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We demonstrate a novel split-step solution for analyzing nonlinear fiber Bragg gratings. The solution is used
for designing nonlinear fiber Bragg gratings with a low reflectivity. The structure of the grating is designed
according to the profiles of the incident and reflected pulses. We demonstrate our method for nonlinear com-
pression of a pulse reflected from a fiber Bragg grating. The method allows us to obtain compressed pulses
with a very low wing intensity. © 2006 Optical Society of America
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In recent years, there has been a growing interest in
nonlinear phenomena in fiber Bragg gratings
(FBGs).'™ It has been shown that Kerr nonlinearity
in FBGs can be used to obtain interesting nonlinear
phenomena such as soliton propagation and pulse
compression. In Ref. 3 pulse compression was demon-
strated in the transmission of an apodized FBG. One
of the drawbacks of such an elegant pulse-
compression scheme is the residual wings that ac-
company the compressed pulse, which may limit the
use of the compression method for several applica-
tions. To minimize the wing intensity and to control
the profile of the compressed pulses, a grating struc-
ture should be designed. While several design algo-
rithms have been demonstrated for linear gratings,*
the problem of designing nonlinear gratings has not
been previously studied.

In this Letter we introduce a new split-step solu-
tion to the coupled-mode equations, which describe
the propagation of pulses in nonlinear FBGs; our so-
lution is accurate, efficient and simple. We used the
split-step solution to develop a design method of non-
linear FBGs with a low reflectivity (~25%). We apply
our design method to obtain a high-quality pulse
compression of the wave reflected from the grating
and to give a criterion for the minimum nonlinear ef-
fect that is required. Using our method, we obtained
a pulse compression with a very weak wing intensity
of approximately 0.01% of the maximum pulse inten-
sity. The method can be directly generalized for de-
signing FBGs with a high reflectivity by taking mul-
tiple scattering into account.

The propagation of the fields inside the grating is
described by the following coupled-mode equationsl:
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A, =—d/dz +il[|u(r,z)|? + 2[v(r,2)[?],

Ay = d/dz + il |v(7,2)] + 2|u(r,2)|?], (3)

where u(7,z) and v(r,z) are the forward- and the
backward-propagating waves, respectively; 7=ct/nq
is the normalized time; n.g is the effective refractive
index of the fiber; z is the location along the grating;
I' is the nonlinear coefficient; and ¢(z) is the coupling
coefficient of the g_;rating.4

We used a split-step method to solve Eq. (1). We di-
vide the grating into N uniform sections, each with a
length of A. We use the notations for the fields
u,(7,)=u(r=mA,z=nA) and v,(7,)=v(r=mA,z=nA)
and define the reflectors p,,:
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The propagator exp[(A+B)A] is approximated by
exp(BA)exp(AA), where

py, = sin(|g(nA)[A) =q(nd)A. 4)
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Using Eqgs. (5) and (6), we obtain the propagation
equations
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Un(Te1) = V1 - |pn|2vn+1(Tm)eXp[irA(|Un+1(Tm)|2
+ 2{un () [*)]
- Pnun—l(Tm)eXP[irA(|un—1(7'm)|2
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We note that Eqs. (7) give explicit expressions for the
propagation of the fields, whereas the numerical so-
lution given in Ref. 5 is based on implicit equations
that are solved through iterations, in which each it-
eration involves approximately five times more op-
erations than do Egs. (7). To obtain accurate results,
we require that the effect of the grating and the non-
linear propagation be small enough in each section of
the grating, i.e.,

max(|p,|), 2I max[|v,(7,)%+ |u,(7,)|?]A < 1.

(8)

The conditions in Eq. (8) are fulfilled if A is chosen to
be small enough.

We demonstrate the accuracy of our split-step solu-
tion by analyzing the propagation of a gap soliton.
The grating parameters were ¢=10°m™' and T
=5 W-lkm™!, and the soliton parameters’ were v
=0.1 and 6=1.5. The length of each section in the
simulation was A=0.1 mm. Using Eq. (7), we propa-
gated the soliton over 16,000 time points, which cor-
responds to an effective propagation length of 16 cm.
Figure 1 shows the soliton intensity after the propa-
gation, calculated analytically2 (the dashed curve)
and by using our split-step solution (the solid curve).
The maximum difference between the two curves is
about 0.8% of the maximum soliton intensity. To ob-
tain the same accuracy, five iterations were needed in
the numerical solution given in Ref. 5. Overall, the
solution given in Ref. 5 required 25 more operations
and had a run time that was 22 times longer than our
split-step solution. We also verified our split-step so-
lution for simulating bistable behavior in FBGs and
obtained the same results as those reported in Ref. 6.
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Fig. 1. Intensity of a gap soliton after propagating 16 cm,

calculated numerically by using the split-step solution
(solid curve) and analytically (Ref. 2) (dashed curve)
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Fig. 2. Schematic description of optical pulse compression
geometry.
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In a design problem, one needs to find the profile of
a grating that gives a desired reflected pulse for a
given input pulse (see the schematic in Fig. 2). We re-
stricted our analysis to gratings with weak coupling
(=25% reflectivity). This assumption allowed us to
accurately use the Born approximation and to neglect
multiple scattering. We also assumed a moderate
nonlinear effect and used the undepleted-pump ap-
proximation, in which the nonlinear effect of the re-
flected wave on itself and on the incident wave is ig-
nored.

