or the kurtosis of the restored image in [40]. Due to the
need for performing multiple restorations, the deconvolution
methods reported in [56], [52], and [40] are limited to
computationally inexpensive algorithms. The authors of
[56] use a fast, semi-3D deconvolution algorithm, despite
the fact their problem is fully 3D, and the authors of [52] and
[40] use linear, Wiener-like inverse filters for image restora-
tion. Another recent method in the class of a priori blur
identification methods which has been used in the context of
microscopy relies on the assumption that the imaged object
contains small point-like structures [16]. The latter are
identified, cropped from the acquired image, and serve as a
PSF estimate.

Most recent work in the field of BD is related to the class
of joint image restoration and blur identification methods.
The methods in this class are numerous and diverse, and
we do not intend to cover them all. For a thorough review of
BD methods the reader is referred to [6], [8], [34] and the
references therein. In essence, the methods in this class can
be categorized according to the deconvolution framework
itself and the applied regularization.

One of the most popular BD frameworks is Bayesian BD,
which is also used in our work. In Bayesian framework, the
observed image and sometimes also the object and PSF are
considered to be a single realization of a stochastic process.
Some underlying probability distribution of those stochastic
processes is assumed and a cost functional which aims at
optimizing some statistical quantity is formulated and
optimized. Usually, in creating this cost functional, one of
the versions of the famous Bayes rule is utilized. Especially
popular Bayesian methods are the maximum likelihood and
maximum a posteriori methods, which are discussed in
some detail in Section 3. Examples for the use of such
methods can be found in [18], [22], [29], [30], [33], [65], [68]
to name a few.

Due to the ill-posed nature of the BD problem, essentially
all BD algorithms utilize prior knowledge in the deconvolu-
tion process, which is required in order to reduce the degrees
of freedom of the problem. One class of regularization
methods is the technique of projection onto convex sets
(POCS). In this technique, some knowledge of the object or the
PSF is forced, by projecting the intermediate object and/or
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PSF estimates onto some convex sets. For example, popular
constraints used for POCS regularization are nonnegativity,
spatial, and frequency domain supports, and phase informa-
tion of the object. POCS methods can be used as regularizers
in conjunction with other iterative methods, as in [1], [33],
[34], [65], or as a BD method of itself as reported in [46], [66].

Another form of regularization used in BD is parame-
trization of the PSF. In these methods the PSF is either of
known parametric form, or is assumed to be well
approximated by a simple function dependent on a few
parameters. Then, during the reconstruction process, only
the PSF parameters need to be estimated, thus dramatically
reducing the degrees of freedom in the problem. Examples
for methods that use PSF parametrization are available in
[43], [48].

Some regularization methods used for BD induce
smoothness of the solution. Those methods usually incor-
porate into the BD process a term that attempts to minimize
some differential quantity of the estimated object and/or
PSF, such as the Laplacian, or an anisotropic regularization
term, such as total variation [55]. Examples for this type of
regularization in BD have been previously reported in [30],
[67], and in [18] in the context of nonblind deconvolution.

The adaptive image deconvolution algorithm (AIDA)
[30] contains a PSF regularization term which attracts the
PSF estimate toward a given PSF. This approach can be
viewed as a particular case of the approach we propose,
where the PSF-space is degenerate and “learned” by a
single example. This algorithm has been tested on 2D and
3D data sets, including 3D microscopy imagery, and we use
it for comparison purposes in the sequel.

Another class of methods for regularization of BD
algorithms are learning based algorithms. Not much
research has been conducted in this field, and we note the
recent work in [45], [47], [39]. Similar methods are also used
for example-based super-resolution algorithms [23], [15]. In
those works, the basic idea is that the prior knowledge
required for solving the restoration problem can be learned
from training data, i.e., a set of prototype images represent-
ing the same class of images as the ones processed. The
training images are first corrupted in a similar manner to
the expected degradation, thus creating image pairs. Then,
the training images are cropped into small patches. During
the reconstruction process, the surrounding patch of each
image pixel is extracted, and similar degraded patches are
found within the training data. The high quality patches
paired with the found degraded patches are then used
within the restoration process. While all of those methods
share a similar idea, they differ in the way in which the
training data is preprocessed, organized, and used.

We mention these methods since they are somewhat
related to the method we propose, in the sense that they use
example-based learning. However, we stress that this
approach is fundamentally different from the one we
propose in this paper. First, we do not make any assumption
regarding the class of objects, whereas the above mentioned
methods use very strong assumptions regarding the images
to be processed. Second, we use machine learning methods
in order to learn the parametrization of the PSF-space, and
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the objects which the learning process is employed upon are
whole PSFs, rather than small image patches.

Finally, we note that much attention has been given to
the problem of blind deblurring in the graphics and
computer vision literature in recent years. Most of this
activity focuses on the important problem of removing
motion blur from natural images, see, e.g., [68], [31], [21],
[32], [58], [50], [11]. In this context, we mention that our
proposed method does not pertain to solving the problem
of motion blur. This limitation stems from the learning
methods we employ, which are incapable of capturing the
properties of the motion blur PSF, since it is usually very
diverse and unpredictable. In addition, some of this work
addresses spatially variant blur [50], [11], involves acquisi-
tion of more than one photograph in special settings [68], or
using dedicated acquisition devices [50], all of which are
outside the scope of this work.

