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We present a new theoretical method, based on a layer-peeling algorithm, for extracting the spatial distribu-
tion of the birefringence parameters of an optical emulator. The method enables one to extract the spatial de-
pendence of both the refractive index difference and the orientation angle of the birefringence axes. The layer-
peeling algorithm is designed to minimize the accumulated error, and it enables one to accurately reconstruct
the birefringence parameters even when a strong noise is added to the input data. © 2006 Optical Society of

America
OCIS codes: 060.2420, 290.3200.

1. INTRODUCTION

Polarization mode dispersion (PMD) may limit the perfor-
mance of high-data-rate long-distance optical communica-
tion systems.'™ The effect is caused by intrinsic birefrin-
gence in fibers, due to a small deviation of the fiber profile
from circular symmetry, inner defects, and outer stress
and bends in the fiber. One of the main difficulties that
may prevent the elimination of PMD is the time depen-
dence of the effect due to changes in environmental con-
ditions such as temperature. Fiber emulators are an im-
portant tool for studying PMD and for improving the
performance of optical communication systems.("f9 Simi-
lar devices are also used to compensate PMD.!%!! The
emulator is built from several short sections of
polarization-maintaining (PM) fibers and elements that
change the polarization between the different fiber sec-
tions. The connection between the fiber elements is often
performed using rotatable connectors. The performance of
emulators as well as the study of PMD, based on using op-
tical emulators, can be improved if emulators can be fully
characterized.

The local beat-length distribution in a birefringent fi-
ber is often measured using optical frequency-domain re-
flectometry or optical time-domain reflectometry
techniques.'**” However, such techniques give the local
beat length of the fiber but not the orientation angle of
the birefringence axes. The orientation of the birefrin-
gence axes can be measured using the technique de-
scribed in Ref. 18. However, such a technique can be used
to characterize only a single uniform fiber. Layer-peeling
algorithms were previously used to extract the spatial
distribution of the optical parameters of transmission sys-
tems and fiber gratings.'®*® A layer-peeling algorithm for
analyzing the birefringence in fiber Bragg gratings was
demonstrated in Refs. 21 and 22. However, this algorithm
is suitable for extracting the birefringence only in a short
system, with a few centimeters length, since the fre-
quency dependence of the state of polarization (SOP) is
neglected. In Ref. 23 a layer-peeling algorithm is used for
designing a PMD compensator. The Jones matrix of the
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compensator should be approximately equal to the in-
verse of the transmission Jones matrix of the optical
chain that should be compensated. The compensator is
made from several identical stages. The phase shifts of
each stage are designed to obtain the required transmis-
sion Jones matrix. Since the birefringence parameters of
a system cannot be uniquely extracted from the transmis-
sion response, this method cannot be used to find the spa-
tial distribution of the birefringence in an unknown sys-
tem.

In this paper we will theoretically demonstrate a new
method, to our knowledge, that enables one to extract the
local birefringence and its orientation in an emulator sys-
tem built from several sections of uniformly distributed
birefringent fibers. The frequency dependence of the SOP
of the wave reflected from the connections between the bi-
refringent fibers is analyzed using a layer-peeling algo-
rithm. The layer-peeling algorithm was designed to mini-
mize the accumulated error, and therefore it could
overcome a significant noise added to the input data. The
technique, described in this paper, may be also important
to analyze distributed sensors that are based on measur-
ing the local birefringence of fibers.

The manuscript is organized as follows. In Section 2 we
describe the input data and the assumptions that are
needed for our algorithm and suggest an optical system
that can measure the data. In Section 3 we describe the
mathematical background needed for the layer-peeling al-
gorithm. In Section 4 we show how to reconstruct the bi-
refringence parameters for a single uniform fiber and
then derive the layer-peeling algorithm in Section 5. The
results of the layer-peeling algorithm implemented over
simulated emulators are given in Section 6.

