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Abstract: We describe a comprehensive computational model for single-
loop and dual-loop optoelectronic oscillators (OEOs). The model takes
into account the dynamical effects and noise sources that are required to
accurately model OEOs. By comparing the computational and experimental
results in a single-loop OEO, we determined the amplitudes of the white
noise and flicker noise sources. We found that the flicker noise source
contains a strong component that linearly depends on the loop length.
Therefore, the flicker noise limits the performance of long-cavity OEOs
(� 5 km) at low frequencies ( f < 500 Hz). The model for a single-loop OEO
was extended to model the dual-loop injection-locked OEO (DIL-OEO).
The model gives the phase-noise, the spur level, and the locking range of
each of the coupled loops in the OEO. An excellent agreement between the-
ory and experiment is obtained for the DIL-OEO. Due to its generality and
accuracy, the model is important for both designing OEOs and studying the
physical effects that limit their performance. We demonstrate theoretically
that it is possible to reduce the first spur in the DIL-OEO by more than 20
dB relative to its original performance by changing its parameters. This
theoretical result has been experimentally verified.
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1. Introduction

Optoelectronic oscillators (OEOs), first introduced by Yao and Maleki in 1996 [1], are used
to generate signals in X-band with a low phase noise. These hybrid opto-electronic devices
contain a long optical fiber, typically in the range of 4–6 km. The RF signal is modulated onto
an optical carrier at the entry to the fiber, which is then demodulated at the exit. Thus, the
OEO is effectively a high-Q RF cavity. Such a high-Q cavity makes possible the generation of
a high-frequency signal whose phase noise is nearly independent of the oscillation frequency.
Furthermore, the use of a long optical fiber and a tunable narrowband RF filter makes it possible
to tune the oscillating signal over a very broad frequency range. These important advantages
make the OEO an attractive candidate to replace classical oscillators such as multiplied quartz
crystals or phase-locked dielectric resonator oscillators.

Due to the length of the optical fiber, the cavity mode spacing is too small to filter out a
single cavity mode using an RF filter. Therefore, the RF spectrum of single-loop OEOs contains
strong spurs at the cavity mode frequencies. OEOs with two or more coupled cavities have
been used to reduce the spurs [2, 3]. In the work of Zhou et al. [2], a long loop OEO, called
the master loop, generates an RF signal with a low phase noise. The spurs of the master loop
are significantly attenuated by injection-locking the master loop to another short-loop OEO,
called the slave loop. The OEO has several parameters that can be varied over a wide range,
and determining the performance at frequencies close-in to the the carrier with even one set of
parameters is time-consuming. As a consequence, it is not possible to comprehensively explore
the parameter space experimentally; so it is essential to develop a comprehensive model that is
capable of accurately exploring the OEO performance as a function of the OEO parameters.

Several models have been presented for studying the phase noise in OEOs. Yao and Maleki
have presented an analytical expression for the phase noise in a single-loop OEO [1] using a
model that assumes that the signal’s change per round-trip at any point in the loop is small and
treats all the loop elements as distributed, rather than lumped. The Yao-Maleki model gives the
dependance of the time-averaged phase noise on the frequency offset from the carrier frequency,
the cavity length, the oscillation power, and the amplitude of the white noise source. In [4] we
introduced a reduced model for calculating the phase noise in a dual-injection-locked OEO
(DIL-OEO) that is based on the Yao and Maleki model, and like that model assumes that the
signal’s change per round-trip at any point in both loops is small. Chembo et al. [5] developed
a model for a single-loop OEO that is based on a delay-differential equation for studying the
signal dynamics in single-loop OEOs. This model assumes that the signal variation along the
cavity is small, so that the order of the components does not affect the round-trip signal trans-
mission. In previous work, we have developed a comprehensive model to study a single-loop
OEO [6]. This model generalized the Yao-Maleki model and includes all of the physical effects
in the Yao-Maleki model as well as other physical effects that are needed to calculate important
features of the OEO dynamics, such as the fast response time of the modulator, the ability of
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the OEO to oscillate in several cavity modes, and amplitude fluctuations that are induced by the
input noise.

In this manuscript, we describe a computational model for single- and dual-injection-locked
OEOs (DIL-OEOs) that is a significant extension of the model that is described in Ref. [6],
which only applied to a single-loop OEO. This extended model has been experimentally veri-
fied [7, 8]. In order to obtain agreement between theory and experiment, we added to the model
described in Ref. [6] a phase flicker (1/ f ) noise source, gain saturation in the RF amplifiers,
and the spectrum of the RF filter. By extracting the magnitude of the phase flicker noise am-
plitude from phase measurements in single-loop OEOs with different cavity lengths, we have
found that the phase flicker noise contains a strong component with an amplitude that depends
on the square-root of cavity length. Therefore, in long-cavity OEOs (L > 5 km) the phase noise
at low frequencies ( f < 500 Hz) is dominated by the phase flicker noise. A good quantitative
agreement between theory and experiments is obtained for the phase noise spectrum and the
spur levels of both the slave and the master loops in the DIL-OEO. In contrast to the reduced
model that we previously described in [4], this model takes into account the full OEO dynamics,
including the growth of the oscillator signal from noise, rather than assuming steady-state op-
eration. Thus, unlike the model in [4], it is capable of determining the locking bandwidth of the
two loops in the DIL-OEO. Moreover, this model takes into account the locations of the lumped
elements in each loop, rather than treating them as distributed elements. As a consequence, this
model can accurately describe the effect of large lumped coupling between the loops of the
DIL-OEO, as well as gain, loss, and gain saturation. Since this computational model is based
on the full physics, it is inherently more trustworthy than the reduced models. As is almost the
case when comparing simplified or reduced models to more complete or full models, there is
a tradeoff between computational speed and accuracy. Our view is that for modeling OEOs,
this tradeoff favors the use of the full model. It runs quickly — taking less than two minutes of
CPU time on a standard desktop computer for one set of parameters — and has allowed us to
examine a broad parameter range.

