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Stable Operating Region in a Harmonically Actively
Mode-Locked Fiber Laser

Avi Zeitouny, Yurij N. Parkhomenko, and Moshe Horowitz

Abstract—We theoretically study the recovery of a harmonically
actively mode-locked soliton fiber laser from pulse dropout. In
such lasers, a large number of pulses propagate simultaneously
in the cavity. In order to obtain stable operation, pulses that
are dropped due to changes in environmental conditions should
recover, while other pulses that propagate in the cavity should
remain stable. Soliton perturbation theory is used to find stability
conditions for the noise in a time slot where a steady state pulse
exists and in a time slot where a pulse is dropped. In the stable
operating region of the laser, noise is stable in the presence of a
pulse while noise becomes unstable in time slots where a pulse
is dropped. Such a stability condition ensures that the laser can
recover from accidental pulse dropout. A good agreement between
the results of a reduced model and the results of a comprehensive
numerical simulation was obtained. The results of this paper may
enable to improve the stability of actively mode-locked fiber lasers.

Index Terms—Optical fiber lasers, perturbation methods.

I. INTRODUCTION

ACTIVELY mode-locked fiber lasers have been intensively
studied, both theoretically and experimentally. Many of

the theoretical studies are based on solving the equation known
as the modified Ginzburg–Landau equation or the master equa-
tion of mode-locking [1]–[5]. This approach has enabled to
study the noise of mode-locked lasers [6]–[9] by modeling the
noise as a small perturbation added to the steady state pulse.
Kärtner et al. [8] used such theory to analyze the noise in an
actively mode-locked laser that generates solitary pulses. The
nonlinear effect in such a laser shortens the pulse duration.
Analysis of the stability of the noise shows that the minimum
pulse duration is limited in such lasers due to the instability of
the noise.

Numerical simulations enable to study the propagation of sev-
eral pulses in the cavity, rather than a single pulse [10]. As
the power in the cavity of an actively mode-locked fiber laser
increases, the pulses evolve through four different operating
regimes. In the first regime, the nonlinear effect is negligible
and the pulse length is limited by the Kuizenga–Seigman limit
[11]. As the power increases, the Kerr effect begins to affect the
pulses, resulting in pulse shortening, but the pulse train is sub-
ject to a large amount of dropout. The stable operating regime is
the third regime, with a very low dropout ratio. However, prac-
tical lasers that operate in this region are subject to pulse dropout
due to changes in environmental conditions [12], [13]. In order
to obtain stable operation, the laser should quickly recover from
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accidental pulse dropout. When the power is further increased,
a forth operating regime is reached, in which pulse pairs are
formed in some of the time slots.

In a practical harmonically mode-locked fiber laser, pulses
may be dropped due to changes in environmental conditions.
Such pulses should quickly recover in order to avoid super-
mode competition that may lead to system errors. In this work
we study the conditions required for a harmonically actively
mode-locked fiber laser to be able to recover from pulse dropout.
Our analysis indicates that stable pulses can propagate inside the
laser cavity while other pulses that are dropped can be regener-
ated. This result extends, for a fiber laser, a previous result that
indicated that when stable pulses are generated, the noise does
not grow in a time slot where a pulse is missing and therefore
such a laser cannot recover from pulse dropout [8]. We study the
stability of the noise accompanying a pulse that propagates in
the cavity, and compare the results to the stability of noise that
remains where a pulse is dropped. Soliton perturbation theory
may be used to analyze the stability of the noise [8], [14]. When
only a single pulse propagates inside the laser cavity, no dropout
of pulses may occur. Therefore, previous analysis on noise sta-
bility in actively mode-locked lasers showed that the noise be-
havior was the same in a time slot where a pulse exists and in a
time slot where a pulse is dropped [8]. This result was obtained
because mathematical terms that represent the dependence of
the noise on the pulse could be neglected, to first order, when
only a single pulse propagated inside the cavity. Our stability
analysis indicates that in the optimal operating region of the
laser, noise in a time slot where a pulse is dropped is unstable
while the noise in a time slot where a pulse propagates is stable.
We found that the noise in a time slot where a pulse propagates
is stable since some of the noise is coupled into solitary modes
by the modulator and the filter. The noise coupled to solitary
modes is stabilized due to solitonic propagation of pulses in the
cavity that tends to maintain the pulse shape against perturba-
tions. The different behavior of the noise due to the existence of
a pulse is essential to ensure a practical operation of fiber lasers.
The laser can recover from pulse dropout in the optimal oper-
ating region, while the noise in the pulses remains very weak.

