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Abstract

In this work we consider the problem of recovering an ensemble of
Diracs on the sphere from its projection onto spaces of spherical har-
monics. We show that under an appropriate separation condition on the
unknown locations of the Diracs, the ensemble can be recovered through
Total Variation norm minimization. The proof of the uniqueness of the
solution uses the method of ‘dual’ interpolating polynomials and is based
on [8], where the theory was developed for trigonometric polynomials. We
also show that in the special case of non-negative ensembles, a sparsity
condition is sufficient for exact recovery.

1 Introduction

In many cases, images and signals are observed on spherical manifolds. Typical
examples are astrophysics (e.g. [13]), topography [4] and gravity fields sensing
[12]. Further example is spherical microphone arrays, used for spatial beam
forming [18] and sound recording [19].

A key tool for the analysis of signals on the sphere is spherical harmonics
analysis, discussed in detail later on. For instance, the spherical microphone
array was analyzed in terms of spherical harmonics in [22]. Additionally, spher-
ical harmonics have been extensively used for various applications in computer
graphics, such as modeling of volumetric scattering effects, bidirectional re-
flectance distribution function, and atmospheric scattering (for more graphical
applications, see [24] and the references therein). Spherical harmonics are also
used in medical imaging [25], optical tomography [3], several applications in
physics such as solving potential problem in electrostatics [15] and the central
potential Schrödinger equation in quantum mechanics [9]. Additional applica-
tions of spherical harmonics are sampling on the sphere [16, 5] and more recently,
compressed sensing [1] and sparse recovery [21, 17]. In some sense, our work
relates to these latter fields.

LetHn(Sd−1) denote the space of homogeneous spherical harmonics of degree
n, which is the restriction to the unit sphere of the homogeneous harmonic
polynomials of degree n in Rd [2]. Each subspace Hn(Sd−1) is of dimension

an,d :=
(2n + d− 2)(n + d− 3)!

n!(d− 2)!
, n ∈ N, d ≥ 2.
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Also, recall that L2(Sd−1) = ⊕∞n=0Hn(Sd−1). Thus, if {Yn,j}, j = 1, ..., an,d,
is an orthonormal basis of Hn(Sd−1), then f ∈ L2(Sd−1) can be presented as
f =

∑∞
n=0 fn, where

fn =
an,d∑
j=1

〈f, Yn,j〉Yn,j .

Using the Addition Formula [2], one can write the kernel of the projection onto
Hn(Sd−1) as

Pn,d(ζ · η) =
an,d∑
j=1

Yn,j(ζ)Yn,j(η) =
an,d

|Sd−1|
Pn,d(ζ · η), ζ, η ∈ Sd−1, (1.1)

where Pn,d is univariate ultraspherical Gegenbauer polynomial of order d and
degree n. Thus, the projection kernel onto the space VN := ⊕N

n=0Hn(Sd−1) is
given by

KN (ζ · η) :=
N∑

n=0

Pn,d(ζ · η). (1.2)

Consider the Dirac ensemble

f =
∑
m

cmδξm , (1.3)

where δx is a Dirac measure, cm ∈ R are real weights, and ξm ∈ Ξ ⊂ Sd−1, are
distinct locations on the sphere. We recall the following definition

Definition 1.1. Let B(A) be the Borel σ-Algebra on a compact space A, and de-
note by M(A) the associated space of real Borel measures. The Total Variation
of a real Borel measure v ∈M(A) over a set B ∈ B(A) is defined by

|v|(B) = sup
∑

k

|v(Bk)|,

where the supremum is taken over all partitions of B into a finite number of
disjoint measurable subsets. The total variation |v| is a non-negative measure
on B(A), and the Total Variation (TV) norm of v is defined as

‖v‖TV = |v|(A).

For a measure of the form of (1.3), it is easy to see that

‖f‖TV =
∑
m

|cm|. (1.4)

In this paper we assume that the only information we have on the signal f is
its ‘orthogonal projection’ onto VN , i.e,

yn,j := 〈f, Yn,j〉 =
∑
m

cmYn,j(ξm), 0 ≤ n ≤ N, 1 ≤ j ≤ an,d. (1.5)

To ensure exact recovery of the Dirac ensemble from its projection onto VN , we
impose a separation condition as in [8] for the case of trigonometric polynomials
and [6] for the case of algebraic polynomials over [−1, 1]. To this end, recall that
the distance on the sphere between any two points ξ1, ξ2 ∈ Sd−1 is given by

d(ξ1, ξ2) = arccos (ξ1 · ξ2) . (1.6)
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Definition 1.2. A set of points Ξ ⊂ Sd−1 is said to satisfy the minimal sepa-
ration condition for (sufficiently large) N if

∆ := min
ξi,ξj∈Ξ,ξi 6=ξj

d (ξi, ξj) ≥
ν

N
, (1.7)

where ν is a fixed constant that does not depend on N .

The main theorem of this paper concerns exact recovery in the case d = 3, i.e.
the sphere S2

Theorem 1.3. Let Ξ = {ξm} be the support of a signed measure of the form
(1.3). Let {Yn,j}N

n=0 be any spherical harmonics basis for VN (S2) and let yn,j =
〈f, Yn,j〉, 0 ≤ n ≤ N , 1 ≤ j ≤ an,3. If Ξ satisfies the separation condition of
Definition 1.2, then f is the unique solution of

min
g∈M(S2)

‖g‖TV subject to 〈g, Yn,j〉 = yn,j ,

n = 0, ..., N, j = 1, ..., an,3,
(1.8)

where M(S2) is the space of signed Borel measures on S2.

Observe that for applications, Theorem 1.3 is stronger than needed. Indeed,
since the form of (the unknown) f is known, one may perform TV minimization
over the smaller subspace of Dirac superpositions over the sphere. Designing
practical numerical algorithms that leverage on this result is a subject of on
going research [7]. Also, we strongly believe that this result holds in higher
dimensions and indeed significant parts of the proof can be easily generalized
to any dimension. However, there are certain technical challenges (see Section
4.2) which we hope to overcome in future work.

The outline of the paper is as follows. In Section 2 we recall the dual problem
of interpolating polynomials. In Section 3 we provide details on the essential
ingredient of the dual polynomial construction, which is a well-localized poly-
nomial kernel. In Section 4 we carry out the actual construction of the inter-
polating polynomial. In Section 5 we review the simpler case of signals with
non-negative coefficients, where the separation condition can be replaced by a
significantly weaker assumption of sparsity. i.e. that the number of Diracs is
≤ N .

Finally, we point out that the main result of the paper is of qualitative
nature in the following sense. Throughout the proofs we will have for some
k ≥ 3, elements of the type ck/νk−1, where ck are absolute constants that
depend only on k, but change from estimate to estimate and ν is the constant
from Definition 1.2. Once all estimates are done, ν is selected to be sufficiently
large so that ck/νk−1 and similar quantities are sufficiently small. In this paper,
we do not deal with the problem of the sharpness of the constant ν.