3 BD FRAMEWORK

The algorithm we propose in this work is based on the
Maximum Likelihood Expectation Maximization (MLEM)
and maximum a posteriori (MAP) algorithms. The MLEM
algorithm was first introduced in the context of positron
emission tomography reconstruction [59] and is similar to
the Richardson-Lucy (RL) algorithm [41], [53].1

3.1 Maximum a Posteriori

Maximum a posteriori is an algorithm which optimizes the
following cost function:

fih=arg HflahX{p(ﬁ hlg)}-
According to the Bayes rule, p(f,hlg) = W We can
assume with high confidence that f and h are statistically
independent, so we get p(f,hlg) = W The log
likelihood of this expression is

log(p(f, hlg)) = log(p(glf,h))
+ log(p(f)) + log(p(h)) — log(p(g))-

We note that log(p(g)) is not dependent upon f or h. The
term log(p(g|f, h)) is governed by Poisson statistics, accord-
ing to (2). The terms log(p(f)) and log(p(h)) can be
interpreted as prior information regarding the object f
and the PSF h, respectively. At this point, we assume
uniform distributions for f and h, thus dropping the prior
terms, which reduces the algorithm to the MLEM or RL.
However, we will show in Sections 3.2 and 4 how we
regularize the object and PSF estimates, respectively. By
substituting (2) into (3) and differentiating, we arrive at the
following iterative scheme:

A - ﬁk [( ; ) AS:|
hi1 = = — | * |,
TS e i) L\ g &

1. The derivations of MLEM and RL stem from different assumptions,
yet result in the same iterative process. See [8] for further details.

(3)
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where the superscript s denotes symmetrical reflection:
& (x) = &£(—x) and k is the iteration index. Detailed deriva-
tion of the MLEM formulation can be found in [26], [8].

3.2 MLEM with Integrated Denoising

We neither posses any specific knowledge of our object f
nor wish to impose any general prior which assumes
smoothness of any kind, since it may be inadequate for
certain objects. However, it is implied by (3) that some
regularization of the object estimate is required.

In order to overcome the noise, we use a generalization
of a scheme from the field of astronomical imaging, of
incorporating denoising within the MLEM framework [60].
This method is based on the observation that at each MLEM
iteration £, the acquired image can be decomposed into two
components: the estimated image at iteration k£ and a
residual: g = fk  hi, + Ry. It can be noticed that the first
term, fk * l{k, is a smooth term (since ﬁk is a blurring kernel
and as such is low-pass in nature), and therefore, the
residual Rj; must contain the noise. This method suggests
denoising Ry, at each iteration: R = Denoise(Ry,).

The authors of the original work [60] use wavelet-based
denoising for the function Denoise(). However, in general
there is no restriction regarding the denoising function.
Using the aforementioned denoising scheme, the residual—
denoised MLEM (RD-MLEM) iteration becomes:

Ri=g— fiu,
R = Denoise(Ry,),

N - fk * ﬁk + F/, e

= f1. - — | % h]
fk+1 fA |:< fk N hk k
hk+1 = :

] (fk * hi + Rk) . fg] .
> xen fu(%) iy g

In our experiments, the RD-MLEM was implemented using
a 3 x 3 x 3 median filter [28] for the Denoise() function,
yielding satisfactory results.

We would like to briefly discuss our choice of the median
filter. First, we note that the use of a linear filter is not
desirable for this denoising task. If we denote by g =
fk * ﬁk + Ry, the denoised estimate of ¢ at iteration k& and
assume that Denoise() is a linear shift-invariant filter
characterized by the convolution kernel m, we get

: ()

i i

G = fiox b+ mox (g — fiox hie) = (6= m)  (fi = i) +mx g.

Since ﬂ, * ﬁk is a smooth term and 6 —m is a high-pass
filter,> we expect the term (8 —m) * (fj, * h;,) to be negli-
gible. This means that g is essentially a low-pass filtered
version of g. Thus, we further blur the image g, which is in
contrast to the goal of the deconvolution process. Another
important detail is that we denoise g — fk * hy., which ideally
contains only noise, and in practice, we do not expect to be
of any specific structure. Therefore, we refrain from using
complicated denoising methods that assume the presence of
edges or any other kind of structure in the denoised image.
We choose to use the median filter, which is nonlinear,

2. Since m is a low-pass filter.
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efficient, and does not make any assumption regarding the
underlying structure of the denoised image.

Finally, we note that although this scheme for noise
reduction is very simple, in practice we found it to be very
efficient in suppressing noise, without compromising fine
detail in the images. This property of the denoising scheme
stems from the fact it does not impose any constraints
regarding the restored object, but instead, heavily relies on
the convolutive imaging model.

4 PSF REGULARIZATION BY EXAMPLE-BASED
LEARNING

In this section, we introduce the main novelty of this work.
We propose to regularize the PSF by attracting it to a space
of admissible PSFs, denoted as PSF-space. This is done by
first performing example-based learning of the PSF-space
by using linear principal components analysis (PCA) [49] or
kernel PCA (KPCA) [57]. We then introduce into the
deconvolution algorithm a term that attracts the PSF toward
PSFE-space.

4.1 The Inspiration: Segmentation with Shape

Priors

The inspiration for the proposed approach stems from the
prolific activity in the field of statistical shape priors for
segmentation using active contours in the last decade [13],
[14], [19], [20], [38], [54], [64] and, specifically, our work
closely follows the methods presented in [12], [13], [14]. In
those methods of segmentation, a contour is evolved over the
image domain under the influence of an iterative process,
usually aimed to optimize some cost functional. The latter is
designed in such a manner that at convergence, the contour
will delineate an object of interest within the image.

Due to noise, clutter, and occlusions, it is not always
sufficient to use the given imagery data for the contour
evolution. Therefore, a significant amount of research has
been conducted in order to include into the contour
evolution process prior information regarding the shape
of the object of interest.

All of the above referenced methods operate in a similar
outline: First, the space of shapes is learned from a training
set of examples. Then, during the iterative process, a
regularization term which attracts the contour under
evolution toward the previously learned shape-space is
included within the contour evolution process.