The manuscript is divided into four main sections. In Sec-
tion II, we give the equation for analyzing the dynamics of the
continuum. In Section III, we derive the conditions for the op-
timal operating region of the laser where the laser can recover
from pulse dropout. In Section IV, we give numerical examples
for the calculation of the boundaries of the stable operating re-
gion of the laser. In Section V, we compare the results of the
reduced model to the results of a comprehensive numerical sim-
ulation.
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II. MATHEMATICAL MODEL FOR CALCULATING

THE CONTINUUM

In this section, we derive the mathematical framework used in
our manuscript for analyzing actively mode-locked fiber lasers.
The analysis given in this section shortly summarizes the results
given in previous work [6]–[8]. We start our analysis using the
master equation of mode-locking [2]

(1)

where is a slow time variable on the scale of the cavity round-
trip time , is a fast time variable on the order of the pulse
duration, D is the intracavity dispersion per round-trip, is the
Kerr coefficient per round-trip, is the saturated gain, is the
linear loss, is the modulation depth, is the filter transmis-
sion at its central wavelength, is the filter bandwidth,
is the modulation frequency, is the complex envelope
of the pulse, and is an additive noise source resulting
from the spontaneous emission of the amplifier. We assume that
the amplifier response time is significantly longer than the time
scale used in our stability analysis and therefore the amplifier
dynamics can be neglected. The filter in the cavity is formed by
the amplifier bandwidth or by an additional filter added to the
cavity. Assuming that the linear loss, , is significantly larger
than the loss that depends on the pulse parameters, we neglect
the change in the amplifier’s filtering effect as a function of the
gain , as assumed in [14].

We assume that the modulator and the filter cause only a small
change in the pulse that propagates through the fiber and there-
fore the pulse shape remains nearly secant-hyperbolic [7], [8].
Hence, the solution for the master equation can be written as

(2)

where

(3)

is the unperturbed solution, is the length of the unperturbed
soliton, and relates to the short time scale as above. We as-
sume that the change in the pulse shape due to the amplifier,
the filter, and the modulator is small and therefore the func-
tion can be treated as a small perturbation. We use
a vectorial notation for the perturbation, as used in [7], [8],

. Similar notation is used for the variables
and . The dynamic behavior of the perturbation is obtained by
substituting (2) into (1) and expanding the result up to first order
in

(4)

where

(5a)

(5b)

(5c)

In deriving (4), it is assumed that may be considered as a
perturbation to the soliton. However, the term in (4) is not
neglected, since its magnitude depends on the particular func-
tion . Therefore, the term may be on the same order as
the term . In deriving (4) we used the relation

, obtained from the zero order solution.
Equation (4) gives the evolution of the perturbation on

the time . The operator gives the effect of the propagation
through the fiber, due to dispersion and Kerr effect. The oper-
ator gives the effect of the amplifier, the filter, and the mod-
ulator. We will expand the perturbation, , as a linear sum of
the eigenstates of the operator . Reference [7] gives the eigen-
functions of the operator , and defines an inner product under
which the operator is a self-adjoint operator. The perturbation

can be expanded as a linear sum of the eigenstates of the op-
erator [7]

(6)

where , , , and are the discrete states of the operator
that give the changes in the soliton energy, phase, carrier fre-

quency, and timing, respectively [6], [8]

(7a)

(7b)

(7c)

(7d)

where is the energy of the soliton. The continuum
may be expanded using the continuous spectrum of the operator

, and [7]

(8)

where

(9a)

(9b)

Instability of the laser pulses can occur due to the instability
of the discrete states of the soliton or due to the instability of the
continuum. The stability of the discrete states of the soliton was
studied in [6], [14], and [15]. The jitter and the frequency of the
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soliton are stabilized due to the modulator and filter, respectively
[2]. The stability condition for the pulse energy is given by [14]

(10)

As the power in the laser is increased, the pulses become shorter,
and the second term in (10), that represents the effect of the
filter, becomes larger. A stable operation is obtained when the
filter effect becomes stronger than the effect of the modulator.
Therefore, when the power inside the laser is increased above
a certain level the pulses become short enough and the pulse
energy becomes stable. Assuming that the laser power is above
the threshold needed for the stability of the discrete states of the
soliton, we will focus on the stability of the continuum and find
the maximum power of the stable operating region of the laser.

Using (8), it can be shown that

(11)

(12)

where

(13)

Thus, the stability of the continuum is determined by the sta-
bility of the function .