2 The dual problem of polynomial interpolation

The proof of Theorem 1.3 can be reduced to a problem in polynomial interpo-
lation. Here we state the real version of a general theorem given in [6] and give
its proof for completeness (see also [8, 10]):
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Theorem 2.1. Let f =
∑

m cmδξm
, cm ∈ R, where Ξ := {ξm} ⊆ A, and A is

a compact manifold in Rn. Let ΠD be a linear space of continuous functions
of dimension D in A. For any basis {Pk}D

k=1 of ΠD, let yk = 〈f, Pk〉 for all
1 ≤ k ≤ D. If for any set {um}, um ∈ R, with |um| = 1, there exists q ∈ ΠD

such that

q(ξm) = um , ∀ξm ∈ Ξ,

|q(ξ)| < 1 , ∀ξ ∈ A\Ξ,

then f is the unique real Borel measure satisfying

min
g∈M(A)

‖g‖TV subject to yk = 〈g, Pk〉 , 1 ≤ k ≤ D. (2.1)

Proof. Let g be a solution of (2.1), and define g = f +h. The difference measure
h can be decomposed relative to |f | as

h = hΞ + hΞC ,

where hΞ is concentrated in Ξ, and hΞC is concentrated in ΞC (the complemen-
tary of Ξ). Performing a polar decomposition of hΞ yields

hΞ = |hΞ|sgn(hΞ)(ξ),

where sgn(hΞ) is a function on A with values {−1, 1} (see e.g. [23]). By as-
sumption, there exists q ∈ ΠD obeying

q(ξm) = sgn(hΞ)(ξm) , ∀ξm ∈ Ξ, (2.2)
|q(ξ)| < 1 , ∀ξ ∈ A\Ξ. (2.3)

Also by assumption 〈g, Pk〉 = 〈f, Pk〉, for 1 ≤ k ≤ D, and so

〈q, h〉 = 0. (2.4)

Equation (2.4), with the polar decomposition of hΞ and (2.2) imply

0 = 〈q, hΞ〉+ 〈q, hΞC 〉 = ‖hΞ‖TV + 〈q, hΞC 〉.

If hΞC = 0, then ‖hΞ‖TV = 0, and h = 0. Alternatively, if hΞC 6= 0 ,we conclude
by property (2.3) that

|〈q, hΞC 〉| < ‖hΞC‖TV .

Thus,
‖hΞC‖TV > ‖hΞ‖TV . (2.5)

As a result of (2.5), we get

‖f‖TV ≥ ‖f + h‖TV = ‖f + hΞ‖TV + ‖hΞC‖TV

≥ ‖f‖TV − ‖hΞ‖TV + ‖hΞC‖TV > ‖f‖TV ,

which is a contradiction. Therefore, h = 0, which implies that f is the unique
solution of (2.1).

In the Figure below, we see an example of an interpolating spherical har-
monic polynomial q : S2 → [0, 1] where N = 50. The heat map shows dark red
at points ξm ∈ Ξ, where q(ξ) = 1 and blue in regions where q is close to zero.
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Figure 1: An interpolating polynomial on the sphere.

3 Spherical Harmonics localization

It is well known that the orthogonal projection kernel KN given by (1.2) does
not have good localization. Instead, we follow [20] and for d = 3 define the
kernel

F̃N (ζ · η) :=
∞∑

n=0

ρ(n/N)Pn,3(ζ · η), (3.1)

where ρ ∈ C∞[0,∞) is a smooth non-negative univariate function, satisfying

ρ(t) =


1, t ∈ [0, 1/2],
≤ 1, t ∈ [1/2, 1],
0, otherwise.

(3.2)

We emphasize that F̃N (·) can be regarded as a superposition of Gegenbauer
polynomials of degree ≤ N and hence also a univariate algebraic polynomial of
degree N . Let us impose the following normalization

FN (ζ · η) := C̃(N)F̃N (ζ · η),

with C̃(N) > 0, chosen such that

FN (1) = 1, (3.3)

and
F ′N (1) ≥ c̃N2, (3.4)

where c̃ > 0 is a constant independent of N . Indeed, c̃ can be bounded from
below by 1/64 as follows. Since

FN (t) = C̃ (N)
N∑

n=0

ρ
( n

N

) 2n + 1
4π

Pn,3 (t),
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and Pn,3(1) = 1, ∀n ≥ 0, the normalization FN (1) = 1, gives

C̃ (N) =
1

N∑
n=0

ρ
(

n
N

)
2n+1
4π

.

The derivative formula (see e.g. [2])

P ′n,d(t) =
n(n + d− 2)

d− 1
Pn−1,d+2(t), n ≥ 1, d ≥ 2,

implies

F ′N (t) = C̃ (N)
N∑

n=1

ρ
( n

N

) 2n + 1
4π

n (n + 1)
2

Pn−1,5 (t).

Hence, by the properties of ρ (see (3.2))

F ′N (1) =

N∑
n=1

ρ
(

n
N

)
2n+1
4π

n(n+1)
2

N∑
n=0

ρ
(

n
N

)
2n+1
4π

≥

N/2∑
n=1

n (n + 1) (2n + 1)

2
N∑

n=0
(2n + 1)

=
1
2

N
2

(
N
2 + 1

) (
1
4N2 + 3

2N + 2
)

2N2 + 4N + 2
≥ N2

64
.

Our construction requires the right form of differentiation. To this end we
employ the Lie-Algebra structure on the sphere (see Section 4.2.2 in [2] for more
details). For any ξ0 ∈ S2 , let Dξ0,1, Dξ0,2, be the two Lie Algebra matrices
associated with the directions of the vectors spanning the tangent plane at
ξ0 ∈ S2. The two tangents and hence the matrices, can be determined uniquely
(and continuously) to form a right-hand system with ξ0. These matrices generate
parametric families of rotation at angles t in the corresponding directions by the
rotation matrices

Dξ0,1 (t) := e−tDξ0,1 , Dξ0,2 (t) := e−tDξ0,2 ,

where for any matrix B, eB :=
∑∞

0
Bk

k! . We may define the rotational derivatives
(if exist) of a function F : S2 → R, at a point ξ ∈ S2, by

Dξ0,rF (ξ) := lim
t→0

F (Dξ0,r (t) ξ)− F (ξ)
t

, r = 1, 2.

Thus, for any point ξ1 ∈ S2, we define the rotational derivatives associated with
ξ0, of the function FN (ξ · ξ1), localized at ξ1, by

Dξ0,1FN (ξ, ξ1) := lim
t→0

FN (Dξ0,1 (t) ξ · ξ1)− FN (ξ · ξ1)
t

,

Dξ0,2FN (ξ, ξ1) := lim
t→0

FN (Dξ0,2 (t) ξ · ξ1)− FN (ξ · ξ1)
t

.
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Denoting briefly P as the orthogonal projector onto VN , we know by Lemma
4.7 of [2] that for any polynomial Q ∈ VN ,

Dξ0,rQ = Dξ0,rPQ = PDξ0,rQ, r = 1, 2,

which implies that Dξ0,rFN (ξ · ξ1) ∈ VN , r = 1, 2, i.e. are spherical harmonics.
This is crucial for the construction of the interpolating polynomial (4.3).