We used our model to theoretically study how to improve the DIL-OEO performance. Our
model predicted that it is possible to reduce the magnitude of the first spur that is obtained in the
master loop of the DIL-OEO by 20 dB relative to the level in the original experiments [7]. The
decrease in the spur level is obtained by increasing the slave loop length by a factor of 10 and
by using a strong injected signal with a power of −6 dB with respect to the oscillating signal
in both loops. The increase in the slave loop length and the increase in the power injection
ratio contribute about 10 dB each to the decrease in the spur level. Subsequently performed
experiments verified our model predictions, and guided by the theoretical results we were able
to significantly reduce the spur level. These experiments have been presented in part in [8] and
will be presented in full elsewhere.

The remainder of this paper is organized as follows. In Sec. 2 we review the single-loop OEO
model, including the generation of the flicker noise, and we present the model for DIL-OEO. In
Sec. 3 we present comparison between the experimental results and the theoretical results for
the phase noise in a single-loop OEO and DIL-OEO. A good agreement is achieved between
theory and experiment. In Sec. 4, we present a theoretical study of methods to reduce the spur
level. The theoretical calculations that were subsequently verified experimentally show that a
significant reduction in the spur level can be achieved by increasing the loop delay of the slave
loop and optimizing the coupling between the loops. Finally, we summarize our results and
conclude in Sec. 5.
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Fig. 1. Schematic illustration of the single-loop OEO configuration

2. Model description

In this section we describe our model for the single-loop and dual-loop OEO configurations.
As previously noted in [6], four different time/frequency scales play a role in the OEO. At the
highest frequency scale, we have the optical carrier in the optical fiber, which is close to 200
THz. However, the role of the optical carrier is completely passive. The light merely serves to
carry the RF signal from one end of the optical fiber to the other and has no effect on the OEO
dynamics. We therefore model the optical fiber as a fixed delay of the RF signal and ignore the
dynamics on the optical frequency scale. At the next-highest frequency scale, we have the RF
carrier at around 10 GHz. At this scale, the RF filters in the OEO loops, which typically have
a bandwidth of about 10 MHz, filter out harmonics of the RF signal that appear due to gain
saturation in the RF amplifiers and optical modulators. At the next-highest frequency scale, we
have the inverse of the round-trip time in the OEO loops. This time may be as short as 0.2 μs
for a 40 m loop, corresponding to a frequency of 5 MHz, and may be as long as 30 μs for a
6 km loop, corresponding to 33 kHz. Finally, we have the frequency scale of the phase noise.
We are interested in the frequency range from about 1 Hz to 100 kHz. A point that should be
emphasized is that the last two scales are not well-separated. In most previous models [1, 4, 5],
the behavior during one round-trip in an OEO loop was not resolved. As a consequence, these
previous models are simpler than ours and use less CPU time than ours does; however, they
also cannot reliably achieve the quantitative agreement with experiment that our model does.

By contrast, it is not necessary to resolve phenomena that occur on the time scale of the 100
ps oscillation period of the RF carrier, since this time scale is widely separated from the two
longer time scales.

In a typical simulation of the DIL-OEO, we calculate the signal evolution for 0.01 seconds,
corresponding to 50,000 round-trips in a short slave loop with a 40 m loop. This simulation
takes approximately 2 minutes on an IBM with a CPU speed of 2.33 GHz and 4 GB of RAM.
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2.1. Modeling the oscillating signal and its noise in a single-loop OEO

In this sub-section, we review the single-loop OEO model; more details may be found in [6]. A
schematic illustration of the single-loop OEO is given in Fig. 1. Light from a laser is fed into an
electro-optic modulator, which is used to convert microwave oscillations into a modulation of
the light intensity. The modulated light is sent through a long optical fiber and is then detected
using a photodetector, which converts the modulated light signal into an electrical signal. The
electrical signal is then amplified, filtered, and fed back into the electrical port of the modulator.

In the analysis of a single-loop OEO, it is assumed that due to the narrow bandwidth of the
OEO filter, the voltage applied to the modulator, Vin(t), is approximately a sinusoidal wave with
an angular carrier frequency ωc = 2π fc, a time-dependent phase φ(t), and a time-dependent
amplitude |amod

in (t)|, so that

Vin(t) = |amod
in (t)|cos[ωct −φ(t)] =

1
2

amod
in (t)exp(−iωct)+ c.c., (1)

where amod
in (t) = |amod

in (t)|exp[iφ(t)] is the complex envelope or the phasor of the voltage Vin(t).
Since the OEO signal is narrow-band we assume that |dφ/dt|�ωc and d|amod

in |/dt �|amod
in |ωc.