We find the equation of motion for by projecting (4)
onto the continuous eigenstates of the operator , and

[7]

(14a)

(14b)

Using (6) and (8)

(15)

where

(16a)

(16b)

(16c)

(16d)

and

Each of the terms in (15) can be intuitively understood. The
term represents the linear gain and loss expe-
rienced by the continuum. The term orig-
inates in the operator , and thus represents the effect
of propagation through the fiber on the continuum. The modu-
lator and the filter couple between different continuum modes.
The terms and
represent the coupling of the continuum modes and
into a mode , respectively, due to the modulator. The next
two terms represent coupling by the modulator of continuum
modes with a spectral component around to the continuum
modes with a spectral components . Since the func-
tions that span the continuum, and , are not sinusoidal
functions, the action of the modulator is not given by two delta
functions at . The next three terms, with the coeffi-
cient , represent the action of the filter. The first term
gives the effect of the spectral response of the filter on the con-
tinuum modes. The contribution of this term increases as in-
creases. The other two terms couple between the mode with a
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spectral component to other continuum components. The con-
tribution of these terms increases as increases; however,
a plot of the function, , indicates that it reaches a con-
stant value when the spectral frequency difference be-
comes large enough. The last three terms in the equation corre-
spond to nonhomogeneous terms. The first term describes the
contribution of the solitonic noise to the continuum due to the
propagation through the modulator, the amplifier, and the filter,
that are presented by the operator . The term
represents the part of the perturbed soliton that is coupled into
the continuum due to the modulator and the filter, and the term

represents the part of the additive noise
that is coupled into the continuum.

III. STABILITY ANALYSIS OF THE CONTINUUM

In this section we find the stability condition for the con-
tinuum. Equation (15) can be further simplified using the as-
sumption that the pulse duration is significantly smaller than the
repetition time of the modulation frequency, i.e , and
therefore we neglect terms on the order of or higher and
obtain:

(17)

where

(18a)

(18b)

(18c)

In [8], the stability of the continuum around the pulse was
studied. However, in the analysis given in [8], the operator
was neglected and therefore the stability condition obtained was
the same for noise that propagates in a time slot where a pulse
exists and in a time slot where a pulse is dropped. Using straight-
forward complex analysis, we approximated the integrals in the
operator and showed that the terms in the operator , orig-
inating from the modulator, are on the order of . Sim-
ilarly, we showed that the terms in the operator , originating
from the filter, are on the order of . Therefore, the ef-
fect of the operator on the continuum is on the same order as
the effect of the operator . In the next two sections, we will
show that since in highly harmonically fiber lasers the operator

cannot be neglected, the stability condition for the noise that
propagates in a time slot where a pulse exists is different from
the stability condition for the noise in a time slot where a pulse
is dropped. The difference in the stability conditions enables the

laser to generate stable solitary pulses and still be able to recover
from pulse dropouts.

As explained in Section II, the stability of the continuum is
determined by the stability of the function . The time
dependent behavior of the continuum function is given
by (17). In order to find the stability condition for we
first solve the eigenvalue problem

(19)

Then we can write as a linear sum of the eigenfunctions

(20)

Using (17), (19), and (20) we obtain

(21)

where is the adjoint function of .
Equation (21) is a stochastic linear first order differential

equation. The equation may be divided into a homogenous
part and into an inhomogeneous part. The stability of the
homogenous part approximately gives the stability of (21). The
inhomogeneous part may be divided into a stochastic term due
to the amplifier noise and into a non stochastic term caused due
to changes of the soliton in a round-trip. Since (21) is a first
order differential equation the inhomogeneous term may cause
a large increase in the solution close to the boundary of the
stable region [16]. The stochastic part of the equation may also
slightly change the boundary of the stable operating region,
calculated from the homogenous part of the equation [17].
However, by comparing the reduced model with the results of a
numerical simulation, as described in the next section, it can be
shown that the magnitude of the inhomogeneous term is very
small and it only slightly affects the stability of the equation.
Moreover, the increase in the continuum intensity is obtained
only very close to the boundary of the stable operating region.
Therefore, we will determine the stability of the solution only
according to the homogenous part of the equation.

The solution of the homogeneous part of (21) is

(22)

Therefore, the stability of the perturbation, , can be de-
termined by the least stable eigenstate, i.e the eigenstate
with the eigenvalue that has the largest real part. Therefore, the
stability condition is given by

(23)

In order to find the eigenvalues of the operator
we will first find the eigenvalues of the operator and
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use the variational approach to add the important effect of the
operator . Since the operator is constant, the eigenfunctions
of the operator will be determined by the eigenfunctions
of the operator . The eigenvalue of the operator is equal
to . The operator corresponds to a harmonic
oscillator with eigenvalues given by [18]

(24)

and eigenstates

(25)

where

(26)

are the Hermite polynomials, and are normalization
coefficients defined by biorthogonality of the operator, as de-
scribed below. The operator is not hermitian and therefore it
requires a careful consideration [19]. Under the definition of an
inner product between two functions and

(27)

the eigenstates of the adjoint operator are the complex con-
jugates of the eigenstates . The coefficients of the adjoint
functions are determined by the normalization requirement

. The normalization of the eigenmodes com-
bined with the biorthogonality requirement between the func-
tions and , requires that the normalization coefficients

will be different from the coefficients . Using the above
described normalization we obtain ; however,

and are not diagonal [19].
In order to solve the eigenvalue of the complete operator,