2. INPUT DATA AND ASSUMPTIONS
REQUIRED BY THE LAYER-
PEELING ALGORITHM

A schematic description of an emulator that can be ana-
lyzed using the method described in this paper is shown
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in Fig. 1. The emulator is built from several PM fiber sec-
tions connected to each other by rotatable connectors. A
similar emulator was described in Ref. 9. We assume that
the backreflected signal is mainly formed owing to dis-
crete backreflections in the system, caused by the connec-
tions between the different fiber sections. We neglect the
reflection from the fiber sections located between the con-
nectors. This neglect can be justified, since the measure-
ment technique required for our algorithm should have a
high spatial resolution of the order of 500 um. Such a
resolution can be obtained using techniques such as opti-
cal frequency-domain reﬂectometry.%’25 The level of the
Rayleigh backscattered signal measured, using optical
low-coherence reflectometry, with a spatial resolution of
32 um was about —117 dB weaker than the power of the
forward-propagating light.26 Assuming a measurement
with a spatial resolution of about 500 um, as used in our
simulation, the Rayleigh backscattering should be ap-
proximately —105 dB weaker than the power of the inci-
dent light. The reflection from a typical FC/APC connec-
tor is about —65 dB weaker than the power of the incident
light. Therefore the reflections from the connectors be-
tween the fiber sections are significantly stronger than
the Rayleigh backscattering in the fiber as also measured
in Refs. 27 and 28. In the case when the fibers in the emu-
lator are connected using splices, the low level of the ex-
pected Rayleigh backscattering might also enable one to
measure the reflections from the splices.

The input data for our layer-peeling algorithm are the
backreflected frequency-dependent signals A} (w) and
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Fig. 1. Schematic description of the system analyzed in this pa-
per. The system is a PMD emulator built from several PM fibers
connected together using rotatable connectors. We assume that
the backreflected signal is mainly formed by the connectors be-
tween the PM fibers.
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Aj /(0), polarized along the x and the y axes, respectively,
that are returned from each of the connectors i=1...N,
where o is the angular frequency. Such data can be ob-
tained by a direct expansion of measurement techniques,
based on optical frequency-domain reﬁectometry.z‘k’25

A tunable continuous-wave signal or a broadband
source is sent along one axis, x, with an amplitude Efc(w).
The interference of the backreflected signal and a refer-
ence signal, after passing equal variable polarizers, is
measured. The length of the reference arm of the interfer-
ometer is set to be similar to the location of the connector
i. The reflections from the other connectors cause a high-
frequency modulation of the interference signal in the fre-
quency domain. Therefore, such signals can be filtered in
the time domain, or they may be averaged owing to the
limited spectral resolution of the spectral measurement.
The backreflected signals from all the connectors are ob-
tained by our changing the length of the reference arm ac-
cording to the estimated locations of the connector. The
length of the reference path of the interferometer can be
changed by our switching between several fibers with dif-
ferent lengths in the reference arm. To find the SOP of the
frequency-dependent backreflected signal, we need to re-
peat the measurement of the interference signal after it
passes through a circular polarizer and through a linear
polarizer rotated at angles 0° and 45° with respect to the
x axis.?® A schematic description of an optical system that
can be used to measure the required data, needed for our
algorithm, is shown in Fig. 2. Since the reference path of
the interferometer can be changed by our switching be-
tween several fibers with different lengths in the refer-
ence arm, the coherence length should be of the order of
tens of centimeters. Therefore, when the measurement is
performed using a tunable laser, the linewidth of the laser
should be of the order of hundreds of megahertz. Since the
SOP of the backreflected light should not be changed dur-
ing the measurement, the birefringence should be fixed in
order that the relative changes, 8(An)/An, will be smaller
than Lg/L, where Lg=\/An is the beat length and L is
the total length of the emulator. According to Ref. 30 the
relative birefringence temperature dependence of a con-
ventional PM fiber is 0.0012 1/K. In the case where Lp
=3.1 mm and the total length is L=100 m, the tempera-
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Schematic description of the proposed experimental setup. The device under test (DUT) is built from several PM fibers as de-

scribed in Fig. 1. A broadband source is sent into the DUT and into a reference arm. An input polarizer is used for setting the input SOP.
The backreflected signal from the DUT and a reference signal are interfered after passing two equal variable polarizers. Reflections from
different connectors cause a modulation of the interference spectrum at a different periodicity. By repeating the measurement using a
circular polarizer and a linear polarizer rotated at 0° and 45° with respect to the x axis, one can extract the frequency dependence of the

backreflected SOP obtained from each of the connectors.
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ture should be stabilized to about 10~3 K. Such a thermal
stability can be obtained by one’s passively stabilizing the
system.

The measurement technique, described above, ensures
that reflections from different connectors can be sepa-
rated. The need to separate reflections from different con-
nectors can be intuitively understood by one’s considering
the reflected signal in the time domain. The relative delay
between the two polarization components of the wave, re-
flected from the i connector, contains the information on
the birefringence of the fiber connected between the i—1
and the ¢ connectors. However, if a different connector
adds a reflection with a time delay of the order of the de-
lay caused by the birefringence, it becomes impossible to
separate a delay caused by a reflection from a different lo-
cation and a delay caused by the birefringence. Therefore,
we require there be a time separation between the reflec-
tions from different connectors.