We make a direct analogy between those methods and
the BD problem by replacing the shapes of interest in the
active contour framework with the functions which are of
our interest—the PSFs. In the sequel, we will show how we
adapt and apply the methods previously developed for
constructing shape priors for segmentation methods as PSF
priors for BD.

Finally, we would like to note that the BD problem is
inherently free of a problem related to shape priors in the
active contours framework, which is the problem of
geometrical shape alignment and scaling. In the BD
problem, we regularize functions and not shapes. There-
fore, the PSFs are inherently aligned and scaled with respect
to a global set of axes.



KENIG ET AL.: BLIND IMAGE DECONVOLUTION USING MACHINE LEARNING FOR THREE-DIMENSIONAL MICROSCOPY

4.2 Integration as a Prior
As we show later, we use learning methods in order to learn
the PSF-space, prior to the deconvolution process. Then, at
the end of each iteration k, we find the best approximation
of the PSF estimate f;, within PSF-space. This approxima-
tion is denoted as A(hy).

In order to use A(h;) for PSF regularization, we propose
a soft projection stage to be carried after each iteration:

P(h) =nA(h) + (1 =n)h, (6)

where 0 <79 < 1. The soft projection operation can be
regarded as a weighted average of h and .A(h), which
draws h toward its approximation.

The complete iterative scheme we use, including the
integrated denoising stage, is summarized as follows:

Rp=g— fi*hi,

Ry, = Denoise(Ry,),

7 r; fk * ﬁk + Ry g

11 = [ | xh]
Jes1 = fa [( e k
Ctemp Hk’ fk * Hk + Rk 2s
k1 R : T * frls

> xeq fr(%) frxha,

hr = nA(RY) + (L= )BT

)

(7)

4.3 Statistical Learning Methods

In the following section, we review two learning methods
which we use in order to construct the PSF-space and the
PSF approximation A(h). We use PCA [49] and KPCA [57]
in order to learn the PSF-space. We note that PCA can be
considered as a particular case of KPCA. However, for the
sake of clarity, we present those methods separately.

4.3.1 Principal Components Analysis

PCA is a vector space transform which, for a given data set,
finds a transformation of the axes in such a manner that the
greatest variance by any projection of the data comes to lie
on the first axis (called the first principal component), the
second greatest variance on the second axis, and so on.
Once this transform is calculated, the data are represented
by the first [ principal directions, which are assumed to
capture most of the variance in the data. It can be shown
[49] that the principal directions are in fact the eigenvectors
of the data covariance matrix. The number [ of principal
directions to be used is usually determined by inspecting
the eigenspectrum of the covariance matrix.

This approach is especially useful when the data is of
very high dimension, but is known to have only a few
degrees of freedom. This is exactly the case in the problem
we have at hand. Our sampled PSFs have a very large
number of voxels we need to estimate, and we can view
them as very high-dimensional vectors. However, we know
that the PSF has no more than a few degrees of freedom, as
PSFs representing physical imaging systems are usually
determined by a small number of parameters. By using
PCA, we assume that the few degrees of freedom of the
PSFs can be represented by a subspace of this high
dimensional vector space. We note that this assumption is
in general not true, as we cannot assure that an arbitrary

2195

PSF can be represented as a linear combination of other
PSFs. We further discuss this assumption and propose a
method of relaxing it in the sequel.

In what follows, we assume that we have a training set
of N sampled PSFs {hj, hy,...,hy}, each containing
n, voxels. Those training samples are assumed to represent
PSFs of the imaging system used to acquire the images we
wish to restore.

First, the mean PSF  is computed by taking the mean of
the training PSFs h = %Z,Ll hi. Next, we compute the
covariance matrix C as follows: The mean PSF is subtracted
from all training PSFs to create the centered training PSFs
hi = hy, — h, and the latter are lexicographically ordered as
column vectors. Each centered training sample is placed as
the kth column of an n, x N matrix A = [ﬁl, ﬁQ, R HN]. The
n, X n, symmetric covariance matrix is defined as
C =+AA". Then, an eigendecomposition is performed
on C, C = UXUT, where U is a matrix whose columns are
the eigenvectors of C (the principal components) and 3 is a
diagonal matrix with the corresponding eigenvalues of C
on its diagonal, in descending order.

We denote by w; the kth principal component. The
principal components are sampled eigen-PSFs, which can
be used as a basis for representation of other PSFs. We
denote by U; the n, x ! matrix composed of the first
l columns of U. The coordinates of the projection of an
arbitrary test function® h onto the space of PSFs spanned by
the first [ principal components can be computed as

ol =Uf (h—h). (8)

And the projection itself can be calculated as

l
Pl(h) = oju +h, (9)
k=1

where o} is the kth component of the vector o!. It can be
shown [49] that the error of representing any of the training
set examples %y, by their projection P'(h;,) is minimal in the
least square sense.

It is important to point out that, during the derivation of
PCA, it is assumed that any PSF within the data set, and
essentially within the PSF-space, can be represented as a
linear combination of some basis (a vector space assump-
tion). As previously noted, this assumption is in general not
true, as a PSF cannot be represented in general as a linear
combination of the sample PSFs. In spite of this, this
assumption can be made as a rough approximation,
especially when an arbitrary PSF is close to the training
set in the sense of small variations around its mean.

Finally, we take the approximation A(:) in (7) simply to
be the projection P'(-), i.e.,

A(RY) = PR (10)

4.3.2 Kernel PCA

In order to relax the vector space assumption which is made
when using the PCA method, we propose using Kernel

3. Which is assumed to be sampled in the same scheme in which the
training PSFs were sampled.
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PCA. Kernel PCA can be considered as a nonlinear
extension of PCA. KPCA was first introduced in [44], [57],
where it was proven to be a powerful technique for
extracting the nonlinear structure of a data set.