, we use a variational approach [20], [21]. This method
was successfully employed in numerous applications such as
atomic and molecular physics, nuclear physics, and more [21].
The method is used to find the eigenvalues of a system when a
direct calculation of the exact eigenstates cannot be performed.
We define the functional of the state function as

, where is the adjoint state function of
the function . When is an eigenfunction of the operator

, is the eigenvalue of the operator
that corresponds to the eigenfunction . Moreover, the function

is stationary in the neighborhood of the discrete eigenvalues
of the operator [20]. Therefore, the calculation of
the expectation value from an approximate eigenstate of the
operator, will often give a good approximation to the eigenvalue
of the operator even when the approximate eigenstate of the op-
erator is quite different from the accurate eigenstate. We choose
to approximate the eigenstates of the operator as

the eigenstates of the operator . Therefore, the eigen-
value, , of the operator can be approximated by

, where

(28)

and the stability condition is given by

(29)

We have carefully checked the validity of the use of the vari-
ational approach in our laser using a comprehensive numerical
simulation, as described in Section V. We obtained a good quan-
titative agreement between the results of the numerical simula-
tion and the results obtained using the variational approach.

When the effect of the operator on the continuum is ne-
glected, as performed in [8], the stability condition is given by

(30)

since . The result obtained is iden-
tical to the stability condition of the noise in a time slot where
a pulse is absent [14]. However, in order to obtain stable opera-
tion of the laser, there should be an operating region where the
noise in a time slot where a pulse exists is stable, while the noise
in a time slot where a pulse is dropped is unstable. Therefore, in
order to ensure optimal operation, both (29) and the condition

(31)

should be met.

IV. NUMERICAL EXAMPLES

In this section, we give a numerical example for calculating
the conditions required in order for the laser to be able to re-
cover from pulse dropout. The stability of the noise in a time
slot where a pulse propagates was calculated according to (29).
The stability of the noise in a time slot where a pulse is missing
was calculated using (31). In our calculations we assumed a
loss per round-trip , modulation depth , neg-
ligible insertion loss of the filter, , nonlinear coefficient

W , a cavity length of 50 m, and a filter
bandwidth of 13.5 nm. The wide bandwidth of the filter used in
the model as well as in experiments [22] enables to stabilize the
pulses while not significantly limiting the pulse duration.

Fig. 1 shows the results of the stability analysis for a laser
with a dispersion coefficient of 8 ps nm km , a modulation
frequency of 2 GHz, and a length of 50 m. The average power
of the laser was calculated using the relation ,
where is the pulse energy. In order to find the
incremental gain, , we used the equilibrium condition for
the pulse energy [14]

(32)

The solid and the dashed lines in Fig. 1 give the results of (31)
and (29), respectively. We also plotted the stability condition for
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Fig. 1. Stability limits calculated according to (29) (dashed line) and (31)
(solid line) as a function of the average power in the laser for a dispersion
coefficient of 8 ps=(nm � km), a modulation frequency of 2 GHz, and a fiber
length of 50 m. The optimal operating region, marked in the figure, is obtained
when both the conditions �G� l +RefE g > 0 and �G� l +RefE +
E g < 0 are met. The dotted line shows the stability condition for the solitary
pulse calculated according to (10).

Fig. 2. Boundaries of the average power inside the laser required for optimal
operation as a function of the modulation frequency, as calculated according to
(29) (solid line) and Eq. (31) (dotted line) for different dispersion coefficients:

2 ps=(nm � km), � 4 ps=(nm � km), 6 ps=(nm � km), and 8 ps=(nm � km).

the solitonic pulse given in (10) (dotted line). The optimal op-
erating region of the laser is marked in the figure. The figure
indicates that the minimum power required for stable operation
is determined by the requirement that the noise in a time slot
where a pulse is dropped will be unstable (31), while the max-
imum power is determined by the demand that the noise in a
time slot where a pulse propagates will be stable (29).

Fig. 2 shows the results of (29) and (31) as a function of the
modulation frequency for several values of the dispersion coef-
ficient of the intracacity fiber: 2, 4, 6, and 8 ps nm km .

Fig. 2 shows that the minimum power needed for stable op-
eration of the laser increases as the modulation frequency or
the dispersion are increased. The same result is obtained for
the upper limit of the power of the optimal operating region.
Equations (31) and (32) show that the dependence of the min-
imum power required to recover from pulse dropout is propor-
tional to . Using a straightforward complex analysis of the
integrals and we have
shown that the modulator adds a term to the stability condition
that is proportional to . Since the average laser power is

, where is the pulse energy,
(29) indicates that the maximum power is also proportional to

. By fitting the maximum power of the optimal operating
region to the function we received values of be-
tween 1.475 and 1.498 with errors of 0.021 and 0.010, respec-
tively, in accordance to the expected value of . We note
that the dependence of the minimum and the maximum average

power needed for stable operation on the modulation frequency
is larger than the trivial linear dependence due to the increase
in the number of cavity pulses. A similar result was obtained
for the stability condition of the soliton in [23]. Since both the
lower and the upper power limits depend on the modulation fre-
quency as , the stable operating regime becomes wider as
the modulation frequency increases, as can be seen in Fig. 2.