3. MATHEMATICAL FRAMEWORK

In this section we will define the mathematical frame-
work used in this paper. We will neglect in our analysis
polarization-dependent loss and will assume fibers with a
linear birefringence. Using Jones formalism, we define
the SOP of a forward- or a backward-propagating wave by
the normalized Jones vector:

Ax(z,w))

AG,0)=A= (Ay(z,w)

where x and y are two perpendicular axes. The propaga-
tion of the SOP, A, in a linear birefringent fiber with a lo-
cal refractive index difference (RID), An=n,-ns and local
principal axes, rotated in an orientation angle 6 with re-
spec‘c1 2to the reference axes, is given in a differential
form™*:

P (Ax(z,w)> “wAn [cos(26)

72\Az,0)) " T2c |sin20)  -cos(20) [\A,z,0)

1)

where w is the angular frequency and ¢ is the speed of
light. The SOP evolves as it propagates along the fiber. Af-
ter propagating through a uniform birefringent fiber with
a length L, the output SOP A°(w)=A(z=L, ) becomes

A%w) =R Y6 - D(wA7) -R(6) - A = MA/(w), (2)

where A{(w) is the SOP at the input of the fiber, At
=AnL/c is the time delay between light waves propagat-
ing along the two principal axes,

sin(26) } (Ax(z,w)>

[ cos 60 sin 0]
R(0) = . ,
—sin 0 cos 0
exp(iwA7/2) 0
D(wA7) = 0 exp(-iwA2) |7
M=R(6) - D(wAD -R(0), (3)

where R(6), D(wA7), and M are the rotation matrix, the
delay matrix, and the total propagation matrix of the uni-
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form fiber section. Assuming that the backward-
propagating wave is reflected from the fiber end and that
the reflection does not depend on the polarization, the
backreflected SOP at the input of the fiber is given by®":32

A'(w)=M-M-Al(w). (4)
By substituting the propagation matrix, we obtain
A’(w) =R7Y(6) - D*(wA7) - R(6) - A(w). (5)

It is also possible to write Eq. (1) by using the Stokes
formalism,1

IS(z,w)

PR WX Sz, ), (6)

where S is the Stokes representation of the SOP and W is
the birefringence vector that represents the local birefrin-
gence,

W(z,0) = wAn(z)/c - (cos[26(z)],sin[26(z)],0)". (7)

The backreflection of a SOP is represented on the
Poincaré sphere by a mirror symmetry with respect to the
equator.15 Hence, the backreflected SOP, for a uniformly
distributed fiber, described by Eq. (4), is equal to'

S'(w)=R;' R2 Ry M, S'(w), (8)

where éi(a)) and é’(w) are the Stokes representations of
the input and the output SOPs, Al(w) and A’(w), respec-
tively. The rotation matrices, Ry and R,, and the mirror
symmetry matrix, M,, are defined by

cos(26) sin(26) 0
R,(260)=|-sin(26)  cos(26) 0f,

0 0 1

1 0 0

R, (4)=|0 cos(¢p)  —sin(g) |,

0 sin(¢) cos(¢)

1 0 0
M, =0 1 0|,

0o o0 -1

and the rotation angle ¢(w) is equal to
wAn
#(w) = |W(w)|L = TL- 9

Equation (8) is obtained using the commutative relations
M,R,=R,'M, and M,R,=R,M,.

The propagation of the SOP described in Eq. (6) shows
that, along a uniformly distributed birefringence section,
the SOP on the Poincaré sphere, S(z, w), rotates as a func-
tion of the location, z, around a vector W(w) with a rota-
tion angle ¢(w). Therefore, after passing through a bire-
fringent section, the final SOP will be different for each
frequency even when the input SOP does not depend on
the frequency.
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4. RECONSTRUCTION OF THE
BIREFRINGENCE PARAMETERS OF A
UNIFORMLY DISTRIBUTED BIREFRINGENT
FIBER

In this section we demonstrate a new method, to our
knowledge, for accurately extracting the birefringence pa-
rameters of a uniformly distributed birefringent fiber. The
method presented in this section is robust and is not
strongly affected by noise added to the input data. The re-
construction method will be the basis for our layer-peeling
algorithm described in Section 5. We define the normal-
ized birefringence vector:

W = W/|W| = (cos(26),sin(26),0)’, (10)

where 6 is the orientation angle of the birefringence axes,
defined in Section 3. In Eq. (10) we limit our analysis to
linear birefringence fibers, and hence we assume that
W(3)=0.