First, we investigate the properties of the spherical harmonic G(ξ, ξ0) := ξ·ξ0,
for fixed ξ0 ∈ Sd−1

Lemma 3.1. For any ξ0, η, η1, η2 ∈ Sd−1

|G(η1, ξ0)−G(η2, ξ0)| ≤ d (η1, η2)
[
d (η, ξ0) + max

j=1,2
d(η, ηj)

]
.

Proof. Denote d1 := d (η1, ξ0) , d2 := d (η2, ξ0) . Then

|η1 · ξ0 − η2 · ξ0| = |cos d1 − cos d2| = 2 |sin ((d1 − d2)/2)| |sin ((d1 + d2)/2)|
≤ 1/2 |d1 − d2| |d1 + d2| .

Hence

|η1 · ξ0 − η2 · ξ0| ≤ d (η1, η2) max {d (η1, ξ0) , d (η2, ξ0)}

≤ d (η1, η2)
(

d (η, ξ0) + max
j=1,2

d(η, ηj)
)

.

Let ξ0, ξ1, η ∈ S2, r = 1, 2 and 0 < t ≤ π. If Dξ1,r(t)η = η, then obviously
Dξ1,rG(η, ξ0) = 0. Else, observe that for any rotation matrix A, at an angle t,
applied to η, we have d(Aη, η) ≤ t. Applying this observation and Lemma 3.1,
gives

|Dξ1,rG(η, ξ0)| = lim
t→0

|Dξ1,r (t) η · ξ0 − η · ξ0|
t

≤ lim
t→0

d (Dξ1,r (t) η, η) (d (η, ξ0) + d (Dξ1,r (t) η, η))
d (Dξ1,r (t) η, η)

≤ d (η, ξ0) .

(3.5)

Next, we have the Lipschitz-type estimate

|Dξ1,rG (η1, ξ0)−Dξ1,rG (η2, ξ0)| = lim
t→0

|(Dξ1,r (t)− I) (η1 − η2) · ξ0|
t

≤ lim
t→0

||Dξ1,r(t)− I|||η1 − η2||ξ0|
t

≤ |η1 − η2|
≤ d (η1, η2) .

(3.6)

This gives for any ξ0, ξ1, ξ2, η ∈ S2

|Dξ1,r1Dξ2,r2G(η, ξ0)| ≤ 1. (3.7)
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We now recall the following estimate for every k ≥ 1, ` ≥ 0 and ζ, η ∈ Sd−1 [20],∣∣∣∣∣F (`)
N (ζ · η)

∣∣∣∣∣ ≤ ck,`N
2`

(1 + Nd(ζ, η))k
, (3.8)

where ck,` is a positive constant depending only on k, `. This already gives the
good localization of FN (ξ · ξ0) at ξ0 ∈ S2, for any k ≥ 1

|FN (ξ · ξ0)| ≤
ck

(1 + Nd (ξ, ξ0))
k
. (3.9)

Let us proceed with localization of derivatives. For any ξ0, ξ1 ∈ S2 and r = 1, 2
we have the following chain rule

Dξ1,rFN (ξ, ξ0) = lim
t→0

FN (Dξ1,r (t) ξ · ξ0)− FN (ξ · ξ0)
t

= lim
t→0

(FN (Dξ1,r (t) ξ · ξ0)− FN (ξ · ξ0))
Dξ1,r (t) ξ · ξ0 − ξ · ξ0

Dξ1,r (t) ξ · ξ0 − ξ · ξ0

t

= F ′N (ξ · ξ0) Dξ1,rG(ξ, ξ0).

We note that the above representation of the derivative also shows that it is
a spherical polynomial of degree ≤ N . Furthermore, in the special case where
ξ = ξ0 = ξ1, we get

Dξ0,rFN (ξ0, ξ0) = F ′N (1) lim
t→0

Dξ0,r (t) ξ0 · ξ0 − 1
t

= F ′N (1) lim
t→0

cos t− 1
t

= 0.

(3.10)

We require the following result that generalizes a lemma from [20]

Lemma 3.2. Let ξ0, η, η1, η2 ∈ S2 with d (ηj , η) ≤ N−1, j = 1, 2. Then, for
any k ≥ 1, ` ≥ 0,∣∣∣F (`)

N (η1 · ξ0)− F
(`)
N (η2 · ξ0)

∣∣∣ ≤ ck,`d (η1, η2) N2`+1

(1 + Nd (η, ξ0))
k

, (3.11)

Proof. First observe that by the triangle inequality for any η̃ such that d(η̃, η) ≤
N−1

Nd (η, ξ0) ≤ N (d (η, η̃) + d (η̃, ξ0))

≤ N
(
N−1 + d (η̃, ξ0)

)
≤ 1 + Nd (η̃, ξ0) .

Applying this, (3.8) and Lemma 3.1 yields∣∣∣F (`)
N (η1 · ξ0)− F

(`)
N (η2 · ξ0)

∣∣∣ ≤ max
d(η̃,η)≤N−1

∣∣∣F (`+1)
N (η̃ · ξ0)

∣∣∣ |η1 · ξ0 − η2 · ξ0|

≤ ck+1,`+1N
2(`+1)

(1 + Nd (η̃, ξ0))
k+1

d (η1, η2)
[
d (η, ξ0) + N−1

]
≤ cN2`+1d (η1, η2)

(1 + Nd (η, ξ0))
k

+
cN2`+1d (η1, η2)

(1 + Nd (η, ξ0))
k+1

≤ cN2`+1d (η1, η2)

(1 + Nd (η, ξ0))
k
.
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As a conclusion from Lemma 3.2, we obtain the localization of the derivatives,
i.e. for any ξ0, ξ1 ∈ S2 and r = 1, 2

|Dξ1,rFN (ξ, ξ0)| = lim
t→0

|FN (Dξ1,r (t) ξ · ξ0)− FN (ξ · ξ0)|
t

≤ lim
t→0

|FN (Dξ1,r (t) ξ · ξ0)− FN (ξ · ξ0)|
d (Dξ1,r (t) ξ, ξ)

≤ ckN

(1 + Nd (ξ, ξ0))
k
.

(3.12)

Next, we analyze second order derivatives. By the rotation invariance of func-
tions of the type FN (ξ ·ξ0), we may compute certain values of partial derivatives
at the point ξ0 = (−1, 0, 0). The rotations at the angle t associated with the
partial derivatives at ξ0 are

Dξ0,1 (t) =

 cos t 0 sin t
0 1 0
− sin t 0 cos t

 , Dξ0,2 (t) =

 cos t sin t 0
− sin t cos t 0
0 0 1

 .

Denoting η = (η1, η2, η3), we get

Dξ0,1FN (η, ξ0) = lim
t→0

FN

 cos t 0 sin t
0 1 0
− sin t 0 cos t

 η1

η2

η3

 · (−1, 0, 0)

− FN (−η1)

t

= lim
t→0

FN (− cos tη1 − sin tη3)− FN (−η1)
t

=
d

dt
FN ((−η1) cos t + (−η3) sin t)

∣∣∣∣
t=0

= (η1 sin 0 + (−η3) cos 0) F ′N (−η1)
= −η3F

′
N (η · ξ0) .