V. COMPARISON TO A NUMERICAL SIMULATION

In order to validate the use of the variational approach, the
reduced model, and the perturbation theory, we analyzed the
laser using a comprehensive numerical simulation, similar to
that used in [10]. We simulated the pulse propagation in the fiber
by solving the scalar nonlinear Schrödinger equation using the
split-step Fourier method. We used a model for the Er-doped
fiber amplifier that contained the saturation effect of the ampli-
fier as well as the amplified spontaneous emission noise [24].
The number of pulses that simultaneously propagate in the laser
cavity is large. For example, in a cavity with a length of 50 m and
a modulation frequency of 10 GHz, about 2500 pulses simulta-
neously propagate in the cavity. Due to the very slow response
time of the Er-doped amplifier, all the pulses affect the amplifier
saturation. Therefore, we used the super-pulse method [10] to
take into account the interaction of the pulses due to the ampli-
fier. This effect is not taken into account in the reduced model.
We have simulated the propagation of six pulses. The third pulse
was the pulse that was dropped. For each point we simulated the
propagation of the pulses through more than 300 000 round-trips
in the cavity. The parameters of the laser that was simulated
were the same as the parameters that were used in the reduced
model described in Section IV.

Fig. 3 demonstrates how the comparison between the results
of the reduced model and the results of the numerical simula-
tion was performed. The results shown in the figure correspond
to a laser with a modulation frequency of 2 GHz and a disper-
sion coefficient of 8 ps/(nm km). The dashed and the solid lines
are the results of (29) and (31), in the reduced model, respec-
tively. Points A–D, marked in the figure, were used in the nu-
merical simulation to determine the minimum and the maximum
laser power needed for an optimal operation. Fig. 4 shows the
pulse train, calculated using the numerical simulation, that cor-
responds to the four points (A–D) marked in Fig. 3. Fig. 4(a)
shows that at the average power that corresponds to point A,
the third pulse in the pulse train does not recover from dropout.
Fig. 4(b)–(c) gives the pulse train at the boundaries of the op-
timal operating region. In this region, the third pulse regenerated
and the laser could recover from pulse dropout. When the power
is further increased, multiple pulses are generated due to the in-
stability of the noise surround the pulses, as shown in Fig. 4(d).

We compared the results of the numerical simulation to the
results obtained from (29) and (31) at two different modulation
frequencies (2 and 20 GHz) and two dispersion coefficients (2
and 8 ps/nm km). The four points that were used in the compar-
ison correspond to the extreme points of the boundary of the op-
erating region that were analyzed in Section IV. Assuming that
the stability region changes continuously and monotonously as
a function of the modulation frequency and the dispersion, as
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Fig. 3. Comparison between the boundaries of the optimal operating region
calculated using the reduced model (solid and dashed lines) and the numerical
simulation (points A–D). The boundaries obtained using the reduced model
were calculated using (29) (dashed line) and (31) (solid line) as a function of the
average power in a laser with a dispersion coefficient of 8 ps=(nm � km) and a
modulation frequency of 2 GHz. The stability condition is obtained when both
conditions �G � l + RefE g > 0 and �G � l + RefE + E g < 0 are
met. Points A–D mark the power of the laser used to determine the boundary of
the stable operating region using the numerical simulation.

Fig. 4. Pulse train in the four points, marked A–D in Fig. 3, calculated using
the numerical simulation. Points B and C give the boundary of the optimal laser
operating region where the laser can recover from pulse dropout. In Fig. 4(a)
the laser cannot recover from pulse dropout, while in Fig. 4(d), multiple pulses
are generated. The results are obtained after simulating the propagation of the
pulses along more than 300 000 round-trips.

obtained by the reduced model, the comparison at the boundary
points gives an estimate of the difference between the numer-
ical and the reduced model along the whole operating region,
analyzed in Section IV. For a repetition rate of 2 GHz (20 GHz)
the error between the numerical model and (29) of the reduced
model was equal to 3% (12%) and 10% (14%) for a disper-
sion coefficient of 2 and 8 ps nm km , respectively. The error
between the numerical model and (31) for a repetition rate of
2 GHz (20 GHz) was equal to 4% (0%) and 0% (2%) for a
dispersion coefficient of 2 and 8 ps nm km , respectively.
Therefore, the results of the reduced model are in good quan-
titative agreement with the results of the comprehensive nu-
merical simulation for the simple laser configuration analyzed.
The agreement to which the results of the numerical and the re-
duced model agree also depends on the number of round-trips

that were simulated. In points B and C of Fig. 4, the gain of the
noise is very small, and there is a need to significantly increase
the simulation runtime.