The derivative of the rotation angle, ¢, with respect to
the angular frequency o, is denoted by ¢'(w)=An/cL. For
a uniform birefringent fiber section, the frequency depen-
dence of the connection between the input and the output

SOPs defines the normalized birefringence vector W and
the derivative of the rotation angle ¢’'(w), as described be-

low. The normalized birefringence vector W gives the ori-
entation angle 6, and the derivative of the rotation angle
¢’ (w) gives the RID, An, assuming that the section length
L is approximately known.

Using Eq. (6), we find that for a uniform birefringent

fiber section the scalar product W-é(z , ) does not depend
on the location z for each angular frequency, w. Therefore,

Si(w) - W=8w) W, (11)

where é"(w) is the Stokes representation of the output
SOP. Since the reflection is represented on the Poincaré
sphere by a symmetry S,o, with respect to the equator15
and W lies on the equator, we obtain

Si(w) - W=8"(w)-W, (12)

where érzér(w) is the Stokes representation of backre-
flected SOP A" (w).

Extracting the birefringence vector, W, for a uniform fi-
ber section is based on the rotation of Stokes vector

S(z,w) around W as a function of the angular frequency
w. Since the connection given in Eq. (12) does not depend
on the frequency, the extraction of the birefringence pa-
rameters can be performed using many different mea-
sured SOPs, each obtained in a different frequency.
Therefore, by using methods such as a least-mean-
squares algorithm, it is possible to extract the birefrin-
gence vector W that fulfills Eq. (12), as described in Sub-
section 4.A. Such a method is robust and is insensitive to
noise added to the input data.

A. Extracting the Normalized Birefringence Vector \ by
Using a Least-Mean-Squares Algorithm
In this subsection we will show how to extract the nor-

malized birefringence vector W from the backreflected
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SOP obtained in different frequencies. Since layer-peeling
algorithms are sensitive to accumulated errors, the ex-
traction of the RID with a low error is essential. Assum-
ing that the input SOP, Si(wj), and the backreflected SOP,
S"(w;), are given at n different angular frequencies wj, j
=1...n, Eq. (12) can be written for each frequency:

[S"(w) - Si(w)]-W=0, j=1...n. (13)
We define the vector dé(wj) as

X S(w) -Si(w)
dS(w)=—F———"—, Jj=1...n, (14)
1S (o)) - Si(w))]

and denote the vector components dé(wj)
=(dS;1,dS;2,dS;3)". Since the normalized birefringence

vector has only two nontrivial components, W
=(W1,Wy,0)=(cos(26),sin(26),0)!, we have n equations
with only two unknown variables W, W:

de’1W1+de,2W2=O, j=1...n,
with the constraint
Wi+ Wa=1.

Using a least-mean-squares algorithm, we minimize the
error function, AW, Wy) =EJ’?=1(de’1W1+de’2W2)2 and ob-
tain

+R

[ p—
! V(P +N\)?*+R?

FP+N)

= (15)
? V(P +)\)?%+R?

where

P=2 (dS;)?
j=1

Q=2 (dS;»?,
J=1

R=Y(dS;1dS;2),
j=1
~(P+Q) = \(P-Q)?+4R?

A, = . . (16)

The sign of the parameter A can be found by the con-
straint that the error function f{(W;,W,) will have a mini-

mum value. Equations (15) have two solutions +W. Each
solution gives a different sign for the RID, An. However,
the extracted birefringence vector W, as defined in Eq. (7),

is unique. Therefore changing the sign of W has no physi-
cal meaning, since it only corresponds to a different defi-
nition of the principal axes (switching between the x and
the y axes) while the birefringence orientation remains
the same.
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Extracting the birefringence vector W by using a least-
mean-squares algorithm gives a robust method to recon-
struct the birefringence parameters in the presence of
noise one-added to the input data. It also enables one to
validate the assumption of a uniformly distributed fiber
section by requiring that the error function be small
enough. The extracted birefringence vector is directly
used to find the orientation of the birefringence axes by
using Eq. (10). The normalized birefringence vector will
also be used to extract the RID as described in Subsection
4.B.