Similarly

Dξ0,2FN (η, ξ0) = lim
t→0

FN

 cos t sin t 0
− sin t cos t 0
0 0 1

 η1

η2

η3

 · (−1, 0, 0)

− FN (−η1)

t

= lim
t→0

FN (− cos tη1 − sin tη2)− FN (−η1)
t

=
d

dt
FN ((−η1) cos t + (−η2) sin t)

∣∣∣∣
t=0

= (η1 sin 0 + (−η2) cos 0) F ′N (−η1)
= −η2F

′
N (η · ξ0) .

As already observed (see (3.10)),

Dξ0,1FN (ξ0, ξ0) = Dξ0,2FN (ξ0, ξ0) = 0. (3.13)
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We now compute mixed partial derivatives of the function FN (ξ ·ξ0) at the point
ξ0. Again, without the loss of generality we may compute at ξ0 = (−1, 0, 0)

Dξ0,2Dξ0,1FN (η, ξ0) = lim
t→0

−η3F
′
N

 cos t sin t 0
− sin t cos t 0
0 0 1

 η1

η2

η3

 · (−1, 0, 0)

+ η3F
′
N (−η1)

t

= lim
t→0

−η3F
′
N (− cos tη1 − sin tη2) + η3F

′
N (−η1)

t

= −η3
d

dt
F ′N ((−η1) cos t + (−η2) sin t)

∣∣∣∣
t=0

= −η3 (η1 sin 0 + (−η2) cos 0) F ′′N (−η1)
= η2η3F

′′
N (η · ξ0) .

This immediately implies

Dξ0,2Dξ0,1FN (ξ0, ξ0) = Dξ0,1Dξ0,2FN (ξ0, ξ0) = 0. (3.14)

Next, we compute

Dξ0,2Dξ0,2FN (η, ξ0)

= lim
t→0

−(− sin tη1+cos tη2)F
′
N

0BB@
0BB@

cos t sin t 0
− sin t cos t 0
0 0 1

1CCA
0BB@

η1

η2

η3

1CCA·(−1,0,0)

1CCA+η2F ′
N (−η1)

t

= lim
t→0

−(− sin tη1+cos tη2)F
′
N (− cos tη1−sin tη2)+η2F ′

N (−η1)
t

= − d
dt (− sin tη1 + cos tη2) F ′N ((−η1) cos t + (−η2) sin t)

∣∣
t=0

= η1F
′
N (η · ξ0) + η2F

′′
N (η · ξ0) .

With similar computations for Dξ0,1Dξ0,1FN , we have,

Dξ0,1Dξ0,1FN (ξ0, ξ0) = Dξ0,2Dξ0,2FN (ξ0, ξ0) = −F ′N (1). (3.15)

Proceeding to the next higher order Lipschitz estimate for η, η1, η2 ∈ S2, satis-
fying d(η1, η), d(η2, η) ≤ N−1, we have

Dξ1,rFN (η1, ξ0)−Dξ1,rFN (η2, ξ0)
= F ′N (η1 · ξ0) Dξ1,rG(η1, ξ0)− F ′N (η2 · ξ0) Dξ1,rG(η2, ξ0)
= (F ′N (η1 · ξ0)− F ′N (η2 · ξ0))Dξ1,rG(η1, ξ0) + F ′N (η2 · ξ0) (Dξ1,rG(η1, ξ0)−Dξ1,rG(η2, ξ0)).

Consequently, using (3.5),(3.6), (3.8) and (3.11) for ` = 1 yields

|Dξ1,rFN (η1, ξ0)−Dξ1,rFN (η2, ξ0)|
≤ |F ′N (η1 · ξ0)− F ′N (η2 · ξ0)| d (η1, ξ0) + |F ′N (η2 · ξ0)| d (η1, η2)
≤ ck+1N3

(1+Nd(η·ξ0))
k+1 d (η1, η2)

(
d(η, ξ0) + N−1

)
+ ckN2d(η1,η2)

(1+Nd(η,ξ0))
k

≤ ckN2d(η1,η2)

(1+Nd(η,ξ0))
k .

(3.16)

This implies for any ξ0, ξ1, ξ2 ∈ S2, r1, r2 = 1, 2,

|Dξ2,r2Dξ1,r1FN (ξ, ξ0)| ≤
ckN2

(1 + Nd (ξ, ξ0))
k
. (3.17)
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Similar calculations give

|Dξ1,r1Dξ2,r2FN (η1, ξ0)−Dξ1,r1Dξ2,r2FN (η2, ξ0)| ≤
ckN3d (η1, η2)

(1 + Nd (η, ξ0))
k
, (3.18)

which in turn yields for any ξ0, ξ1, ξ2, ξ3 ∈ S2 , r1, r2, r3 = 1, 2,

|Dξ1,r1Dξ2,r2Dξ3,r3FN (ξ · ξ0)| ≤
ckN3

(1 + Nd (ξ, ξ0))
k
. (3.19)

4 The construction of the interpolating polyno-
mial on S2

According to Theorem 2.1, a sufficient condition for the recovery of f from its
‘orthogonal projection’ onto VN (S2) is the existence of q ∈ VN , satisfying

q(ξm) = um, ∀ξm ∈ Ξ, (4.1)
|q(ξ)| < 1, ∀ξ /∈ Ξ, (4.2)

for any signed sequence {um} with unit norm. Following the construction of [8]
for d = 2, we propose that the appropriate form for d = 3 is

q (ξ) :=
∑

ξm∈Ξ

αmFN (ξ · ξm) + βmDξm,1FN (ξ, ξm) + γmDξm,2FN (ξ, ξm), (4.3)

where {αm},{βm}, and {γm} are sequences of real coefficients, to be selected
later. We point out that, as explained in Section 3, the partial derivatives in
(4.3) are spherical harmonics polynomials of degree ≤ N , and thus q ∈ VN (S2).

Thus, this section is devoted to the proof of the following proposition:

Proposition 4.1. If Ξ ⊂ S2 satisfies the separation condition of Definition 1.2,
then there exist coefficients {αm},{βm}, and {γm}, such that q of the form (4.3)
obeys (4.1) and (4.2).

According to Theorem 2.1, Proposition 4.1 immediately implies Theorem
1.3. The proof of Proposition 4.1 follows the outline of [8] and is given by a
series of lemmas, as follows:

Lemma 4.2. If the separation condition of Definition 1.2 holds, then for any
sequence {um}, with um = {−1, 1}, there exist coefficients {αm},{βm}, and
{γm}, such that

q(ξm) = um, (4.4)
Dξm,1q(ξm) = Dξm,2q(ξm) = 0, (4.5)

for all ξm ∈ Ξ. Additionally, for any k ≥ 3, there exists a constant ck, such that

‖α‖∞ ≤ 1 +
ck

νk−1
, (4.6)

‖β‖∞ ≤ ck

Nνk−1
, (4.7)

‖γ‖∞ ≤ ck

Nνk−1
, (4.8)
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with ν > 0, the constant from the separation condition. Moreover, if u1 = 1,
then

α1 ≥ 1− ck

νk−1
. (4.9)

Lemma 4.3. If the separation condition in Definition 1.2 holds, then the poly-
nomial (4.3) as constructed in Lemma 4.2 satisfies |q(ξ)| < 1 for any ξ ∈ S2,
obeying

d (ξ, ξm) ≤ σ

N
,

for some ξm ∈ Ξ and sufficiently small σ > 0.