The comparison of the reduced model and the numerical sim-
ulation gives the overall error in the reduced model, due to the
assumptions that led to the master equation, the first order per-
turbation analysis, and the use of the variational approach. How-
ever, the comparison does not separate between the contribu-
tions of the individual errors and the contribution of the overall
error. The validity of the perturbation theory is studied theoreti-
cally in [25]. The validity of the master equation and the pertur-
bation theory was also studied in previous works by comparing
the theoretical results to experimental and numerical results [7],
[8], [26], [27]. Our numerical results show that when the pulse
significantly changes during a round-trip, a large error is ob-
tained in the reduced model. For example, as the filter band-
width becomes narrower the total error increases also. For a
filter with a bandwidth of 3.5 nm (instead of 14 nm used in
this manuscript), the total error becomes 21% at a dispersion of
2 ps nm km and a modulation frequency of 2 GHz, and 62%
at a dispersion of 2 ps nm km and a modulation frequency
of 20 GHz, compared to 3% and 12% obtained in the laser an-
alyzed in the previous section. When the dispersion length de-
creases, the change in the pulse during a round-trip increases
and the error becomes larger. The parameters used in our nu-
merical simulation ensure a small change of the pulse along the
cavity. The maximum loss of the pulse due to the modulator
and the filter, obtained by the numerical simulation close to the
upper boundary of the stable operating region, were 3 10 and
9 10 , respectively, when the repetition rate was 20 GHz and
the dispersion was 2 ps nm km . We found that the pulse in
the numerical simulation had indeed a secant-hyperbolic profile
with a correlation to a secant-hyperbolic function better than
0.993. The noise energy was very small, less than 1% of the
soliton energy even when the laser power was very close to the
boundary of the stable operating region. For example, at a modu-
lation frequency of 20 GHz, a dispersion value of 8 ps nm km ,
and a laser power of 99.5% of the power at the boundary of the
optimal operating region, the noise energy was only 0.5% of
the soliton energy. This result indicates that the noise can be
accurately calculated, close to the boundary of the stable op-
erating region, using perturbation theory. Moreover, it indicates
that the stability of the solution in (21) can be determined by the
homogenous part of the equation. Neglecting the higher order
terms in (15) can be justified since the maximum of the param-
eter , is equal to 2.5 10 while the lower order parameter

is equal to 1.6 10 , obtained for a repetition rate of 20
GHz and a pulse duration of 1 ps. The value of the parameter

is smaller than 3.5 10 , obtained for a pulse dura-
tion of 1 ps.

VI. CONCLUSION

We have studied theoretically the recovery of a harmonically
actively mode-locked soliton fiber laser from pulse dropout. In
order to obtain stable operation in practical lasers, pulses that
are dropped due to changes in environmental conditions should
recover, while other pulses that propagate in the cavity should



ZEITOUNY et al.: STABLE OPERATING REGION IN A HARMONICALLY ACTIVELY MODE-LOCKED FIBER LASER 1387

remain stable. Soliton perturbation theory was used to find sta-
bility conditions for the noise in a time slot where a steady state
pulse propagates and in a time slot where a pulse is dropped.
In the optimal operating region of the laser, the noise should be
stable in the presence of a pulse, while the noise should become
unstable in a time slot where a pulse is dropped. This require-
ment ensures that the laser will recover from accidental pulse
dropout. The stabilization of the noise due to the presence of the
pulse is caused by the transfer of energy from the continuum ac-
companying the pulse to the bound states of the solitary pulse
by the modulator and the filter. Since solitonic propagation of
pulses inside the cavity is stable, noise transferred into the bound
states of the solitonic pulses decays. Therefore, the loss of the
noise due to the presence of the pulses increases. We found that
higher dispersion and higher modulation frequency of the laser
stabilize the noise and enable an optimal operation at broader
power regions and at shorter pulse durations. A good agreement
between the results of the reduced model and the results of a
comprehensive numerical simulation was obtained. The result
of this paper enable to better understand the causes and to im-
prove the stability of actively mode-locked fiber lasers.

REFERENCES

[1] J. P. Gordon and H. A. Haus, “Random walk of coherently amplified
solitons in optical fiber transmission,” Opt. Lett., vol. 11, no. 10, pp.
665–667, 1986.

[2] H. A. Haus, “A theory of forced mode locking,” IEEE J. Quantum Elec-
tron., vol. QE-11, no. 7, pp. 323–330, Jul. 1975.

[3] O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively
mode-locked lasers for the case of a nonlinear complex-propagation co-
efficient,” J. Opt. Soc. Amer. B, vol. 2, no. 5, pp. 753–760, 1985.