B. Extracting the Refractive Index Difference, An

Equation (9) indicated that the RID, An, for a single fiber
section, can be extracted by a linear fit of the rotation
angle, ¢(w), with respect to the frequency w, assuming
that the section length L is approximately known. After

the normalized birefringence vector, W, is extracted, as
described in Subsection 4.A, the rotation angle, ¢(w) can

be found from the input and the backreflected SOPs, éi(w)
and §" (w), by defining the vectors V:

Vi(w) = - [S{(w) - W]- W + §i(w),

Vi(w) = - [S"(w) - W]- W + §(w).

The angle ¢*™(w) is defined as the angle between the vec-
tors Vi(w) and V'(w), assuming that the rotation of the

vector Vi(w) around the vector W toward the vector V,.(w)
is performed counterclockwise. The angle ¢?7(w) is equal
to the modulus of the rotation angle ¢(w) divided by 2.
After computing the angle ¢*"(») and unwrapping the re-
sult, one can extract the RID, An, by using a linear fit to
Eq. (9). The unwrapping of the rotation angle ¢*>"(w) can
be performed only when the frequency resolution of the
input data is sufficient. The minimum frequency resolu-
tion required to accurately calculate the RID is given by

c

2LAn

do< (17)

or S\ <\?/4AnL, where L is the section length. The con-
dition given in expression (17) ensures that the rotation
angle difference between two adjacent frequencies is less
than 7. Therefore, both the sign and the magnitude of the
rotation angle can be accurately extracted.

Although the reconstruction of the RID, An, by a linear
fit to the rotation angle, ¢(w), will give accurate results
for a single fiber section, it may cause a significant error
in the layer-peeling algorithm, described in Section 5. To
minimize the accumulated error in a layer-peeling algo-
rithm, it is important to minimize the error between the

extracted SOP, é”e(w), and the measured SOP, é’(w),
rather than the error in the RID. The extracted backre-

flected SOP, é’)e(w), is calculated from the extracted bire-
fringence parameters by using Eq. (8). Assuming the in-
put SOP, Si(w)=(S}(w),S5(w),S5(w)), is known and the
normalized  birefringence  vector, W:(Wl,Wz,O)t
=(cos(26),sin(26),0)!, is accurately calculated, the ex-
tracted SOP, é”e(w), is a function of only a single
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parameter—the RID, An. To accurately extract this pa-
rameter, we define the error function g(An):

g(An) = > |87 (w)) - §7(w))|%. (18)

J=1

The RID, An, will be extracted by minimizing the error
function, g(An). According to Appendix A, the dependence
of the error function on the RID is given by

g(An) =, I(Ax? + Ay?), (19)
j=1

where

IF=1-|W-Si(w)l,
Ax? =cos(2w;AnLlc) - cos[2p(w))]?,

ij? = [sin(2w;AnL/c) - sin[2p(w))]|*.

To perform the fitting, we need to find the magnitude of
the trigonometric functions of the rotation angle,
cos[2¢(w;)] and sin[2¢(w;)], from the input and the output
SOPs. Using Eq. (A2) in Appendix A we obtain

(mﬂaw]
sin[2()]

where both L=L(w;) and K are given in Eqgs. (A3) and
(A4) of the appendix. The RID is then extracted by our
minimizing the error function g(An), given in Eq. (19). We
note that we extract both trigonometric functions
cos[2¢(w;)] and sin[2¢(w;)] and not use the trigonometric
connection between the functions, since a different noise
may be added to the two functions.

)4ﬂmﬁﬂ®wwmmﬁwL@m

5. LAYER-PEELING ALGORITHM

In the previous section we have shown that when the in-
put and the backreflected SOPs of a single uniformly dis-
tributed birefringent section are given it is possible to ac-
curately extract the birefringence parameters of the
section. A PMD emulator may be implemented by using N
different uniformly distributed birefringent sections con-
nected by rotatable connectors.” Since the input and the
backreflected polarization components are known only at
the input end of the fiber, the SOP should be propagated
along the fiber, in order to use the method for extracting
the birefringence parameters, described in the previous
section. Owing to causality of the system, the SOP in the
input of the ith fiber section can be calculated from the in-
put SOP of the emulator by using only the parameters of
the fiber sections j=1,...,i—1, where i=1 denotes the fi-
ber section that is connected to the input end of the emu-
lator. The propagation of the fields is the basis for our
layer-peeling algorithm.