Lemma 4.4. If the separation condition in Definition 1.2 holds, then the poly-
nomial (4.3) as constructed in Lemma 4.2 satisfies |q(ξ)| < 1 for any ξ ∈ S2,
obeying

d (ξ, ξm) ≥ σ

N
, ∀ξm ∈ Ξ,

where σ is the constant of Lemma 4.3.

4.1 Proof of Lemma 4.2

The gradient of any q of the form (4.3), at a point ξk ∈ Ξ, is given by

Dξk,rq (ξk) =
∑

ξm∈Ξ

αmDξk,rFN (ξk, ξm) + βmDξk,rDξm,1FN (ξk, ξm)

+ γmDξk,rDξm,2FN (ξk, ξm) , r = 1, 2.

Conditions (4.4) and (4.5) may be written in matrix notation asF0 F̃ 1
1 F̃ 2

1

F 1
1 F 1,1

2 F 1,2
2

F 2
1 F 2,1

2 F 2,2
2

α
β
γ

 =

u
0
0

 , (4.10)

where

F0 := {FN (ξk · ξm)}k,m ,

F r
1 := {Dξk,rFN (ξk, ξm)}k,m , r = 1, 2,

F̃ r
1 := {Dξm,rFN (ξk, ξm)}k,m , r = 1, 2,

F r1,r2
2 := {Dξk,r1Dξm,r2FN (ξk, ξm)}k,m , r1, r2 = 1, 2,

and u = {um}m, α = {αm}m, β = {βm}m, γ = {γm}m. For convenience, we
occasionally write (4.10) as

F =
[
F0 F̃1

F1 F2

]
.

Our goal is to show that F is invertible and to estimate the coefficients α, β, γ.
To this end, we require the following
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Lemma 4.5. Let ξ0 ∈ Ξ, where Ξ satisfies the separation condition and let
ξ ∈ S2, such that d(ξ, ξ0) ≤ ∆/2. Then, for any k ≥ 3 there exists ck > 0, such
that for any ξ̃1, ξ̃2, ξ̃3 ∈ S2 and r1, r2, r3 = 1, 2,∑

ξm∈Ξ\ξ0

|FN (ξ · ξm)| ≤ ck

νk−1
, (4.11)

∑
ξm∈Ξ\ξ0

∣∣∣Dξ̃1,r1
FN (ξ, ξm)

∣∣∣, ∑
ξm∈Ξ\ξ0

|Dξm,r1FN (ξ, ξm)| ≤ ckN

νk−1
, (4.12)

∑
ξm∈Ξ\ξ0

∣∣∣Dξ̃1,r1
Dξ̃2,r2

FN (ξ, ξm)
∣∣∣ ≤ ckN2

νk−1
, (4.13)

∑
ξm∈Ξ\ξ0

∣∣∣Dξ̃1,r1
Dξ̃2,r2

Dξ̃3,r3
FN (ξ, ξm)

∣∣∣ ≤ ckN3

νk−1
. (4.14)

Proof. Fix ξ0 ∈ Ξ. Let Ωm be the ‘ring’ about ξ0 such that

Ωm :=
{

ξ ∈ S2 :
νm

N
< d (ξ, ξ0) ≤

ν (m + 1)
N

}
, 0 ≤ m ≤

⌊
πN

ν
− 1
⌋

.

The surface area of the ring is given by [2]

|Ωm| = 2π
(
cos
( ν

N
m
)
− cos

( ν

N
(m + 1)

))
.

By assumption the set Ξ satisfies the separation condition in Definition 1.2.
Hence, the points are the center of pairwise disjoint caps of area 2π

(
1− cos ν

2N

)
.

Observe that the cap of any ξk ∈ Ωm is contained in the ring

Ω̃m :=
{

ξ ∈ S2 : max
{

ν (m− 1/2)
N

, 0
}

< d (ξ, ξ0) ≤ min
{

ν (m + 3/2)
N

,π

}}
.

Therefore, we can bound the number of points in the ring Ωm, by

# {ξk ∈ Ωm} ≤

∣∣∣Ω̃m

∣∣∣
2π
(
1− cos ν

2N

) =
2π
(
cos
(

ν
N (m− 1/2)

)
− cos

(
ν
N (m + 3/2)

))
2π
(
1− cos ν

2N

)
=

sin
(

ν
2N (2m + 1)

)
sin
(

ν
N

)
sin2

(
ν

4N

) ≤
sin
(

ν
2N (2m + 1)

)
4 sin

(
ν

4N

)
sin2

(
ν

4N

)
≤ 4

∣∣∣∣∣ sin
(

ν
2N (2m + 1)

)
sin
(

ν
4N

) ∣∣∣∣∣ ≤ cm,

(4.15)

where the constant does not depend on N or ν. Since d(ξ, ξ0) ≤ ∆/2, the point
ξ is well-separated from the points ξm ∈ Ξ\ξ0. Therefore, using (3.9) and (4.15)
we get for k ≥ 3 ∑

ξm∈Ξ\ξ0

|FN (ξ · ξm)| ≤ ck

∞∑
m=1

m

(1 + mν)k

≤ ck

νk−1

∞∑
m=1

1
mk−1

≤ ck

νk−1
.

13

stdory
Highlight

stdory
Sticky Note
comma



This proves (4.11). Using (3.12), similar calculations prove (4.12) by

∑
ξm∈Ξ\ξ0

∣∣∣Dξ̃1,r1
FN (ξ, ξm)

∣∣∣ ≤ ckN

∞∑
m=1

m

(1 + mν)k

≤ ckN

νk−1
.

The estimates (4.13) and (4.14) are proved in similar manner.

We successively use the fact that a sufficient condition for the invertibility of a
matrix M is

‖I −M‖∞ < 1, (4.16)

where ‖M‖∞ := maxi

∑
j |mi,j |. Furthermore (see e.g [14], Corollary 5.6.16),

‖M−1‖∞ ≤ 1
1− ‖I −M‖∞

. (4.17)

The proof of Lemma 4.2 also requires the following

Lemma 4.6. If the separation condition holds, then

‖I − F0‖∞ ≤ ck

νk−1
, (4.18)

‖F r
1 ‖∞, ‖F̃ r

1 ‖∞ ≤ N
ck

νk−1
, r = 1, 2, (4.19)

‖F 1,2
2 ‖∞, ‖F 2,1

2 ‖∞ ≤ N2 ck

νk−1
, (4.20)

‖−F ′N (1)I − F r,r
2 ‖∞ ≤ N2 ck

νk−1
, (4.21)

‖(F r,r
2 )−1‖∞ ≤ 1

N2
(
c̃− ck

νk−1

) r = 1, 2, (4.22)

where the constant c̃ is given by (3.4).