In KPCA, the data is first mapped from the original input
space Z, where it resides, to some feature space I', via a
nonlinear function ¢. Then, linear PCA is employed in
feature space to find the feature space principal components
which correspond to the largest variations of the data set in
feature space. Similarly to the linear PCA case, we use the first
l principal components, which account for the largest
variation possible within the data set using [/ directions.

Due to the nonlinearity of the mapping ¢, this technique
enables us to capture nonlinear variations within the data
set. In essence, it relaxes the assumption that an arbitrary
PSF can be represented as a linear combination of the
training set PSFs. More specifically, by using KPCA, we
assume that the above assumption holds in feature space,
thus allowing the representation of an arbitrary PSF as some
nonlinear function of the training set PSFs.

In general, the feature space can be of very high
dimension [44], and in practice, we do not necessarily know
which transformation ¢ will provide useful results. In order
to overcome those limitations, the mapping ¢ is not carried
out in explicit form. Moreover, ¢ is usually not known and
all calculations are carried out by the use of Mercer kernels.
A Mercer kernel is a function k: 7 x T — IR, which for all
points in the data set k(h;, h;) is positive and symmetric
with respect to its arguments, i.e., k(h;, h;) = k(h;, h;). It has
been shown [4] that applying the kernel in input space is
equivalent to the calculation of an inner product in feature
space:

k(hi, hj) = (p(hi), o (hy))- (11)

Therefore, all calculations that can be formulated in terms of
inner products in feature space, can be carried out in input
space without explicitly using the mapping ¢, and only the
kernel k(-,-) has to be known.

The choice of the kernel can be arbitrary as long as it
satisfies the conditions of symmetry and positivity. One
especially popular choice for a kernel which was also
proven to be useful [44], [13], [14] is the exponential kernel

B = hyll®
202 ’

where o is a parameter of the kernel function. Due to its
successful application for different problems, we choose to
use the exponential kernel in what follows. Intuitively, it
can be understood that this type of kernel provides some
kind of adjacency measure between two PSFs, ie., it
measures the similarity between PSFs. Therefore, it is not
surprising that the analysis of such a kernel over the
training set is capable of capturing information regarding
the relations between the PSFs in the training set. This
property of the kernel function also explains the advantage
of choosing the kernel function over choosing the mapping
©, which is more difficult to obtain intuition about.

In the following, we briefly describe the KPCA method
[35], [44] while closely following the notations in [44]. As in

the linear PCA formulation, we assume having a training

]C(h7, h]) = exp (—
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set of N sampled PSFs {h1, hy, ..., hy}, each one containing
n, voxels. The symmetric positive definite kernel matrix is
defined as K;; = k(h;, h;). We define the mean map of the
training data set in feature space @ = 151 | ¢(h;) and the
centered maps of the data set in feature space as
@(hi) = o(h) — @. Then, the centered kernel function is
defined as k(hi, hj) = (@(h;), #(h;)) and the centered kernel
matrix as K;j = k(hi, h;). Tt can be easily shown that the
matrix K can be centered as follows: K = HKH, where
H = Iy — +1x1{. Iy Denotes the N x N unit matrix and 1y
is an N x 1 column vector of ones.

Eigenvalue decomposition is performed for K: K =
VAVT where V is a matrix whose columns are the
eigenvectors of K (the principal components) and A is a
diagonal matrix with the corresponding eigenvalues of K,
denoted as {1, Ag,...,An} on its diagonal, in descending
order. We denote by v;, the kth principal component of the
kernel matrix.

We note that it follows from (11) that the kernel matrix K
is closely related to the covariance matrix in feature space
and it can be shown [57] that the kth eigenvector of the
feature space covariance matrix can be expressed as:

(12)

1 N ~ 1
\/—A—kZ vkip(hi) = \/—)\—kwTvm
v i=1

where v;; is the ith component of the vector v; and
&= [p(h1), pha), ..., p(hy)]".

The coordinates of the projection of the mapping of an
arbitrary test function ¢(h) onto the space spanned by the
first | principal components can be computed as

kik(h, ;)

Mz

Y = (p(h) (13)

i=1

where k(h, h;) = (¢(h),(h;)) can be calculated as [44]:

Lo

N21 Kiy
k(x, hA)]T. We note that

k:(h,,hN)] is simply the

k(h, hi) = k(h, hi) = 13k, — 13k, + (14)
with k., = [k(z, h1), k(z, ha), .
kn, = [k(hi, h1), k(hi, ha), . .
ith column of K.

Finally, the projection of ¢ (h) onto the subspace of feature

space spanned by the first [ eigenvectors is given by:

!
h)) = Z%wk +¢
k=1

! 15
- i (W@ re

Mkh + o,

where M = Y, %vkv,{.

It is noteworthy that PCA is merely a particular case of
KPCA with k(hi, hj) = (hi,h;). In essence, applying the
nonlinear kernel prior to the extraction of principal
components enables us to capture nonlinear structure of
the training data set and avoids the vector space assump-
tion pointed out earlier.
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4.3.3 The Pre-Image Problem

We note that the expression for the KPCA projection (15) is
given in feature space. Since the formulation in (7) requires
an approximation A(h) which lies in input space, we are
interested in obtaining the pre-image of P'(p(h)), ie., a
function A7 in input space that satisfies

p(h"T) = Pl(p(h)).