In Section 2 we have discussed the assumptions of our
layer-peeling algorithm. The main assumptions were that
backreflections are obtained only from the connections be-
tween the different fiber sections and that the measure-
ment technique of the backreflected SOP can separate the
reflections obtained from different connectors. We also
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need to assume that multiple reflections can be neglected.
These assumptions are almost always obeyed, since the
reflections from the connectors are low, of the order of
-60dB weaker than the intensity of the forward-
propagating signal. The propagation of the backreflected
SOP A! from the ith connector is calculated using Eq. (4):

Al=(M;-M;_;- ... M)/ (M;-M;_;- ... -My)- A,
(21)

where M; is the propagation matrix of the ith section. To
use the extraction method, described in the previous sec-
tion, we need to obtain from Eq. (21) an equation similar
to Eq. (5). Using Egs. (3), we obtain

AJ=R;'-D?R; A, (22)

where A7=(M’_,)"1-A/,Ai=M;,_;-A! and M, is the propa-
gation matrix given by

M,=M,- ... -M,, (23)

where MO=I is the identity matrix.

Equation (22) is similar to Eq. (5), and therefore we can
extract the birefringence parameters of the ith section,
An;, and 6;, as described in Section 4. The extracted pa-
rameters of the ith section are then used to calculate the
matrix N[i from the matrix NIi_l by using Eq. (23).

We will discuss the frequency resolution and the band-
width that are needed for our layer-peeling algorithm.
The first resolution criterion results from the requirement
to accurately unwrap the rotation angle ¢?7(w). Expres-
sion (17) gives

N < N%4AnL,, .., (24)

where S\ is the wavelength resolution and L., is the
longest section length. For example, for L,.,.,=10m, A
=1550nm, and An=5X10"%, as used in our simulated
emulator in Section 6, the wavelength resolution, A\,
should be smaller than 0.12 nm.

The minimum bandwidth that is required to measure
the SOP results from the fitting algorithm of the RID, de-
scribed in Section 4. The RID is obtained by our fitting the
trigonometric functions cos(2¢) and sin(2¢) to trigono-
metric functions calculated using RID, in order to mini-
mize the error function g(An). To obtain accurate results
in the presence of noise added to the input data, we need
the overall rotation angle difference, ¢(wpax) — P(@min), to
be greater than an angle A¢,,;,. Therefore we require that

AN > N2Agpin/dmAnL i, (25)

where L, is the shortest section length. The magnitude
of A¢pin depends on the signal-to-noise (S/N) ratio in the
input data. In our simulation, as described in Section 6,
we have found out that, for the S/N ratio of 13 dB, A¢ i
is approximately equal to 47. Assuming that L ;,=4.6 m,
A=1550nm, An=5X10"%, and A¢,,, =47, as in our simu-
lated emulator, the wavelength bandwidth A\ should be
greater than 1.05 nm.

The minimum resolution and the minimum bandwidth,
given in expressions (24) and (25), enable one theoreti-
cally to extract the birefringence parameters from only a
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few measurements. However, as explained in Section 6,
when noise is added to the input data, an increase in the
number of measurements will result in a better accuracy
in the reconstruction. Therefore, in the presence of noise,
the resolution and the bandwidth should be better than
the theoretical limits.

Theoretically, a single broadband measurement of the
frequency dependence of the backreflected SOP can be
used to find the reflections from all the interfaces between
the different fibers in the emulator. Assuming that the
transfer function of the spectrum measurement is a
Gaussian function with a full width at half-maximum
(FWHM) of 8\, the maximum emulator length that can be
measured using low-coherence interferometry is equal to
Zmax=2 ln(2))\g/ moN.2% Assuming a measurement with a
high-frequency resolution of 0.001 nm, the maximum
emulator length that can be interrogated is only about
100 cm. In a more practical system, the frequency resolu-
tion is significantly lower, and the system will be able to
measure the reflection only from a single or several con-
nectors that are located at a distance close to that of the
length of the reference arm of the interferometer. The re-
flections from the other connectors will be averaged to
zero. For example, assuming a spectrum analyzer with a
Gaussian transfer function with a FWHM of S\, the back-
reflection from a connector located at a distance z+L,
where L is the length of the reference arm of the interfer-
ometer, is attenuated by a factor

1 [mndnz)\?
h(z) =exp| - — .
@=exp =1 5 o
Assuming that 6A=0.01 nm, the backreflection from a dis-
tance difference z=50 cm is equal to 8.6 X 10716, There-
fore, the effect of a connector located at this distance on
the measurement is negligible. To measure the reflection
from all the connectors, the measurement should be re-

peated for several different lengths of the reference arm,
as explained in Section 2.