Proof. Observe that by (3.3), F0(k, k) = FN (1) = 1. Applying (4.11) to any
row in the matrix F0, yields (4.18)

‖I − F0‖∞ = max
ξj∈Ξ

∑
ξi∈Ξ,ξi 6=ξj

|FN (ξj · ξi)| ≤
ck

νk−1
.

According to (3.13), the diagonals of F r
1 and F̃ r

1 , r = 1, 2 are zero. Applying
(4.12) gives

‖F r
1 ‖∞ = max

ξj∈Ξ

∑
ξi∈Ξ,ξi 6=ξj

|Dξj ,rFN (ξj , ξi)| ≤
Nck

νk−1
.

In similar manner, observing from (3.14) that the diagonals of F 1,2
2 and F 2,1

2

are zero, (4.13) gives (4.20). Next, we derive from (3.15) and (4.13) that

‖−F ′N (1)I − F r,r
2 ‖∞ ≤ N2ck

νk−1
.

Ultimately, (4.17), (4.21) and (3.4) imply (4.22).
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We may now proceed with the proof of Lemma 4.2. To show that F is invertible
for sufficiently large ν, we show that both F2 and its Schur complement are
invertible [26]. From (4.21), we know that F 2,2

2 is an invertible matrix for
sufficiently large ν. So, F2 is invertible if the Schur complement of F 2,2

2 in F2,
given by

Fs,2 := (F2/F 2,2
2 ) = F 1,1

2 − F 1,2
2

(
F 2,2

2

)−1

F 2,1
2 ,

is invertible as well. Using the estimates of Lemma 4.6, (3.4) and assuming
νk−1 ≥ (1 + c̃ck)/c̃2, we get∥∥∥∥I − Fs,2

−F ′N (1)

∥∥∥∥
∞
≤

∥∥∥∥∥I − F 1,1
2

−F ′N (1)

∥∥∥∥∥
∞

+
1

|F ′N (1)|

∥∥∥F 1,2
2

∥∥∥
∞

∥∥∥F 2,1
2

∥∥∥
∞

∥∥∥∥(F 2,2
2

)−1
∥∥∥∥
∞

≤ ck

νk−1
.

This implies that

‖F−1
s,2 ‖∞ ≤ 1

F ′N (1)
1

1− ck

νk−1

≤ 1
c̃N2

(
1 +

ck

νk−1 − ck

)
. (4.23)

Since F2 is invertible for sufficiently large ν, F is invertible if the Schur com-
plement Fs := F/F2 is invertible as well. Note that

(F/F 2,2
2 ) =

[
F0 F̃ 1

1

F 1
1 F 1,1

2

]
−
[

F̃ 2
1

F 1,2
2

](
F 2,2

2

)−1 [
F 2

1 F 2,1
2

]
=

[
F0 − F̃ 2

1

(
F 2,2

2

)−1

F 2
1 F̃s,1

Fs,1 Fs,2

]
,

where

Fs,1 := F 1
1 − F 1,2

2 (F 2,2
2 )−1F 2

1 , (4.24)

F̃s,1 := F̃ 1
1 − F̃ 2

1 (F 2,2
2 )−1F 2,1

2 . (4.25)

According to Theorem 1.4 in [26],

Fs =
(
F/F 2,2

2

)
/
(
F2/F 2,2

2

)
,

and thus, the Schur complement of F2 is given by

Fs = F0 − F̃s,1F−1
s,2Fs,1 − F̃ 2

1 (F 2,2
2 )−1F 2

1 .

Using Lemma 4.6, and assuming νk−1 ≥ (1 + ck)/c̃, we get

‖Fs,1‖∞ ≤ ‖F 1
1 ‖∞ + ‖F 1,2

2 ‖∞‖(F 2,2
2 )−1‖∞‖F 2

1 ‖∞ ≤ ckN

νk−1
. (4.26)

A similar estimate holds for ‖F̃s,1‖∞. Hence, under similar assumptions on ν

‖I −Fs‖ ≤ ‖I − F0‖∞ + ‖Fs,1‖∞‖F̃s,1‖∞‖F−1
s,2 ‖∞ + ‖F 2

1 ‖∞‖F̃ 2
1 ‖∞‖(F

2,2
2 )−1‖∞

≤ ck

νk−1
+

ck

ν2(k−1)

1
c̃

(
1 +

ck

νk−1 − ck

)
+

ck

ν2(k−1)

1
c̃− ck

νk−1

≤ ck

νk−1
.

(4.27)
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Moreover,

‖F−1
s ‖∞ ≤ 1

1− ck

νk−1

= 1 +
ck

νk−1 − ck
. (4.28)

Therefore, for sufficiently large ν, (4.10) is an invertible matrix. Hence, we can
calculate the coefficient sequences byα

β
γ

 =

 I
−F−1

s,2Fs,1

(F 2,2
2 )−1(F 2,1

2 F−1
s,2Fs,1 − F 2

1 )

F−1
s u. (4.29)

We now proceed to estimate the coefficients. We begin with the observation
that

‖α‖∞ ≤ ‖F−1
s ‖∞ ≤ 1 +

ck

νk−1 − ck
.

In addition, using (4.23), (4.26) and (4.28), for sufficiently large ν, we get

‖β‖∞ ≤‖F−1
s,2 ‖∞‖Fs,1‖∞‖F−1

s ‖∞

≤ ck

Nνk−1
.

Using the same estimates with additional estimates from Lemma 4.6 give

‖γ‖∞ ≤ ‖(F 2,2
2 )−1‖‖F 1,2

2 ‖∞‖F−1
s,2 ‖∞‖Fs,1‖∞‖F−1

s ‖∞

≤ ck

Nνk−1
.

Finally, if u1 = 1, we can apply (4.27), (4.28) and the assumption that |um| = 1,
for each m, to obtain

α1 =
((

I − (I −F−1
s )
)
u
)
1

= u1 −
(
(I −F−1

s )u
)
1

≥ 1− ‖F−1
s ‖∞‖I −Fs‖∞

≥ 1− ck

νk−1
.

This completes the proof of Lemma 4.2.

4.2 Proof of Lemma 4.3

Without loss of generality, assume that at ξ1 ∈ Ξ, the interpolation condition is
q(ξ1) = 1. Let ξ ∈ S2 such that d(ξ1, ξ) ≤ σ/N for sufficiently small 0 < σ < 1
(to be chosen later). The Hessian of q(ξ) at ξ is

H (q) (ξ) =
[

(Dξ,1)
2
q (ξ) Dξ,1Dξ,2q (ξ)

Dξ,1Dξ,2q (ξ) (Dξ,2)
2
q (ξ)

]
.