In general, the pre-image does not necessarily exist [44],
[51]. However, methods for its estimation have been
previously proposed [44], [51]. We choose to use the
method described in [51] due to its elegance, ease of
computation, and closed form formulation. This formula-
tion, which is given in detail in [51], produces the following
scheme for the calculation of the preimage of P'(p(h)):

(16)

1.

l
Hi = Z’kak,z, )LLL = M ( ZHJ) (17)
k=1

2.
1P (o(R)) — o (hi)|I?
T
= (kh + %KlN - Qkht) HMH (kh - %KlN)
]\172 1K1y + K;; — % 15k,

(18)
3.

hm%ZL y Aihi(1 QIIPl(w(h))—w(hi)HZ)_ (19)

27‘:1 Nz(l_‘HPl( (h)) _‘P(hi)HZ)

We summarize the overall process of obtaining a pre-
image of the feature space projection of an arbitrary input
space test function using the KPCA method for an
exponential kernel:

Learning stage

1. Calculate the kernel matrix Ky = k(hi, hj) =
hi— h/
exp(— I - [ ).
2. Center the kernel matrix K = HKH.

3. Preform eigenvalue decomposition K = VAV™,
Projection pre-image

Calculate the projection coefficients ~; by (13).
Calculate the coefficients p; according to (17).

Calculate ||P'(¢(h)) — (k)| by (18).
Calculate the estimated preimage h"’ by (19).

bl

We take the approximation .A(-) in
pre-image estimate h”, i.e.,

(7) simply to be the

A<hz‘unp) hfil

k1 (20)
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Fig. 1. Convergence of the iterative process. (a) Log-likelihood function.
(b) Relative change of estimates.

Finally, we would like to note that the approximation
A(-) for both the PCA and KPCA methods requires no more
than a few matrix and vector products and thus the
projection stage is very efficient.

5 CONVERGENCE PROPERTIES

It is a well-known result that each step of the alternating
minimization scheme (4) by itself converges to a global
optimum [10]. Therefore, it is guaranteed that this iterative
process yields a sequence of estimates with nondecreasing
log-likelihood. In addition, other researchers provide con-
vergence proofs for specific classes of priors, see, e.g., [17].

However, since we use the formulation in (7) which
includes both the residual denoising step and our prior
term, there is no guarantee that the iterative scheme we
propose brings (3) even to a local optimum.

In practice, we observed that the iterative scheme (7)
produces sequences of estimates with nondecreasing like-
lihood, except for the first few iterations, in some data sets.
Since the calculation of the log-likelihood requires addi-
tional computations at each iteration, we define the relative
change of estimates at iteration k as

1 (lﬁk —hall e fk_1||>
2\ [l =

and stop the iterative scheme when Ej drops below a
predetermined threshold. Typical plots of the log-likelihood
and the relative change of estimates along the iterative
process are displayed in Fig. 1.

6 APPLICATION FOR WIDE-FIELD FLUORESCENCE
MicroscoPY

6.1 Background

Wide-field fluorescence microscopy (WFFM) is a modality
used for imaging 3D biological specimens. The microscope
objective lens is immersed in some oily medium,* denoted
as the immersion medium. A cover slide of the same refractive
index as the immersion medium is mounted below the layer
of oil and covers the imaged specimen. The microscope
optics are focused at a plane of certain depth within the
imaged sample, denoted as the in focus plane, and produce a
2D image, of a section within the sample. By consecutively
focusing the microscope at different depths within the
sample, a collection of 2D sections is formed, overall

4. This layer of oil enhances the optical properties of the microscope.
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creating a 3D image. The horizontal and vertical directions
spanning the 2D in-focus planes are denoted as z and y,
respectively. The coordinate which varies along the optical
axis of the microscope (the depth coordinate) is denoted as
z. This process is named optical sectioning [42]. The detector
array receives a significant amount of radiation originating
from out of focus planes, in addition to the radiation
coming from the in focus plane. The latter phenomenon
results in significant blurring of the acquired images and
thus deteriorates image quality. In addition, WFFM imagery
is usually contaminated by photon noise.

In many imaging systems, the PSF is determined solely
by the properties of the imaging system. Therefore, under
this assumption, knowledge of the imaging system implies
exact knowledge of the PSF or at least a good approxima-
tion of it. In microscopy, however, the imaged sample itself
influences the PSF and therefore exact a priori knowledge of
the PSF is not available, hence the necessity for blind
deconvolution algorithms. Moreover, as we will see next,
the WFFM PSF possesses some properties which make the
restoration process especially difficult.

6.2 PSF Model

Several analytical models for the WFFM PSF have been
proposed and validated [3], [24], [25], [27], [62], [63]. A
comprehensive discussion of the WFFM optics is out of the
scope of this work, and the interested reader is referred to
the above references and the references therein. However, a
PSF model was required for the proposed BD algorithm for
the cause of simulating the training set of PSFs. The PSF
model used for this work follows [62],[2]:

h(r,z) =1 - ‘/_Z /_Zpupil(k,)

—2mi(k,x4kyy) dk dk

~defocus(ky, z)

2
-depth(k,) - e

pupil(k;) = 2D

0, else,
defocus(k,,z) = exp{i- ko - z- cos(6p(ky))},
depth(k,) =

exp{i - ko - d - [n, cos(O,(k;)) EN]}-

Where z,y, z are spatial Cartesian coordinates,

A
= /R +E, =2+ y00(k) = zanrcsin(—0 k:r>,
\ B TR -

27T7L()

Ao
0,(k,) = arcsin (np k > ky = N

— ng cos(fy(

is the wave frequency in the medium, ), is the light
wavelength, NA is the numerical aperture of the micro-
scope, ng is the refractive index of the immersion medium,
ny, is the refractive index of the imaged sample, d is the depth
of the in-focus plane below the cover glass, and I, is a scaling
factor that was chosen so that » will integrate to unity.