6. SIMULATION RESULTS

We demonstrate our method to analyze two emulators
that are built from several sections of PM fibers with un-
known orientation angles and RIDs. We first demonstrate
our algorithm to extract the birefringence parameters of a
PMD emulator with rotatable connectors located between
PM fibers with the same RID. The PM fibers are rotated
at different angles. The emulator parameters were the
same as used in Ref. 9. The emulator is built from 15 sec-
tions of PM fibers with lengths 5.1, 6.8, 8.6, 7.4, 6.3, 6.7,
10.0, 8.6, 5.4, 7.2, 6.9, 7.1, 6.1, 7.4, and 4.6 m. Each fiber
section had a beat length of 3.1 mm (An=5X10"%). The
relative angles between the sections were chosen arbi-
trarily. In our simulation, we assumed that the central
wavelength is equal to A=1550nm, the bandwidth is
equal to AN=3 nm, and the spectral resolution is equal to
SA=0.01 nm. Figure 3 shows the simulated backreflected
SOP from the first, the second, and the 15th sections. The
figure shows that the time-dependent reflection function
becomes more complicated as the wave propagates
through a longer distance in the emulator. Therefore,
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Fig. 3. Backreflected SOP formed by a reflection from the (a)
first connector, (b) second connector, and (¢) 15th connector of an
emulator as a function of time after a wave passes through a po-
larizer aligned along the x (solid curve) and the y (dashed curve)
axes. Each fiber section in the emulator had a RID of An=5
X 1074, The first, second, and the 15th connectors are located 5.1,
11.9, and 104.2m from the input end of the emulator, respec-
tively. The SOP was sampled with a bandwidth of 3 nm and a
resolution of 0.01 nm.

there is a need to propagate the fields in order to extract
the birefringence parameters. We note that, since we ne-
glect polarization-dependent loss in the emulator, the at-
tenuation in the fibers and the loss in the connectors do
not change the backreflected SOP. Therefore, the effect of
losses in the emulator on the calculations can be avoided
by our normalizing the backreflected wave intensity.

To demonstrate the stability of our algorithm against
noise, we added to each backreflected signal a white
Gaussian noise with a —13 dB standard deviation (STD)
with respect to the peak of the backreflected signal. Fig-
ures 4 and 5 show the results of the layer-peeling algo-
rithm that are compared with the original parameters of
the fiber chain. The figures show that both the birefrin-
gence angle and the RID could be accurately recon-
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structed. Since noise was added to the input data, the
resolution and the bandwidth used in our example were
better than the theoretical limits, given in expressions
(24) and (25), that were equal to 0.12 and 1.05 nm, respec-
tively. Using the theoretical limits, the errors in the ex-
tracted parameters An and 6 were 1.5% and 10%, respec-
tively. With a resolution of 0.01 nm and a bandwidth of
3 nm, the errors in the extracted parameters An and @
were reduced to 0.5% and 1%, respectively.

We also checked our layer-peeling algorithm for analyz-
ing an emulator built from fiber sections with the same
length but with a different beat length and a different ro-
tation angle for each of the fiber sections. A Gaussian
noise of =13 dB STD with respect to the peak of the back
reflected signal amplitude was added to the input results.
The bandwidth and the resolution were the same as in
the former example. Figures 6 and 7 show the results of
the layer-peeling algorithm. The figures show again that
both the birefringence angle and the RID could be accu-
rately reconstructed.

Although theoretically the error function g(An), defined
in Eq. (19), should be minimized to obtain the most accu-
rate results, we have found that it is sufficient to mini-

6x10™

S sxo?