The phasor of the oscillating signal contains all the information in both the amplitude and
phase noise spectrum. As noted previously, the nonlinear response of the OEO components
such as the electro-optic modulator and the RF amplifiers creates high-harmonic components
that are centered around angular frequencies mωc with m > 1, where m is an integer, but these
higher harmonics are filtered out, so that it is sufficient to model only the propagation of the
phasor that represents the signal around the angular carrier frequency ωc. The evolution of the
phasor amod

in (t) in the OEO cavity is calculated by taking into account the effect of all the OEO
components: the electro-optic modulator, the fiber delay, the photodetector, the RF amplifiers
with saturation, and the RF filter.

The electro-optic modulator that is analyzed in our model is a Mach-Zehnder modulator.
We used the Jacobi-Anger expansion to calculate the first harmonic in the nonlinear modulator
response [1, 6]. Keeping only the first harmonic term, the phasor at the output of the photode-
tector, aPD

out, is related to the phasor at the input RF port of the modulator, amod
in , by

aPD
out (T ) = −αP0ηρRcos(πVB/Vπ,DC)J1

(
π

∣∣∣amod
in (T )

∣∣∣/Vπ,AC

)
exp [iφ (T )] . (2)

where α is the insertion loss in the modulator and the detector, P0 is the optical power at the
modulator input, η is a parameter determined by the extinction ratio of the modulator (1 +
η)/(1−η), ρ is the responsivity of the photodetector, R is the impedance at the output of the
detector, Vπ,DC and Vπ,AC are the modulator half-wave voltages for the DC and AC voltages,
respectively, and VB is the DC bias voltage.

Our experimental setup [7] included three identical RF amplifiers, each with a small-signal
gain of 20 dB. The gain saturation of the three cascaded RF amplifiers was measured and then
used in the model. The gain saturation curve is shown in Fig. 2(a); it describes the relation
between output power of the 3 RF amplifiers Pout = |aamp

out (t)|2/2R and the input power Pin =
|aamp

in (t)|2/2R, where aamp
in (t) = aPD

out(t).
The model also takes into account the RF filter response and its dynamic effects. The dynamic

effects are taken into account by using the time history of the phasor, which is chosen to be
longer than the response time of the filter. The filter implementation and its associated dynamic
effects are described in detail in [6]. The full width at half maximum (FWHM) of the RF
filter bandwidth that is used in our experimental setup [7] was equal to ΩF = 8 MHz. In our
model, we used the experimentally measured transmission function that is shown in Fig. 2(b).
To ensure that the RF filter has a casual response, a linear phase chirp was added to the measured
transmission function that corresponds to a delay of 0.1 μs.
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We have implemented our model by discretizing the phasor of the oscillating signal along
the loop using an array containing N points, which implies a time separation or resolution time
δ t = τ/N. The number of points was chosen so that the simulation bandwidth Δ f = 1/δ t is
broader than the RF filter FWHM bandwidth, ΩF. Furthermore, we checked that the results did
not change when we increased the number of points N.

Additive white Gaussian noise is included in the model and is added to the phasor of the
oscillating signal. Additive white Gaussian noise is added at the output of the photodetector
and at the input of each of the RF amplifiers at each round trip. The spectral power density
of the additive noise at the output of the photodetector and at the input of the RF amplifiers
is determined by evaluating the shot noise power density, ρSN, and the thermal noise power
density, ρth, respectively. The photodetector’s shot noise power density is evaluated using the
formula: ρSN = 2eIPDR, where IPD = 〈|aPD

out(t)|〉τ/R is the photodetector’s current, averaged over
one round trip, and 〈〉τ denotes averaging over the round-trip time. The spectral power density
of the thermal noise, given by ρth = (NF)kBT , is determined by the noise factor NF of the RF
amplifiers. The noise factor was determined empirically, and in order to obtain the best match
between theory and experiment we typically used a noise factor of NF = 4. We added noise
to the oscillating phasor in the same manner that is described in [6]. During each round trip,
we added N mutually independent noise variables wi, i = 1, ...,N, to the array of the oscillating
phasor, such that the variance of the noise variables is set by the relation 〈|wi|2〉τ/2R = ρ/τ ,
where ρ is the noise power density. A complex Gaussian distribution is assumed, and each of
the real and imaginary parts of the noise variables is normally distributed with a variance ρR/τ .
The noise is added in the simulation after the photodetector and before each of the RF amplifiers
with a noise power density of ρSN and ρth, respectively. We note that the main contribution of
the thermal noise to the phase noise is from the noise that is added at the input of the first RF
amplifier. As a result, the phase noise in our simulation is practically determined by the total
white noise that is added between the photodetector and the first RF amplifier, which has a
noise power density of ρtotal = ρth +ρSN.

The experimental results indicate that phase flicker noise (1/ f ) is the dominant noise source
at low frequencies ( f < 500 Hz) of long-cavity OEOs (L � 5 km). Therefore, we include in
our model a phase flicker noise source. In electronic devices, such as RF amplifiers, flicker
noise is generated at DC and then nonlinearly upconverted to the carrier frequency [10]. The
same appears to be true in the optical domain where some combinations of fiber dispersion
and nonlinearity, double-scattering processes, and environmental effects can convert electronic
flicker noise to optical flicker noise and other odd powers of the frequency in the phase noise
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Fig. 2. (a) The measured electrical power at the output of the 3 RF amplifiers as a function
of the input power. (b) The measured spectrum of the RF filter as measured experimentally
and used in the model.
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spectrum. Thus, the phase flicker noise is multiplicative. We model the phase flicker noise by
multiplying the phasor of the oscillating signal by exp[iθ(t)] at the output of the RF ampli-
fiers, where θ(t) is a time-domain realization of flicker (1/ f ) noise, which has a power spectral
density 〈Sθ ( f )〉 = b−1/ f rad2/Hz. We found that the effect of the phase noise was indepen-
dent of the location in the loop where we added the flicker noise. The flicker coefficient b−1