One important property of the WFFM PSF is that it is
radially symmetric in the x-y plane:®

5. This is a good assumption since in-plane aberrations are practically
fully corrected for within the field imaged by the microscope in all high
quality objective lenses.
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Fig. 2. Some of the PSFs used in the training set, along with their PSF-
space approximations. x-z sections are displayed in a logarithmic color
map. (a) A few training set PSFs. The value of d is displayed above each
column. (b) Corresponding PCA space approximations. (c) Correspond-
ing KPCA space approximations. The RMSE values (approximation
error) are displayed below each approximation image.

Wz, y, 2) = head (V2 + Y2, 2) = hpaa(r, 2).

The formulation in (21) also reveals the fact that in WFFM,
the degradation model is shift variant, as it is dependent
upon the depth of the in-focus plane within the immersion
medium. However, the convolutive model is a very good
approximation for the degradation induced by the micro-
scope® and is often assumed in literature. By adopting this
assumption, d becomes the average depth of the imaged
sample below the cover slide. Examples for various
simulated PSFs can be observed in Fig. 2.

(22)

6.3 Depth Aberrations

The WFFM PSF is dependent on a few parameters, most of
which relate to the imaging system itself. However, the
differences between the refractive indices of the sample and
the immersion oil affect the PSF as well. This effect
manifests in the form of asymmetry of the PSF along the
z-direction, as can be observed in Fig. 2. We term the
spherical aberration caused by imaging into a specific depth
d below the cover slide for live biological specimens with a
refractive index different than the immersion oil depth
aberration. Since the depth aberrations are governed by
parameters related to the imaged sample itself, they are the
root cause for the inability of obtaining exact a priori
knowledge of the PSF. In practice, all of the PSF parameters,
with the exception of the sample depth d and the refractive
index of the sample n,, are usually known. In the sequel, we
will show how the known parameters can be utilized, and
the unknown depth aberration can be estimated using our
proposed method.

The WFFM PSF does not have a compact spatial domain
support (see Fig. 2), which essentially means that many PSF
voxels are required to be estimated, thus increasing the
number of degrees of freedom within the system. In

6. This is true since the thickness of the imaged sample is negligible in
comparison to the thickness of the immersion medium.
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addition, the optimization over the PSF cannot be easily
carried out in parametric form, due to its complexity.

An approach that has the potential of overcoming those
difficulties is to approximate the PSF with simple functions.
Such an approach is proposed in [48] for blind deconvolu-
tion of confocal fluorescence microscopy images, where the
PSF is approximated by a Gaussian function. However, it
has been previously shown that in 3D WFEFM, the PSF
cannot be well approximated by Gaussians [69], even in the
case of no depth aberrations.

From all of the above we conclude that, first, in WFFM it
is essential to use blind deconvolution methods since the
PSF is affected by the imaged sample itself and, second, that
using example-based learning for studying the class of PSFs
seems to be advantageous in WFFM since the PSF cannot be
easily and accurately parametrized.

7 NUMERICAL EXPERIMENTS

In order to validate the proposed BD scheme, we tested it
on five data sets. The first two data sets were created by
simulating a 128 x 128 x 128 synthetic image depicting
three tori of different sizes and intensities (Fig. 6a). The
synthetic image was blurred by two different PSFs, one free
of depth aberrations and one containing depth aberrations
(d =1 pm). Then, each blurred image was scaled to a
maximum intensity value of 1,000, and corrupted by
Poisson noise.” In addition, three images of biological
specimens were acquired by a WFFM. Two of the acquired
images were known to have depth aberrations and one was
known to be free of depth aberrations or to have very little
depth aberration.®

The original images were of size 1,024 x 1,024 in the
z-y plane and contained 42 to 46 sections in the z-direction.
The pixel size is 0.0663 pm in the z-y plane and 0.2 pm along
the z-axis. In order to facilitate the processing of such large
data sets, a 256 x 256 section was cropped from each image.
The images were not cropped in the z-direction.

Each of the images was processed using three different
methods: BD using (7) with the PCA and KPCA priors,
and the AIDA algorithm depicted in [30]. In addition, the
synthetic images were processed by nonblind deconvolu-
tion using (5), excluding the last step, with the true PSF
kept fixed.

7.1 Implementation Details

In the following experiments, it was assumed that the
microscope parameters are known and the only unknown
parameter is the sample depth d. As previously discussed in
Section 6.3, in practice neither n, nor d are exactly known,
but since they both control the depth aberrations in a
similar manner, for the following experiments it is sufficient
to modify only one of them. This is a practical assumption
and we stress that it does not reduce the generality of the
proposed method.

In general, it is possible to create the training set of PSFs
by imaging small fluorescent beads, see, e.g., [30], [56].

7. The scaling of the blurred image determines the noise magnitude.

8. The degree of depth aberrations was controlled in this experiment by
replacing the objective immersion oil with media of different refractive
indices.
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However, since it is beneficial for our method to use a large
number of PSFs for the training set, and the acquisition of a
large number of samples under varying acquisition condi-
tions is a tedious and cumbersome task, we used simulated
PSFs for our experiments. The training set contained a total
of 201 PSFs which were simulated according to the
formulation (21) with d varying from —4.6 pm to 4.6 pm,
which covers the range of expected depth aberrations. A
sample of the training set PSFs is displayed in Fig. 2, along
with their best approximations by PCA and KPCA. As a
measure of approximation error we calculated the root
mean squared error (RMSE). We define the RMSE as

RMSE(f, f) = <|—§12| > () —c f(x))"’) . (23)

where || is the number of voxels in the image and

— erﬂ Ji‘(x)

ern f(X)

accounts for different scaling between the images.” It can be
observed both visually and by examining the RMSE values,
that the PSF-space approximation error is low for both the
PCA and KPCA methods. It can also be seen in Fig. 2 that
the KPCA method provides smoother approximations than
PCA, with higher RMSE values. This is due to the choice of
the KPCA parameter o, which is set to a value sufficiently
large for providing good approximations for PSFs which do
not belong to the training set. The influence of ¢ is further
discussed in the following.