4x10™

0 100

50
z[m]
Fig. 4. Comparison between the RID, An, reconstructed using a
layer-peeling algorithm (dashed black line) and the original RID
(solid gray line) for a PMD emulator with a total length of
104.2 m built from 15 PM fibers with the same RID and with dif-
ferent lengths, as used in Ref. 9. The reflection spectrum was
sampled with a bandwidth of 3 nm and a resolution of 0.01 nm.
Noise with a STD of —13 dB with respect to the peak of the back-
reflected signal amplitude was added to the input data. The error
in the extracted An is less than 0.5%.
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Fig. 5. Absolute value of the orientation angle, | 6|, reconstructed
using a layer-peeling algorithm (dashed black curve) compared
with the original |6| (solid gray curve) for a PMD emulator ana-
lyzed in Fig. 4. The reflection spectrum was sampled with a
bandwidth of 3 nm and a resolution of 0.01 nm. Noise with a STD
of —13 dB with respect to the peak of the backreflected signal am-
plitude was added to the input data. The error in the extracted
angle |6 is less than 1%.
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Fig. 6. Comparison between the RID, An, reconstructed using a
layer-peeling algorithm (dashed black curve) and the original
RID (solid gray curve) for a PMD emulator with a total length of
104.2 m built from 15 PM fibers rotated at different angles. The
reflection spectrum was sampled with a bandwidth of 3 nm and a
resolution of 0.01 nm. Noise with a STD of —13 dB with respect to
the peak of the backreflected signal amplitude was added to the
input data. The error in the extracted An is less than 0.5%.
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Fig. 7. Absolute value of the orientation angle, | 6|, reconstructed
using a layer-peeling algorithm (dashed black curve) compared
with the original |6| (solid gray curve) for a PMD emulator ana-
lyzed in Fig. 6. The reflection spectrum was sampled with a
bandwidth of 3 nm and a resolution of 0.01 nm. Noise with a STD
of =13 dB with respect to the peak of the backreflected signal am-
plitude was added to the input data. The error in the extracted
angle |6 is less than 1%.

mize one of the error functions: g®%(An)= E" 112Ax or

g5(An) = =37 1Z2ij Such a minimization reduces 51gn1ﬁ-
cantly the required computation time without signifi-
cantly reducing the accuracy of the calculations, com-
pared with minimizing the accurate error function, given
in Eq. (19). An initial guess for the fitting algorithm was
taken by a linear fitting of the rotation angle and extract-
ing the RID from it as explained in Subsection 4.B.

7. CONCLUSIONS

We have demonstrated a new method, based on a layer-
peeling algorithm, that enables us to extract, for the first
time to our knowledge, the RID and the orientation angle
in an emulator built from several sections of uniformly
distributed birefringent fibers. The frequency dependence
of the SOP of the wave reflected from the connections be-
tween the birefringent fibers is analyzed using a layer-
peeling algorithm. The layer-peeling algorithm is an it-
erative algorithm that is based on the causality of the
interrogated system. The birefringence parameters along
the emulator are extracted by propagating the input
fields, using the birefringence parameters extracted in
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the previous iterations of the algorithm. The algorithm
was designed to minimize the accumulated error, and
therefore it could overcome a significant noise added to
the input data. A description of a system that can be used
to measure the input data required by the algorithm, as
well as an analyze of the bandwidth and the resolution
that are required from such a system, was given. The
method, described in this paper, may be important to ana-
lyze PMD emulators and PMD compensators as well as to
analyze distributed sensors that are based on measuring
the local birefringence in fibers.

APPENDIX A: REFRACTIVE-INDEX-
DIFFERENCE ERROR FUNCTION G(AN)

In this appendix we calculate the dependence of the error
1|S’ ¢(wj) - S’(w ) on the RID. Given
the initial SOP, S‘( ), and the normalized birefringence
vector, W, it is possible to extract the calculated SOP,
é”e(wj), as a function of the RID, An, by using Eq. (8),

function g(An)=3

cos(2w;AnLic)

sin(2a)jAnL/c)>+KMS( ), (A1)

Sr e( ) (
and the measured SOP é’(a)j) as a function of the rotation
angle ¢(w)),

S0~ (cosm@( )]

sin[24,( )])*KM”SL(“’J')’ .

where the matrices L=L(v,) and K=K(w;) are equal to

W3S - W, W,S5 WS,
L=|-W,W,S} + W2S, -WiSE |, (A3)
-S4 W,S) - W,S5
w2 W,W, 0
K=|W,W, w2 0]. (A4)

0 0 0
By substituting Eqs. (A1) and (A2) into Eq. (18), we ob-
tain

n

g(An)=>

cos(2w;jAnLic) — cos[2¢,(w; )])
L sin(2w;AnL/c) - sin[2¢(w;)]

Using Eq. (A3) and the relations for the components of the
matrix L, L} +L3,+L2 =L%,+L%,+L%,=1-|W-Si(«w))|
and L11L22+L21L22 +L31L32= 0, we obtain

g(An) 212(Ax +Ay

where
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IZ=1-|W-S(w)l,
Ax? = |cos(2w;AnLic) - cos[2¢(w)]%,

Ay? =|sin(2w,AnL/c) - sin[2¢(w;)].
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