is dimensionless, and it determines the power spectral density of the phase flicker noise. The
flicker coefficient was determined empirically in order to obtain the best match between theory
and experiment, and in a short-loop-length OEO we used a flicker coefficient of 1−2×10−12,
which is a typical range for RF amplifiers [10]. Flicker noise is correlated, and it can be mod-
eled by linearly filtering white Gaussian noise. Several different techniques exist. We used the
approach that is described in Ref. [11]. In sub-section 2.2, we describe in detail how the flicker
noise was generated in our model.

During each round trip, we calculated the evolution of the phasor, taking into account the
additive white noise and the multiplicative flicker noise. It is necessary to record the phasor
amod

in (t) over some large number NRT round trips in order to calculate the phase noise power
spectral density at low frequencies. The phase noise of the oscillating signal is calculated using
the Fourier transform of the accumulated phasor [6]. The lowest frequency that can be resolved
is on the order of 1/Ttot where Ttot = NRTτ is the overall accumulation time of the phasor in the
simulation run. The power spectral density of the phase noise is then calculated by averaging the
power spectral density that we obtain from individual simulation runs over Navg realizations. In
our simulations, we used a range of accumulation times Ttot = 10−100 ms, a range of resolution
times δ t = 50− 60 ns, and a range of numbers of realizations Navg = 20− 100. We checked
the convergence of our computational results by verifying that the power spectral density of
the phase noise did not change when we increased the resolution time δ t or the number of
realizations Navg.

2.2. Modeling the flicker noise

In our simulation model, we used the approach that is described in Ref. [11] to create a discrete
time series, θk, k = 1, ...,M, with an averaged spectrum of 〈Sθ ( f )〉 = b−1/ f . The length of the
time series is determined by the ratio between the total accumulation time and the resolution
time of the simulation, M = Ttot/δ t = NRTN. We started with discrete white Gaussian noise
in the time domain, wk. The variance of the white noise was set so that 〈wk〉2 = 2πb−1. The
filtering in the simulation was implemented in the frequency domain, so that

Θ(νn) = H(νn)W (νn), (3)

where n = 1, ...,M, νn = −1/2 +(n− 1)/M is the normalized fourier frequency, Θ(νn) is the
filtered noise, H(νn) is the filter response in the frequency domain given by

H(νn) = [1− exp(−2πiνn)]−1/2,
H(νM/2+1) = 0,

(4)

and W (νn) is the discrete Fourier transform of wk defined by

W (νn) =
M

∑
k=1

wk exp[2πi(k−1)(n−1)/M]. (5)

The discrete time series of the flicker noise in the time domain is given by applying an inverse
Fourier transform to the filtered noise Θ(νn)

θk = (1/M)
M

∑
n=1

Θ(νn)exp[−2πi(k−1)(n−1)/M]. (6)
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Fig. 3. Schematic description of the DIL-OEO. The DIL-OEO operates in a master-slave
configuration. The longer loop, referred to as the master loop, generates a harmonic signal
with a very low phase noise. The shorter loop, referred to as the slave loop, is used to
decrease the amplitude of the spurs. Part of the master signal, Γ12, is injected into the slave
loop, as indicated schematically by the solid arrow. The dashed arrow indicates that part of
the slave signal, Γ21, is coupled back into the master loop.

The discrete time series θk has an averaged spectrum of 〈Sθ ( f )〉 = b−1/ f . The series θk is
generated at the beginning of each simulation run. During each round trip, we use N subsequent
terms of the series to multiply the array of the phasor by exp(iθk), so that by the end of the run
all the terms of the series are used only once.

2.3. Modeling dual-loop OEOs

Figure 3 shows a schematic description of the DIL-OEO configuration. The lumped compo-
nents in the loop, as well as the added noise, are modeled in the same manner as was described
in sub-sections 2.1 and 2.2 for the single-loop OEO. The difference between the two configura-
tions is clearly the presence of the couplers in the injection bridge which are used to injection-
lock between the oscillating signals of the master-loop and the slave-loop in the DIL-OEO. In
this sub-section we describe how the model takes into account the couplers and how it treats
the time synchronization between the two oscillating signals.

We denote the loop delays τ1 and τ2, when τ2 ≤ τ1. Following the terminology in [2], we
refer to the OEO loop with the longer loop delay, τ1, as the master loop, and to the OEO loop
with the shorter loop delay, τ2, as the slave loop. We assume an arbitrary carrier frequency
fc that is approximately equal to the expected oscillating frequency of the DIL-OEO, and we
denote the phasors in the master loop and the slave loop with respect to the carrier frequency as
a1(t) and a2(t), respectively.