[4] H. A. Haus, W. S.Wong , and F. I. Khatri, “Continuum generation by
perturbation of soliton,” J. Opt. Soc. Amer. B, vol. 14, no. 2, pp. 304–313,
1997.

[5] J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear
Schroedinger equation,” J. Opt. Soc. Amer. B, vol. 9, no. 1, pp. 91–97,
1992.

[6] H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J.
Quantum Electron., vol. 29, no. 3, pp. 983–995, Mar. 1993.

[7] D. J. Kaup, “Perturbation theory for solitons in optical fibers,” Phys. Rev.
A, vol. 42, no. 9, pp. 5689–5694, 1990.

[8] F. X. Kaertner, D. Kopf, and U. Keller, “Solitary-pulse stabilization and
shortening in actively mode-locked lasers,” Phys. Rev. A, vol. 12, no. 3,
pp. 486–496, 1995.

[9] S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser: part
I—theory,” IEEE J. Quantum Elect., vol. 33, no. 5, pp. 660–668, May
1997.

[10] M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, “The-
oretical and experimental study of harmonically modelocked fiber lasers
for optical communication systems,” J. Lightw. Techol., vol. 18, no. 11,
pp. 1565–1574, Nov. 2000.

[11] D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the
homogeneous laser—part I: theory,” IEEE J. Quantum Electron., vol.
QE-6, no. 11, pp. 694–708, Nov. 1970.

[12] A. Takada and H. Miyzawa, “30 GHz picosecond pulse generation from
actively mode-locked erbium-doped fiber laser,” Electron. Lett., vol. 26,
no. 3, pp. 216–217, 1990.

[13] A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps pulse
generation at 40 GHz in phaselocked ring laser incorporating highly non-
linear fiber for application to 160 Gbit/s OTDM networks,” Electron.
Lett., vol. 35, no. 8, pp. 645–646, 1999.

[14] H. Haus and A. Mecozzi, “Long term storage of a bit stream of solitons,”
Opt. Lett., vol. 17, no. 21, pp. 1500–1502, 1992.

[15] M. E. Grain, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited
timing jitter in actively modelocked lasers,” IEEE. J. Quantum Electron.,
vol. 40, no. 10, pp. 1458–1470, Oct. 2004.

[16] W. Kaplan, Ordinary Differential Equations. Reading, MA: Addison-
Wesley, 1958.

[17] M. S. Miguel and R. Toral, Instabilities and Non-Equilibrium Struc-
tures, IV, E. Tirapegui, J. Martinez, and R. Tiemann, Eds. Norwell,
MA: Kluwer, 2000.

[18] A. Jannussis, G. Brodimas, S. Baskoutas, and A. Leodaris, “Non-her-
mitian harmonic oscillator with descrete complex or real spectrum for
nonunitary squeeze operators,” J. Phys. A: Math. Gen., vol. 36, pp.
2507–2516, 2003.

[19] A. Kostenbauder, Y. Sun, and A. E. Siegman, “Eigenmode expansions
using biorthogonal functions: complex-valused hermite-gaussians,” J.
Opt. Soc. Amer. A, vol. 14, no. 8, pp. 1780–1790, 1997.

[20] C. H. Chen and C.-D. Lien, “The variational principle for nonself-ad-
joint electromagnetic problems,” IEEE Trans. Microw. Theory Tech.,
vol. MTT-28, no. 8, pp. 878–886, Aug. 1980.

[21] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics. New
York: Wiley, 1977.

[22] T. F. Carruthers and I. N. Duling III, “10-GHz, 1.3-ps erbium fiber laser
employing soliton pulse shortening,” Opt. Lett., vol. 21, no. 23, pp.
1927–1929, 1996.

[23] M. Horowitz and C. R. Menyuk, “Analysis of pulse dropout in harmon-
ically mode-locked fiber lasers by use of the lyapunov methods,” Opt.
Lett., vol. 25, no. 1, pp. 40–42, 2000.

[24] M. Horowitz, C. R. Menyuk, and S. Keren, “Modeling the saturation
induced by broad-band pulses amplified in an erbium-doped fiber am-
plifier,” IEEE Photon. Technol. Lett., vol. 11, no. 10, pp. 1235–1237,
Oct. 1999.

[25] T. Georges, “Perturbation theory for the assessment of soliton transmis-
sion control,” Opt. Fib. Technol., vol. 1, no. 2, pp. 97–116, 1994.

[26] D. J. Jones, H. A. Haus, and E. P. Ippen, “Subpicosecond solitons in
an actively mode-locked fiber laser,” Opt. Lett., vol. 21, no. 22, pp.
1818–1820, 1996.