In addition, since the implementation of the learning
stage depicted in Section 4.3 requires the storage of the
entire training set, in general it requires a very large amount
of memory space. However, in WFFM, we can take
advantage of our prior knowledge of the PSF radial
symmetry, and perform the entire statistical learning stage
on a 2D half section of the r-z plane, thus significantly
reducing memory requirements by an order of magnitude.
Exploiting the PSF radial symmetry also facilitates the
diagonalization of the covariance matrix in the PCA case,
which would be otherwise infeasible.

Another implementation issue is the choice of para-
meters, namely 7 and o. The regularization parameter 7
controls the degree in which the PSF estimates are drawn to
the PSF-space. It can be understood from (6) that n=1
implies a hard constraint, where the PSF is projected onto
PSF-space at the end of each iteration. Since the MLEM
iterative process is very sensitive to local maxima, we found
this approach not to be useful. During our experimentation,
it was empirically found that many PSFs in the training set
correspond to local optima of the iterative process. At the
beginning of the iterative process, the PSF estimates might
be far from the optimal solution. The hard constraint forces
all PSF estimates to reside within the learned PSF-space, and
might cause the iterative process to be attracted to a local
maximum. We demonstrate this property of the deconvolu-
tion process in Fig. 3. Nonblind deconvolution was carried

9. It can be easily shown that this choice of the scaling factor ¢ minimizes
the mean square error.
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Fig. 3. Influence of sample depth on log-likelihood values. The vertical
dashed line marks the true value of d, at 1 pm.

out on the synthetic image shown in Fig. 6g, using
45 different PSFs, with d varying from —4 pm to 4 ym. The
log-likelihood values at convergence were recorded and
displayed against the value of d. It can be observed that
although the global maximum is obtained very close to the
true solution d = 1 pm, a number of other local maxima exist
as well. Setting n < 1 allows the PSF estimates to approach
this global maximum on a different path, which could
potentially avoid the local maxima. On the other hand,
setting 7 to a very small value might lead to insufficient
regularization. We found the adequate values of 7 to reside
between 0.01 and 0.1, and that the results do not vary
significantly when 7 is set to a value within this range.

The KPCA parameter o controls the kernel width and
ultimately determines the degree of mixing allowed
between the training set PSFs when creating the PSF-space
approximation A(h) [13], [14]. As the value of o grows,
more training samples are weighted into the PSF approx-
imation, causing the PSF approximation to become blurry
and less plausible. Contrary to that, setting o to extremely
low values causes the regularization scheme to degenerate
to a nearest-neighbor search within the training set. This is
usually not desirable, as the true PSF is not expected to
reside within the training set. We suggest using the values
of the distances between the training set samples ||h; — h;|
as a guide to the value of o.

All convolution operations were carried out using the
fast Fourier transform (FFT). Running on the 128 x 128 x
128 data set using the KPCA regularization, a single
iteration (requiring three convolution operations) took
approximately 14 s on an Intel Q6600 2.4 GHz processor
(utilizing a single core) and exhibited peak memory usage
of 750 Mb. In our experiments, the algorithm typically
converged in 500-600 iterations, yielding a total processing
time of around 2 h. Out of the total processing time, the PSF
regularization code took about 20 percent. The FFT code
took most of the remaining processing time (~70 percent of
total processing time).

7.2 Results

The images were processed according to (7), with the PSF
regularization implemented according to (6) with n = 0.05,
for both the PCA and KPCA methods. In the KPCA case, o
was set to the 0.2 quantile of the distances ||h; — h;|| within
the training set. The value of I, which is the number of
principal components used, was set to 10 for both the PCA
and the KPCA methods. These values were determined by
observing the eigen-spectrum of the covariance matrix in
the PCA case, and the centered kernel matrix in the KPCA

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

VOL. 32, NO. 12, DECEMBER 2010

Eigen-spectrum of KPCA
centered kernel matrix

Eigen-spectrum of PCA
o covariance matrix

»
x
El

o

3

~

Eigenvalue
Eigenv

o
of
o

10 20 30 20 0 10 20 30 P
Eigenvalue number Eigenvalue number

(a) (b)

Fig. 4. Selection of the number of used eigenvalues for PCA and KPCA
methods. (a) Eigen-spectrum of covariance matrix. (b) Eigen-spectrum
of centered kernel matrix.

case, as can be observed in Fig. 4. The PCA eigenvalues
corresponding to the 10 largest magnitude eigenvalues are
displayed in Fig. 5.

We note that the observed reconstruction results were
found not to be highly dependent on the value of [ and, in
practice, any number between 5 and 30 performed well, for
both methods. The algorithm was initialized with the
acquired image as the object estimate and a symmetrical
PSF support as the PSF estimate (see Figs. 7, 8, 9).

As previously mentioned, the AIDA algorithm, which
we compare our results to, uses a PSF prior given by the
user. In the following experiments, we supplied AIDA with
a symmetrical PSF as the prior.

As a measure of fidelity to the ground truth image, we
calculated the RMSE between the object estimates and the
original image according to (23). We note that the maximal
intensity value in the ground truth image is 1,000. In
addition, the RMSE between the estimated PSFs and the
true PSFs was calculated.