The coupling between the two loops is characterized by four complex coefficients, γi j, i, j =
1,2: (

a′1(t)
a′2(t)

)
=

(
γ11 γ21

γ12 γ22

)(
a1(t)
a2(t)

)
. (7)

where ai(t) and a′i(t) (i = 1,2) are the amplitudes before and after the coupling in the master
loop (i = 1) and in the slave loop (i = 2), respectively. The forward injection coefficient, Γ12 =
|γ12|2, represents the relative injected power from the master to the slave loop and the backward
injection coefficient, Γ21 = |γ21|2, represents the relative injected power from the slave to the
master loop. Unidirectional injection corresponds to Γ21 = 0.
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The evolution in the DIL-OEO was simulated by calculating iteratively the change in the
phasors a1(t) and a2(t) in a round trip in each of the OEO loops. In our model implementation,
the phasors a1(t) and a2(t) were sampled with the same resolution time δ t, which is typically
50 nanoseconds and was always chosen so that τ2/δ t = N2 is an exact integer. In a 40 m loop
we typically chose N2 = 4. In this case, we find τ1 = N1δ t + δτ1, where |δτ1| < δ t/2. In our
simulations, we retained N2 values of a2(t) and N1 values of a1(t) in two separate arrays. The
arrays of the phasor in the master loop and in the slave loop before the injection bridge are
denoted by a1(i1) and a2(i2), respectively, such that i1 = 1, ...,N1 and i2 = 1, ...,N2. The arrays
of the phasor in the master loop and in the slave loop after the injection bridge are denoted
by a′1(i1) and a′2(i2), respectively. The phasor elements were calculated in each OEO loop and
were coupled when they arrive at the coupler.

The time synchronization in the coupling between the two loops was implemented in the
model in the following manner: Let k = 1, ...,M be the iteration index and M be the number of
the total accumulated terms in the simulation run in each of the loops, such that M = Ttot/δ t,
and let us assume that δτ1 = 0. We let i1 = mod(i,N1)+ 1 and i2 = mod(i,N2)+ 1. Thus, the
variables i1 and i2 pass cyclically through the values i1 = 1, ...,N1 and i2 = 1, ...,N2. In each
iteration, we used a1(i1) and a2(i2), for which we calculated the phasors after the injection
bridge, a′1(i1) and a′2(i2), using Eq. (7). When i j = Nj, j = 1,2, we used the array of the phasor
after the bridge, a′j(i j), in order to calculate the array of the phasor before the bridge, aj(i j),
for the following round-trip. The evolution of the phasor after the bridge in each loop was
calculated by taking into account the response of all the lumped components on the phasor, as
well as the additive white noise and the multiplicative flicker noise. The evolution of the phasor
array in each loop was calculated in the same manner as in the single-loop OEO model that was
described in sub-section 2.1 and in [6].

We modeled the case δτ1 	= 0 by adding a constant phase shift of δφ1 = −2π fcδτ1 to the
phasor array of the master loop after it propagates for a time N1δ t that is approximately equal to
the round-trip duration of the master loop. Our model’s ability to treat the case δτ1 	= 0 allows
us to take into account the incommensurability of the two loops, which is always present in
practice.

We note that the dual-loop OEO model includes all the dynamical effects that were studied
in the single-loop model, such as the cavity mode competition during the OEO start-up and
temporal amplitude oscillations. These dynamical effects and others are described in detail for
a single-loop OEO in Ref. [6].

3. Comparison with experimental results

In this section we compare the theoretical and the experimental results for the phase noise
in a single-loop OEO and in the DIL-OEO. Good agreement between the theoretical and the
experimental results is achieved for both the single-loop OEO and for the DIL-OEO. The Mach-
Zehnder modulator’s measured parameters values are: Vπ,AC = 5 V, Vπ,DC = 3.15 V, VB = 2.6 V,
and η = 0.7. We used the specified photodetector responsivity: 0.8 A/W at DC and 0.55 A/W at
10 GHz. The measured optical power P0 is 17 mW and the impedance at the output of the pho-
todetector was R = 50 Ω. The first step of the comparison was to compare the theoretical and
the measured RF power at the output of the detector. We added an effective loss between −0.4
dB and −0.9 dB to the model in order to match the measured RF power. The photodetector’s
shot noise power density, ρSN, was then determined from the round-trip averaged photodetec-
tor’s current IPD. We empirically set the noise factor NF of the RF amplifiers — and hence the
thermal noise power density ρth = (NF)kBT — and the flicker noise coefficient b−1, so that we
obtained the best match between theory and experiment, as described in sub-section 3.1.

#131695 - $15.00 USD Received 14 Jul 2010; revised 3 Sep 2010; accepted 7 Sep 2010; published 24 Sep 2010
(C) 2010 OSA 27 September 2010 / Vol. 18,  No. 20 / OPTICS EXPRESS  21469



10
1

10
2

10
3

10
4

10
5

−150

−100

−50

 f  (Hz)
Ph

as
e 

no
is

e 
(d

B
c/

H
z)

 

 

Fig. 4. Comparison between the experimentally measured noise spectral density, SRF( f )
(solid gray line) and the noise spectral density that is calculated by using a model that
excludes flicker noise (dashed-dotted green line) and a generalized model that includes
flicker noise (solid red line). All the theoretical curves were calculated assuming the same
white noise, oscillation power, and small signal gain. The OEO loop-delay equals τ =
31.7 μs and the phase flicker coefficient equals b−1 = 10−11.