We wish to show that for sufficiently small σ > 0 and large enough ν, det (H (ξ)) >
0 and Tr (H (ξ)) < 0 , which implies that both eigenvalues are strictly negative
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and therefore q is concave at ξ. For r = 1, 2

(Dξ,r)
2
q (ξ) ≤ α1 (Dξ,r)

2
FN (ξ, ξ1) + ‖β‖∞

∣∣∣(Dξ,r)
2
Dξ1,1FN (ξ, ξ1)

∣∣∣
+ ‖γ‖∞

∣∣∣(Dξ,r)
2
Dξ1,2FN (ξ, ξ1)

∣∣∣
+ ‖α‖∞

∑
ξm∈Ξ\ξ1

∣∣∣(Dξ,r)
2
FN (ξ, ξm)

∣∣∣
+ ‖β‖∞

( ∑
ξm∈Ξ\ξ1

∣∣∣(Dξ,r)
2
Dξm,1FN (ξ, ξm)

∣∣∣)

+ ‖γ‖∞

( ∑
ξm∈Ξ\ξ1

∣∣∣(Dξ,r)
2
Dξm,2FN (ξ, ξm)

∣∣∣) .

We estimate the first left hand term using (4.9), (3.15), (4.6) and then (3.18)

α1 (Dξ,r)
2
FN (ξ, ξ1) = α1 (Dξ,r)

2
FN (ξ, ξ) + α1

(
(Dξ,r)

2
FN (ξ, ξ1)− (Dξ,r)

2
FN (ξ, ξ)

)
≤ −

(
1− ck

νk−1

)
F ′N (1) +

(
1 +

ck

νk−1 − ck

)
ckN3d (ξ, ξ1)

≤ −N2

(
c̃
(
1− ck

νk−1

)
−
(

1 +
ck

νk−1 − ck

)
ckσ

)
.

The next two terms are estimated using the bounds on α, β (4.7), (4.8) and
(3.19)

‖β‖∞
∣∣∣(Dξ,r)

2
Dξ1,1FN (ξ, ξ1)

∣∣∣ , ‖γ‖∞ ∣∣∣(Dξ,r)
2
Dξ1,2FN (ξ, ξ1)

∣∣∣ ≤ ck

νk−1
N2.

Estimates (4.6) and (4.13) give

‖α‖∞
∑

ξm∈Ξ\ξ1

∣∣∣(Dξ,r)
2
FN (ξ, ξm)

∣∣∣ ≤ (1 +
ck

νk−1 − ck

)
ck

νk−1
N2.

Using (4.7), (4.8) and (4.14)

‖β‖∞

 ∑
ξm∈Ξ\ξ1

∣∣∣(Dξ,r)
2
Dξ1,1FN (ξ, ξ1)

∣∣∣
 , ‖γ‖∞

 ∑
ξm∈Ξ\ξ1

∣∣∣(Dξ,r)
2
Dξ1,2FN (ξ, ξ1)

∣∣∣
 ≤ ck

νk−1
N2.

Thus, for sufficiently small σ and large ν

(Dξ,r)
2
q (ξ) ≤ −N2

(
c̃
(
1− ck

νk−1

)
−
(

1 +
ck

νk−1 − ck

)
ckσ +

ck

νk−1

)
< 0.

We proceed with the estimate of the two other entries of the Hessian

|Dξ,1Dξ,2q (ξ)| ≤ α1 |Dξ,1Dξ,2FN (ξ, ξ1)|+ ‖β‖∞ |Dξ,1Dξ,2Dξ1,1FN (ξ, ξ1)|
+ ‖γ‖∞Dξ,1Dξ,2Dξ1,2FN (ξ, ξ1)
+ ‖α‖∞

∑
ξm∈Ξ\ξ1

|Dξ,1Dξ,2FN (ξ, ξm)|

+ ‖β‖∞

( ∑
ξm∈Ξ\ξ1

|Dξ,1Dξ,2Dξ1,1FN (ξ, ξ1)|

)

+ ‖γ‖∞

( ∑
ξm∈Ξ\ξ1

|Dξ,1Dξ,2Dξ1,2FN (ξ, ξ1)|

)
.
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Using first (4.6), (3.14) and then (3.18) yields

α1 |Dξ,1Dξ,2FN (ξ, ξ1)| ≤
(

1 +
ck

νk−1 − ck

)
|Dξ,1Dξ,2FN (ξ, ξ1)−Dξ,1Dξ,2FN (ξ, ξ)|

≤
(

1 +
ck

νk−1 − ck

)
ckN3d (ξ, ξ1)

≤
(

1 +
ck

νk−1 − ck

)
ckσN2.

Combining with similar estimates as in the previous case results in

|Dξ,1Dξ,2q (ξ)| ≤ N2

((
1 +

ck

νk−1 − ck

)
ckσ +

ck

νk−1
+
(

1 +
ck

νk−1 − ck

)
ck

νk−1

)
.

It is now clear, that we can chose sufficiently small σ and large enough ν such
that |Dξ,1Dξ,2q (ξ)| <

∣∣∣(Dξ,r)
2
q (ξ)

∣∣∣ and (Dξ,r)
2
q (ξ) < 0, r = 1, 2. This gives

that det (H (ξ)) > 0 and Tr (H (ξ)) < 0. To finish the proof, we have to show
that q(ξ) > −1

q(ξ) ≥ α0FN (ξ · ξ1)− ‖α‖∞
∑

ξm∈Ξ\ξ1

|FN (ξ · ξm)|

− ‖β‖∞
∑

ξm∈Ξ

|Dξ,1FN (ξ, ξm)| − ‖γ‖∞
∑

ξm∈Ξ

|Dξ,2FN (ξ, ξm)|

≥
(
1− c

νk−1

)
(1 + FN (ξ · ξ1)− FN (ξ · ξ))−

(
1 +

ck

νk−1

) ck

νk−1
− 2ck

ν2(k−1)

≥
(
1− c

νk−1

)
(1− ckσ)− 2ck

ν2(k−1)
.

Clearly, for large ν and small σ, q(ξ) > −1. For the case where q(ξ1) = −1, the
proof is almost identical except for the fact that we show that q is convex in the
neighborhood of ξ1 and q(ξ) < 1, for d(ξ, ξ1) < σ/N .

4.3 Proof of Lemma 4.4

Let ξ ∈ S2 and ξ1 ∈ Ξ, such that σ/N ≤ d(ξ, ξ1) ≤ ∆/2. We need to show that
for sufficiently large ν, |q(ξ)| < 1. First observe that using only the first order
estimate for FN (ξ · ξ1), with the normalization FN (ξ1, ξ1) = 1

|α1| |FN (ξ · ξ1)| ≤
(
1 +

ck

νk−1

) 1
1 + σ

.

Consequently, for sufficiently large ν, using also the estimates of Lemmas 4.2,
4.5 and (3.12) gives
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|q (ξ)| ≤ ‖α‖∞ |FN (ξ · ξ1)|+ ‖β‖∞ |Dξ1,1FN (ξ, ξ1)|+ ‖γ‖∞ |Dξ1,2FN (ξ, ξ1)|

+ ‖α‖∞
∑

ξm∈Ξ\ξ1

|FN (ξ · ξm)|+ ‖β‖∞
∑

ξm∈Ξ\ξ1

|Dξ1,1FN (ξ, ξm)|

+ ‖γ‖∞
∑

ξm∈Ξ\ξ1

|Dξ1,2FN (ξ, ξm)|

≤
(
1 +

ck

νk−1

) 1
1 + σ

+
2ck

νk−1

ck

(1 + σ)k
+
(
1 +

ck

νk−1

) ck

νk−1
+

2ck

ν2(k−1)

< 1.