Results for the synthetic object are shown in Fig. 6. For
the nonaberrated PSF (Fig. 6b, 6c, 6d, 6e, 6f), both PCA and
KPCA regularizations achieve results which are very
similar to the nonblind deconvolution results. This can be
observed both visually and by examining the RMSE values
which appear below the images. For the more challenging
case of a depth aberrated PSF (Figs. 6g, 6h, 6i, 6j, 6k), both
regularization methods fall short of the nonblind deconvo-
lution results. It is also noteworthy that KPCA regulariza-
tion performs somewhat better than PCA. AIDA results for
the synthetic image seem very smooth and visually
appealing. This effect stems from the object gradient
minimizing regularization term it uses. However, despite
the fact that the ground truth image complies very well
with the gradient minimization prior, AIDA performs
worse than the proposed method in quantitative terms, as
can be deduced from the RMSE values. In addition,
observing the PSF estimate produced by AIDA for the

Fig. 5. The PCA eigenvectors corresponding to the 10 largest magnitude
eigenvalues. The eigenvectors are displayed in descending order of the
corresponding eigenvalues, from top left to bottom right.
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Fig. 6. Blind deconvolution results for the synthetic image. (a) Original image. (b) Corrupt image without depth aberrations. (c) Results using nonblind
deconvolution. (d) Results using PCA regularization. (e) Results using KPCA regularization. (f) Results using AIDA. (g) Corrupt image with depth
aberrations. (h) Results using nonblind deconvolution. (i) Results using PCA regularization. (j) Results using KPCA regularization. (k) Results using
AIDA. Top row: z-y image section. Second row: z-z image section. Locators indicate the location of displayed sections. Third row: RMSE between
each image and the original image in (a). Fourth row: r-z PSF section, logarithmic scaling. Locators indicate = = 0. PSF initial estimate is displayed in
(b) and (g). Fifth row: RMSE between each PSF and the corresponding true PSF in (c) and (h).

depth aberrated case (Fig. 6k), it clearly fails to detect the
depth aberrations.

Results for the real world depth aberrated images are
shown in Fig. 7 and Fig. 8. Results for the real world
aberration free image are shown in Fig. 9.

It can be seen that the proposed algorithm significantly
enhances image resolution, as many new details can be
resolved in the reconstructed images. In addition, the
reconstructed images seem free of noise. We further observe
that the proposed algorithm succeeds in estimating the depth
aberrations of the PSF, as the PSFs estimated by the algorithm
are indeed asymmetric w.r.t the z-axis in the images acquired

== .
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Fig. 7. Blind deconvolution results for a real depth aberrated image.
(a) Original image. (b) Results using PCA regularization. (c) Results
using KPCA regularization. (d) Results using AIDA. Top row: z-y image
section, second row: z-z image section. PSF initial estimate is displayed
in (a). Locators indicate the location of displayed sections. Third row:
r—z PSF section, linear scaling. Fourth row: r-z PSF section,
logarithmic scaling. Locators indicate z = 0.

in the setting which contained the aberrations (Figs. 7 and 8),
and symmetric for the aberration free setting (Fig. 9). We note
that once again, AIDA fails to detect the depth aberrations.
Finally, we note that the results obtained using the KPCA
regularization method outperform the ones obtained by
PCA, which seems to over estimate the depth aberrations.
The superiority of the KPCA method is expected since it is
able to extract nonlinear structures in the training set of PSFs
and isnotlimited by the vector space assumption discussed in
Section 4.3.1. Another noteworthy detail is the repeatability of
the proposed BD method to yield consistent results. This can
be observed when comparing Fig. 7 and 8, which show that

(a) (b) () (d)

Fig. 8. Blind deconvolution results for a real depth aberrated image.
(a) Original image. (b) Results using PCA regularization. (c) Results
using KPCA regularization. (d) Results using AIDA. Top row: z-y image
section, second row: z-z image section. PSF initial estimate is displayed
in (a). Locators indicate the location of displayed sections. Third row: r-z
PSF section, linear scaling. Fourth row: r-z PSF section, logarithmic
scaling. Locators indicate z = 0.
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Fig. 9. Blind deconvolution results for a real nondepth aberrated image.
(a) Original image. (b) Results using PCA regularization. (c) Results
using KPCA regularization. (d) Results using AIDA. Top row: z-y image
section, second row: x —z image section. PSF initial estimate is
displayed in (a). Locators indicate the location of displayed sections.
Third row: r-z PSF section, linear scaling. Fourth row: -z PSF section,
logarithmic scaling. Locators indicate z = 0.

similar PSF estimates are obtained when processing different
images acquired under similar conditions.

8 CoNcLUSION AND FURTHER RESEARCH

In this work, we presented a new method for blind image
deconvolution. We have shown that this method is capable
of reconstructing synthetic and real-world acquired WFFM
thick specimen images, and producing reconstruction
results of high resolution and low noise levels. In addition,
the proposed BD method is capable of reliably providing
accurate PSF estimates. This property of the algorithm is
demonstrated by overcoming the depth aberration problem
in WFFM.

The proposed method compares favorably to a recent BD
algorithm [30], especially designed for the reconstruction of
3D microscopic imagery.

The proposed algorithm generalizes a scheme for
integrated denoising within the iterative process, which
was originally proposed for nonblind deconvolution. We
show the potency of this method for BD.

Moreover, we propose a novel method for PSF regular-
ization in BD. This regularization scheme uses machine
learning methods which extract the statistical properties of
a family of PSFs by example-based learning. This prior is
integrated into the iterative process using a simple and
efficient formulation and is shown to produce excellent
reconstruction results for real world data.

We propose further research directions in related topics.
One interesting research path would be exploring other
learning methods for the creation of PSF priors. One
example for such recent learning method is diffusion maps
[9], which is a state-of-the-art method for extracting
structures within a given data set. This method has been
successfully employed for introducing shape priors for
segmentation using active contours [19], [20], and is a
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natural extension to the method proposed in this work.
Another research direction is the application of the
proposed algorithm to BD in different fields, other than
microscopy, such as astronomical imaging, medical ima-

ging, optics, and photography applications.
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