To obtain the reflected field after a duration of
=mA, the operators exp(BA)exp(AA) should be calcu-
lated and cascaded m times. When using the Born
approximation, we ignored all elements that are on
the order of O(|q|?) or higher and obtained a linear
connection between the reflected field and the reflec-
tors:

Ul(TZn—l) = 2 dnmpma n= 17273, ’Na (9)

m=1
where the coefficients d,,,,, are given by
dnm = uO(T2n—2m)exp[imAF|uO(TZn—Zm)|2]

m-1

X I exp[2iAT |ug(72,-90-1)[*]-

w=1

(10)

We define a matrix D with elements d,,,,. By invert-
ing the matrix D we can extract the reflectors p,,. In
contrast to the linear case (I'=0), there are no known
criteria for choosing a reflected field that can be real-
ized by a FBG. Our numerical calculations show that
when the Kerr effect is not negligible, the matrix D is
ill conditioned.

To overcome the ill conditioning of the matrix D,
we used Tikhonov regularization.” This method sta-
bilizes the problem, since it allows small deviations
in the reflected field compared with the desired field.
We designate Vg as the vector of the desired re-
flected field at the discrete time values of ,_; for n
=1,2,3,...,N. The solution vector that contains the
elements of the discrete reflectors p, (n
=1,2,3,...,N) is denoted P. The regularization is ob-
tained by finding the minimum of the functional
[DP-Vg4?+a|P|?, where ||-|> denotes the ¢? norm
and «a is a regularization parameter. The minimum of
the functional can be found by setting all its partial
derivatives to zero.” (D'D+al)P=D'V,,, where 1 de-
notes the complex conjugate operation and I is the
identity matrix. The choice of the regularization pa-
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rameter a allowed us to control the tradeoff between
the accuracy of the reflected field and the amplitude
of the reflectors.

We demonstrated our design method for compress-
ing a Gaussian pulse by a compression ratio of 7=5.
The incident field is given by u(t)=I; exp[-(¢
~-T1)?/0?], where T,=484ps, 0,=61.2ps, and I,
=10* W. The desired reflected field is given by v,(¢)
= I, exp[—(t—T5)?/(01/ 7)?]. The nonlinear coefficient
was chosen to be '=6 W~! km~!. We chose a maxi-
mum intensity of the reflected field, I,=900 W, to en-
sure a weakly reflecting grating. To obtain a feasible
compression, we required that the square root of the
second moment of the incident-field spectrum in-
crease during the propagation in the grating by the
same amount as the compression ratio, z. In the case
of a Gaussian pulse, the second moment of the field
spectrum after a propagation of a distance L is given
by \7/2I/o[1+(I;T'L)?]. Using the relation, we ob-
tained the following criterion for the minimum grat-
ing length: I'l,L~\7*-1. In our example, we ob-
tained L=9.5 cm. Since L corresponds to a time delay
of 0.46 ns, we chose (Ty—T7)=2X0.46=0.92 ns.

To avoid boundary effects from the grating ends we
chose a grating length of 20 ecm. The grating was di-
vided into N=1000 sections. Figure 3 shows the
phase and the amplitude of the designed grating for
three values of the regularization parameter: a=2
X 102 (solid curve), =2 x10% (dashed curve), and «
=2X10* (short-dashed curve). Figure 3 shows that
the grating profile remains qualitatively the same for
all the values of a. However, as expected, the ampli-
tude of the grating increased as the parameter « de-
creased.

We verified our design method by calculating the
field reflected from the designed grating. Figure 4
shows the desired reflected field (solid curve), com-
pared with the reflected field, calculated for the three
grating profiles shown in Fig. 3. Figure 4 shows that
the difference between the desired and the calculated
pulses increases as « increases. For =200, a very
good agreement is obtained between the desired and
the calculated reflected fields with a strong wing sup-
pression. The intensity of the wings around the pulse
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Fig. 3. (a) Amplitude and (b) phase of the designed grating
with @=200 (solid curve), «=2000 (dashed curve), and «
=20,000 (short-dashed curve).
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Fig. 4. Desired reflected field (dashed curve) compared
with the reflected field, calculated by using a grating de-
signed with «=200 (dashed curve), «=2000 (short-dashed
curve), and «=20,000 (dotted curve). The inset shows the

wing intensity, normalized to the maximum power of the
desired reflected field.

is approximately 4 orders of magnitude smaller than
the intensity of the peak. This result is 3 orders of
magnitude smaller than that obtained theoretically
in Ref. 3.

The compression can be qualitatively understood
by comparing the local Bragg wavelength along the
grating to the instantaneous frequency change of the
incident pulse, caused by the Kerr effect. Figure 3(b)
shows that the local Bragg wavelength of the grating
is shifted to higher frequencies at the beginning of
the grating and to lower frequencies near the end of
the grating. Because of the Kerr effect, the leading
part of the incident pulse is shifted to lower frequen-
cies, and the end part of the pulse is shifted to higher
frequencies. The leading part of the pulse is therefore
reflected from the end of the grating, and it experi-
ences a longer time delay compared with the end part
of the pulse, which is reflected from the beginning of
the grating. The difference in the time delays causes
the compression of the reflected pulse.
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