3.1. Loop length dependance of the phase flicker noise in a single-loop OEO

The coefficient of the phase flicker noise and the noise factor of the RF amplifiers were de-
termined empirically by comparing the theoretical and the experimental phase noise spectra.
Figure 4 shows a comparison between theory and experiment in a single-loop OEO with a
length of 6400 m, which corresponds to a loop-delay of τ = 31.7 μs. The figure shows that in
order to obtain good agreement between theory and experiment, a phase flicker noise source
must be added. Good agreement between theory and experiment was also obtained when the
loop delay was equal to 0.5,2.7,7,10,15, or 27 μs, corresponding to loop lengthes between
100 and 5400 m, when an appropriate amount of flicker noise was added. For all the OEO
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Fig. 5. Dependence of the phase flicker coefficient on the loop length as extracted from
single-loop OEO measurements (red dots). The dependence was found to be approximately
linear (dashed line): b−1 = 2×10−12 +2.5×10−15L, where the fiber length L is measured
in meters . The accuracy of the extracted dots is limited by the accuracy of the measured
data, which is approximately 3 dB. Therefore, the error-bars of the extracted dots are equal
to 3 dB.
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lengths, the measured oscillation power at the photodiode was −22± 1 dBm and the oscil-
lating power at the output of the RF amplifiers was equal to 23.3± 0.3 dBm. The total white
noise power density that was used in the theoretical model for all the loop delays was equal to
ρN = 9×10−20±0.5×10−20 W/Hz, which can be obtained by assuming that the photodetector
is limited by shot noise and that the RF amplifiers have a noise factor NF = 4. The only free
parameters in the simulation that we changed when the cavity length was varied were the flicker
coefficient b−1, which determines the power density of the phase flicker noise source, and the
effective loss. We varied the effective loss in the model between −0.4 dB and −0.9 dB in or-
der to match the theoretical RF power of the photodetector output to the measured power. We
chose the flicker noise coefficient, b−1 so that the theoretical phase noise matches the measured
phase noise. Figure 5 demonstrates the dependence of the extracted flicker noise coefficient on
the cavity length. Each dot in Fig. 5 was extracted from the measured phase noise. The accu-
racy of each dot is limited by the noise in the measured data, which approximately equals 3
dB. The figure shows that the flicker coefficient can be divided into a noise component that is
independent of the cavity length b−1 = 2×10−12 and a component that depends on the cavity
length L. The component that does not depend on the loop length is consistent with the typical
flicker noise power that is observed in RF amplifiers [10]. There are several possible sources
of the length-dependent flicker noise. These include: conversion of laser frequency noise into
phase noise noise via dispersion and/or laser RIN noise into phase noise via the Kerr nonlinear-
ity, double-scattering processes in the fiber such as double-Rayleigh backscattering or double
Brillouin scattering, polarization mode dispersion, and environmental effects. This list is not
exhaustive and we intend to study the exact causes of the length-dependent flicker noise in the
future. The length-dependent flicker noise is the principal source of phase noise in the low fre-
quency region ( f < 500 Hz) of long-cavity OEOs (L > 5 km). The dependance of the flicker
noise power on the loop length that was obtained in the single-loop OEO was successfully used
as an input to our model for the DIL-OEO.

3.2. Comparison between theory and experiment in the DIL-OEO

In this sub-section we present a comparison between the theoretical and the measured phase
noise in a DIL-OEO [9]. The experimental setup is described in [7] and a schematic description
of the device is given in Fig. 3. A master loop with a length of 4196 m was coupled to a slave
loop with a length of 44 m. First, we compared the theoretical and the experimental results for
both the slave loop and the master loop in the free-running case when the two loops are not
coupled and function as single-loop OEOs. This case corresponds to setting Γ12 = Γ21 = 0 and
Γ11 = −0.3 dB, Γ22 = −2.5. The other parameters used for the two loops were the same as as
those we used in the model for the single-loop OEO. We included white noise and flicker noise
in the model. The power density of the white noise was equal to ρN,1 = 2.4×10−20 W/Hz for
the master loop and to ρN,2 = 9×10−21 W/Hz for the slave loop. The flicker noise coefficient
that we used was equal to b−1 = 10−11 for the master loop and b−1 = 10−12 for the slave loop.
The flicker noise coefficient of the slave loop is consistent with the flicker noise coefficient that
was measured for RF amplifiers [10]. However, the flicker coefficient in the master loop was
considerably higher than in the slave loop, which is in accordance with the results presented
in Fig. 5. We obtained excellent quantitative agreement between theory and experiments in the
unlocked case, as can be seen in Fig. 6(a).

Figure 6(b) shows the phase noise in the slave and in the master loops when the two loops
were coupled and the injection power coefficients were Γ11 = −0.3 dB, Γ22 = −2.5 dB, and
Γ12 = Γ21 = −20 dB. The coupling between the two loops was experimentally implemented
using a phase shifter before the coupling bridge in the same loop, so that the coupling co-
efficients γi j are real numbers. We obtained good quantitative agreement between theory and
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(a) Free-running case
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(b) Injection-locked case

Fig. 6. (a) Phase noise of the master loop (blue) and the slave loop (red) when the loops
are free-running and function as single-loop OEOs. (b) Phase noise of the master loop
(magenta) and the slave loop (green) when the loops are injection-locked. The inset zooms
in on the first spur in the master and slave loops. Good agreement is achieved between
the experimental results (thin lines or light colors) and the theoretical results (thick lines
or dark colors) when the loops are injection-locked. The injection power coefficients were
Γ11 =−0.3 dB, Γ22 =−2.5 dB, and Γ12 = Γ21 =−20 dB. Theory shows that the first spur
in the master loop is about 20 dB lower than in the unlocked case.
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Fig. 7. (a) Calculated phase noise for the free-running slave loop (red) and for the injection-
locked slave loop (green) compared to experimental results (thin lines or light colors). The
phase noise within the locking range is determined by the master loop. (b) The calculated
first spur of the injection-locked master loop (magenta) compared to the spur in the free-
running loop (blue). The spur is reduced by approximately 20 dB by injection-locking.
The theoretical results (thick lines or dark colors) are also compared to the corresponding
experimental results (thin lines or light colors).
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Fig. 8. Calculated spectrum of the phase noise in the neighborhood of the first spur of the
master loop as RΓ varies for τ1 = 20 μs and (a) τ2 = 0.2 μs, (b) τ2 = 2 μs. We show results
for RΓ = −40 dB, −20 dB, and 0 dB. For comparison, we also show the spur level when
the master loop is free-running and functions as a single-loop OEO.