[27] M. E. Grein, L. A. Jiang, Y. Chen, H. A. Haus, and E. P. Ippen, “Timing
restoration in an actively mode-locked fiber ring laser,” Opt. Lett., vol.
24, no. 23, pp. 1687–1689, 1999.

Avi Zeitouny was born in Haifa, Israel, in 1971. He received the B.A. degree in
physics in 1996, the B.Sc. degree in materials engineering in 1996, and the M.Sc.
degree in materials engineering in 1999, from the Technion-Israel Institute of
Technology, Haifa, Israel. He is currently working toward the Ph.D. degree in
electrical engineering at the Technion.

His research interests include fiber lasers and their applications.

Yurij N. Parkhomenko was born in Kyiv, Ukraine, in 1945. He graduated Kyiv
State National University, Kyiv, Ukraine, in 1974. He received the Ph.D. degree
in physics and mathematics in 1981, and the Dr.Sc. degree in physics and math-
ematics (optics, laser physics) in 1996 from Kyiv National University in 1996.

He joined the Institute of Physics of National Academy of Sciences of
Ukraine (NASU), in 1984, where he was Senior Research Fellow, and the
Institute of Applied Problems of Physics and Biophysics of NASU (Kiev,
Ukraine) in 1991, where was he was Head of Laboratory of Laser Physics
and Spectroscopy. He was engaged in research in the problem of tunable
lasers, optical diffraction, and quantum electronics. In 2003, he joined the
Technion-Israel Institute of Technology, Haifa, Israel, where he is working in
the field of laser physics and diffraction theory. He is the author and coauthor
of over 100 papers.

Moshe Horowitz received the Ph.D. degree from the Technion-Israel Institute
of Technology, Haifa, Israel, in 1994.

Since 1998, he has been a Professor with the Department of Electrical En-
gineering, Technion. His current research interests include inverse scattering
theory in fiber gratings and its applications for developing novel fiber sensors,
novel fiber lasers, and microwave photonics.


	toc
	Stable Operating Region in a Harmonically Actively Mode-Locked F
	Avi Zeitouny, Yurij N. Parkhomenko, and Moshe Horowitz
	I. I NTRODUCTION
	II. M ATHEMATICAL M ODEL FOR C ALCULATING THE C ONTINUUM
	III. S TABILITY A NALYSIS OF THE C ONTINUUM
	IV. N UMERICAL E XAMPLES

	Fig.€1. Stability limits calculated according to (29) (dashed li
	Fig.€2. Boundaries of the average power inside the laser require
	V. C OMPARISON TO A N UMERICAL S IMULATION

	Fig.€3. Comparison between the boundaries of the optimal operati
	Fig.€4. Pulse train in the four points, marked A D in Fig.€3, ca
	VI. C ONCLUSION
	J. P. Gordon and H. A. Haus, Random walk of coherently amplified
	H. A. Haus, A theory of forced mode locking, IEEE J. Quantum Ele
	O. E. Martinez, R. L. Fork, and J. P. Gordon, Theory of passivel
	H. A. Haus, W. S. Wong , and F. I. Khatri, Continuum generation 
	J. P. Gordon, Dispersive perturbations of solitons of the nonlin
	H. A. Haus and A. Mecozzi, Noise of mode-locked lasers, IEEE J. 
	D. J. Kaup, Perturbation theory for solitons in optical fibers, 
	F. X. Kaertner, D. Kopf, and U. Keller, Solitary-pulse stabiliza
	S. Namiki and H. Haus, Noise of the stretched pulse fiber laser:
	M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling II
	D. J. Kuizenga and A. E. Siegman, FM and AM mode locking of the 
	A. Takada and H. Miyzawa, 30 GHz picosecond pulse generation fro
	A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, 1.6 p
	H. Haus and A. Mecozzi, Long term storage of a bit stream of sol
	M. E. Grain, H. A. Haus, Y. Chen, and E. P. Ippen, Quantum-limit
	W. Kaplan, Ordinary Differential Equations . Reading, MA: Addiso
	M. S. Miguel and R. Toral, Instabilities and Non-Equilibrium Str
	A. Jannussis, G. Brodimas, S. Baskoutas, and A. Leodaris, Non-he
	A. Kostenbauder, Y. Sun, and A. E. Siegman, Eigenmode expansions
	C. H. Chen and C.-D. Lien, The variational principle for nonself
	C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics . Ne
	T. F. Carruthers and I. N. Duling III, 10-GHz, 1.3-ps erbium fib
	M. Horowitz and C. R. Menyuk, Analysis of pulse dropout in harmo
	M. Horowitz, C. R. Menyuk, and S. Keren, Modeling the saturation
	T. Georges, Perturbation theory for the assessment of soliton tr
	D. J. Jones, H. A. Haus, and E. P. Ippen, Subpicosecond solitons
	M. E. Grein, L. A. Jiang, Y. Chen, H. A. Haus, and E. P. Ippen, 