The case where d(ξ, ξm) > ∆/2, for each ξm ∈ Ξ is easier. In this case, where
ξ is well separated from all the points of Ξ, we can use estimates similar to the
those of Lemma 4.5, to get

|q(ξ)| ≤ ‖α‖∞
∑

ξm∈Ξ

|FN (ξ · ξm)|+ ‖β‖∞
∑

ξm∈Ξ

|Dξm,1FN (ξ · ξm)|

+ ‖γ‖∞
∑

ξm∈Ξ

|Dξm,2F (ξ · ξm)|

≤
(
1 +

ck

νk−1

) ck

νk−1
+

ck

ν2(k−1)
.

This completes the proof.

5 Non-Negative Signals

In this section, we show that for the special case of non-negative Dirac ensembles

f =
∑
m

cmδξm , cm > 0 , ξm ∈ Ξ, . (5.1)

a sparsity condition is sufficient for exact recovery (compare with the discrete
case [11]). We start by presenting a sufficient condition for the reconstruction
of the signal from its projection onto VN . Here we give a general version of the
theorem as follows:

Theorem 5.1. Let f =
∑

m cmδξm
, where Ξ = {ξm} ⊂ A, with A a compact

manifold in Rd and cm > 0. Let ΠD be a linear space of continuous functions
of dimension D in A. For any basis {Pk}D

k=1 of ΠD, let yk = 〈f, Pk〉 for all
1 ≤ k ≤ D. If there exists q ∈ ΠD such that

q(ξm) = 1 ξm ∈ Ξ, (5.2)
|q(ξ)| < 1 ξ /∈ Ξ, (5.3)

then, f is the unique minimizer over all non-negative measures of the following

ming∈M(A)‖g‖TV s.t. yk = 〈g, Pk〉, k = 1, . . . , D. (5.4)

Proof. Let g be the solution of (5.4), and set g = f +h, h 6= 0. Let h = hΞ +hΞC

be the Lebesgue decomposition of h relative to |f |, so that hΞ is supported on Ξ.
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Additionally, hΞ =
∑

dmδξm
for some real {dm}. Also, since g is a non-negative

measure, f + hΞ is also non-negative, implying cm + dm ≥ 0 for all ξm ∈ Ξ.
Thus, ‖f + hΞ‖TV =

∑
m (cm + dm).

We observe that

0 = 〈q, h〉 = 〈q, hΞ〉+ 〈q, hΞC 〉 =
∑
m

dm + 〈q, hΞC 〉. (5.5)

Plainly, if hΞC = 0, then hΞ = 0, and consequently h = 0. Else, if hΞC 6= 0,
we obtain ∣∣∣∣∣∑

m

dm

∣∣∣∣∣ =
∣∣∣∣∫ qdhΞC

∣∣∣∣ < ‖hΞC‖TV . (5.6)

This leads to the following contradiction

‖f‖TV ≥ ‖f + h‖TV = ‖f + hΞ‖TV + ‖hΞC‖TV

>
∑
m

(cm + dm) +

∣∣∣∣∣∑
m

dm

∣∣∣∣∣
= ‖f‖TV +

∣∣∣∣∣∑
m

dm

∣∣∣∣∣+∑
m

dm ≥ ‖f‖TV

(5.7)

Therefore, f = g.

We now show that a polynomial q ∈ VN (Sd−1), d ≥ 2, obeying (5.2) and (5.3)
can be constructed with a sparsity condition replacing the separation condition.
Assuming that |Ξ| = s ≤ N , we construct the following polynomial

q(ξ) := 1− 2−(s+1)
s∏

m=1

(1− ξ · ξm) . (5.8)

As already noted the function G(ξ) = ξ ·ξ0, is a spherical harmonic and thus also
1−G(ξ). The fact that a product of spherical harmonics of degrees N1, N2 is a
spherical harmonic of degree N1 +N2 and the computation of the corresponding
representation is known as Clebsch - Gordan. Plainly, as long as s ≤ N , q ∈ VN .
Moreover, q(ξm) = 1, and 0 ≤ q(ξ) < 1 for any ξ /∈ Ξ.

As a result of the above construction, we may apply Theorem 5.1 to obtain
exact recovery for non-negative Dirac ensembles whenever the sparsity condition
|Ξ| ≤ N holds.

Observe that the case of univariate non-negative Dirac trains and spaces of
trigonometric polynomials is a special case of the above, with d = 2. Therefore,
a sparsity condition can replace the separation condition of [8]. For d = 2, the
construction of the interpolating polynomial over knots {tm} ⊂ [−π, π], takes
the form

q(t) = 1− 2−(s+1)
s∏

j=1

(1− cos(t− tm)) , t ∈ [−π, π]. (5.9)

Similarly, in [6] the authors showed that the separation condition is a suf-
ficient condition for the reconstruction of signals of the form (1.3) from their
projection onto the space of algebraic polynomials of degree N over [−1, 1]. If
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the signal is known to be non-negative, a sufficient condition for reconstruction
is |Ξ| ≤ N/2, by the construction of the following algebraic polynomial (see also
[10])

q(ξ) = 1− 4−(s+1)
s∏

i=1

(ξ − ξm)2. (5.10)

References

[1] Y. Alem, D. Chae, and R. Kennedy. Sparse signal recovery on the sphere:
Optimizing the sensing matrix through sampling. In Signal Processing and
Communication Systems (ICSPCS), 2012 6th International Conference on,
pages 1–6. IEEE, 2012.

[2] K. Atkinson and W. Han. Spherical harmonics and approximations on
the unit sphere: An introduction, Lecture notes in mathematics Vol. 2044.
Springer, 2012.

[3] S. Arridge. Optical tomography in medical imaging. Inverse problems, 15
(1999), R41-R91.

[4] P. Audet. Directional wavelet analysis on the sphere: Application to gravity
and topography of the terrestrial planets. Journal of Geophysical Research:
Planets (1991–2012), 116(E1), 2011.

[5] I. Ben Hagai, F. Fazi, and B. Rafaely. Generalized sampling expansion for
functions on the sphere. 2012.

[6] T. Bendory, S. Dekel, and A. Feuer. Exact recovery of non-uniform splines
from the projection onto spaces of algebraic polynomials, Journal of Ap-
proximation Theory, to appear.

[7] T. Bendory, S. Dekel, and A. Feuer. Super-resolution on the sphere, in
preparation.

[8] E. Candès and C. Fernandez-Granda. Towards a mathematical theory of
super-resolution. Communications on Pure and Applied Mathematics, to
appear.

[9] C. Cohen-Tannoudji, B. Diu, and F. Laloë. Quantum mechanics, 2 volume
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