experiment for the phase noise spectrum as well as for the spur levels in both OEO loops in
the injection-locked case as demonstrated in Fig. 6(b). Figure 7(a) shows that the model accu-
rately describes the reduction of the phase noise in the slave loop within the frequency locking
range of the two loops. Within the locking range, the phase noise in the slave loop is mainly
determined by the phase noise of the master loop. Fig. 7(b) shows that the first spur level in the
injection-locked master loop is reduced by approximately 20 dB — from −95 dBc/Hz to −115
dBc/Hz — compared to the spur level when it is free-running.

4. Theoretical study of approaches to decrease the first spur in the master loop

In this section, we describe our theoretical optimization of the OEO performance and our exper-
imental verification of the theoretical predictions. A description of the experimental procedures
and results is summarized in [8] and will be described in full elsewhere. Our starting point for
the theoretical work was the experiments that are described in [7] and in sub-section 3.2. We
used the model presented in Sec. 2, and we varied the slave loop length and the power injection
ratio, which is defined in the following paragraph. We found a reduction in the first spur by
about 20 dB in the injection-locked master loop, relative to the original experiments [7]. These
calculations were subsequently verified in experiments.

Our design goal is to reduce the spur level, while approximately maintaining the low phase
noise of the free-running master loop. We have chosen to focus on minimizing the phase noise
in the master loop rather than in the slave loop since the phase noise of the slave loop is higher
outside the locking range.

We have found both theoretically and experimentally that we achieve the best results when
Γ12 � Γ21 and Γ11 � Γ22. We define the power injection ratio RΓ = Γ12/Γ11 = Γ21/Γ22, and
we will determine the optimum performance as we vary this quantity and the slave loop’s delay
time. In the computational work that we will present in this section, we have set Γ11 = Γ22 =
0.25. In the experimental verifications that we present here, we set Γ11 to within 0.5 dB of Γ22.
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Fig. 9. Calculated dependence of the spur level on the power injection ratio when τ2 =
0.2 μs (red triangles) and when τ2 = 2 μs (blue circles).

Figure 8 shows the calculated noise dependence of the phase noise around the first spur of
the master loop as RΓ varies. In Fig. 8(a), we present results when the slave loop has a loop
delay of 0.2 μs, corresponding to a loop length of approximately 40 m, and in Fig. 8(b), we
present results when the slave loop has a loop delay of 2.0 μs, corresponding to a loop length
of approximately 400 m. We set RΓ = −40 dB, −20 dB, and 0 dB. The other parameters are
the same as those that we used for modeling the experimental setup that we described in the
previous section. For comparison, we also show the free-running case in both Fig. 8(a) and
Fig. 8(b). We recall that when the master loop is free-running, it functions as a single-loop
OEO. In Fig. 9, we summarize the key results from Fig. 8 by showing the maximum spur level
as a function of RΓ. We find that the optimal power injection ratio in the original experimental
setup [7], in which the slave loop delay is 0.2 μs, is equal to −20 dB. We also find that by
increasing the slave loop delay from 0.2 to 2.0 μs, the spur level in the master loop is reduced
from −115 dBc/Hz to −125 dBc/Hz when RΓ = −20 dB and is further reduced to a level of
−135 dBc/Hz by increasing RΓ to −6 dB. We note that the phase noise of the injection-locked
master loop in all the cases that we show in Fig. 9 is approximately equal to the phase noise of
the free-running master loop. Thus, we theoretically predict a reduction of the first spur level in
the injection-locked master loop by approximately 20 dB relative to the spur level in the original
setup, while maintaining approximately the same low phase noise. We note that although Fig. 9
demonstrates the reduction of only the first spur level, other spurs are reduced as well. The
second spur level, for example, is reduced from −123 dBc/Hz in the original setup to less than
−140 dBc/Hz by increasing the slave loop length from 0.2 μs to 2 μs and by increasing the
power injection ratio RΓ from −20 dB to −6 dB.

The first spur in the master loop can be further suppressed by increasing the slave loop’s
loop delay beyond 2.0 μs. The level of the first spur in the master loop is mainly determined by
the phase noise of the free-running slave loop and the injection parameters. Thus, it is possible
to decrease the spur level in the master loop by increasing the length of the slave loop, which
decreases the slave loop’s free-running phase noise. However, increasing the length of the slave
loop reduces its cavity mode spacing and can increase the level of the high-order spurs in the
master loop in cases where they nearly coincide with spurs in the slave loop. If these spurs lie
within the bandwidth of the RF filter, they can exceed the lower spurs in magnitude and degrade
the performance of the DIL-OEO. We have not carried out a detailed study of this issue, as it
has not been present in our experiments to date, in which the maximum slave loop delay has
been 2.5 μs. However, we note that this issue will place a practical limit on how long it is
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Fig. 10. Experimentally measured spectrum of the phase noise in the vicinity of the first
spur. The spur level of the free-running master loop, which has a loop delay of τ1 = 20 μs,
was −75 dBc/Hz (red). By injection-locking the master loop to a slave loop with a loop
delay of τ2 = 0.2 μs and a power injection ratio of RΓ = −20 dB, we reduced the first
spur to −110 dBc/Hz (green). Increasing the slave loop-delay to τ2 = 2.5 μs, and keeping
the same power injection ratio, we measured a spur of −109 dBc/Hz (cyan). The spur was
reduced to −129 dBc/Hz by increasing the power injection ratio to RΓ =−6 dB (magenta).

possible to make the slave loop
These predictions have been experimentally verified. As noted previously, we predicted op-

timal results when Γ12 � Γ21 and Γ11 � Γ22 — a point that we experimentally verified. The
best spur reduction was achieved by increasing the slave loop-delay from 0.2 μs to 2.5 μs and
by varying RΓ. The loop-delay of 2.5 μs is 0.5 μs longer than in the original theoretical stud-
ies. The maximum reduction in the spur level was achieved by increasing RΓ from −20 dB
to −6 dB. To achieve this large power injection ratio, we implemented a new bridge that has
Γ11 = −7.5 dB and Γ22 = −7.0 dB, so that this bridge has approximately 6 dB more loss than
in our earlier experiments [7]. We implemented this bridge by using four 3-dB couplers, with
two placed in each loop. In each loop, the front coupler was connected to the rear coupler in
each loop and to the rear coupler in the other loop. With this configuration, we could obtain
power injection ratios, RΓ = Γ12/Γ11 � Γ21/Γ22 as large as 0 dB. We could then reduce RΓ by
adding attenuators between the front coupler of one loop and the rear coupler of another loop.

We show the experimental results in Fig. 10. The first spur level of the free-running master
loop, which has a loop delay of 20 μs, was −75 dBc/Hz. By injection-locking the master loop
to a slave loop with τ2 = 0.2 μs and RΓ = −20 dB, the spur level decreased to −110 dBc/Hz.
When we increased the slave loop delay to τ2 = 2.5 μs and increased RΓ to −6 dB, the spur
level further decreased to −129 dBc/Hz. These values are both within 2 dB of the calculated
results with this set of parameters.

However, when we used a slave loop delay of τ2 = 2.5 μs with a power injection ratio
RΓ =−20 dB in the experiments, we could not maintain a stable phase lock between the master
and the slave loops. The experimentally-measured spur level in this case was −109 dBc/Hz,
instead of −120 dBc/Hz, as theoretically predicted. Our model assumes that the master and
slave OEO loops are phase-locked, and it will not provide reliable answers unless there is a
good lock. These results underline the importance of achieving a good phase lock — not only
to achieve good agreement between theory and experiment, but also to obtain good performance
from the OEO. We will say more about the conditions to achieve a good phase lock in a future
publication.
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Increasing the back-injection Γ21 from the slave loop to the master loop also reduces the first
spur, but at the expense of increasing the master phase noise within the locking range. When
the Q factor of the master loop, as defined in [1], is much higher than the Q factor of the slave
loop, Q1 
 Q2, the master phase noise in the injection-locked case is approximately unaffected
by the locking as long as Γ21 = Γ12 � 1 [4].

5. Conclusions

We have described a comprehensive computational model for studying single-loop and dual-
loop OEOs. The model resolves the behavior of the signal during one round-trip in the OEO and
takes into account the lumped elements in the loop and both white and flicker noise sources.
As a consequence, it allows us to reliably predict the spur level, the effect of large coupling
between the two loops in the DIL-OEO, and other dynamical effects. In particular, it can be used
to accurately determine the variation of the phase noise in OEOs as their parameters change.
An excellent agreement between theory and experiments was obtained for both the single-loop
OEO and the DIL-OEO when its two loops are phase-locked.

We used the comparison between theory and experiment in a single-loop OEO to determine
the power spectral density of the white noise source and the phase flicker noise source. We
found experimentally that the phase flicker noise power spectral density increases linearly with
the cavity length. Including this linear dependence in our model was necessary to achieve good
agreement between theory and experiment. The increase of the phase flicker noise as a function
of the cavity length is important since it limits the performance of long-cavity OEOs. The
physical reasons for this dependence have yet to be determined.

We used the free parameters in our single-loop model — the linear loss as a function of
length, the power spectral densities of the white noise source and flicker phase noise source as
a function of length — in our model of the DIL-OEO. Thus, our model of the DIL-OEO has no
additional empirical parameters. The model accurately predicts the phase noise in the master
and in the slave loops, the locking range in the slave spectrum, and the spur levels. The model
can be used to study a general case of coupling between two OEO loops. In particular, it allows
us to reliably study OEO loops that are strongly coupled to each other.

Due to its accuracy and its ability to analyze OEOs with different configurations over a wide
parameter range, our computational model can be used to optimize the performance of OEOs.
We showed theoretically that it is possible to reduce the first spur in the master loop of the DIL-
OEO by about 20 dB relative to our original experiments [7]. This reduction was subsequently
verified experimentally [8]. We obtained this reduction by increasing both the loop-delay of
the slave loop and by increasing the power injection ratio, so that the two loops are strongly
coupled.
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