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We demonstrate experimentally, for the first time to our knowledge, a reconstruction of a highly reflecting fiber
Bragg grating from its complex reflection spectrum by using a regularization algorithm. The regularization
method is based on correcting the measured reflection spectrum at the Bragg zone frequencies and enables the
reconstruction of the grating profile using the integral-layer-peeling algorithm. A grating with an approxi-
mately uniform profile and with a maximum reflectivity of 99.98% was accurately reconstructed by measuring
only its complex reflection spectrum. © 2007 Optical Society of America
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1. INTRODUCTION

Fiber Bragg gratings (FBGs) are important elements in
optical communication systems and in systems for optical
metrology [1]. However, in many applications, the use of
FBGs is limited because of imperfections in the manufac-
tured gratings. In a previous work it has been shown that
when a feedback on the grating structure is used, the
quality of the produced grating can be improved by locat-
ing the grating imperfections and correcting them during
the writing process [2]. The structure of an FBG can be
extracted by measuring its complex reflection spectrum
and using an inverse-scattering (IS) algorithm. However,
in the case of highly reflecting gratings, which are often
used in optical communication systems, the extraction of
the grating structure may not be possible when an IS
algorithm is used directly on the measured reflection
spectrum.

In theory, the complex reflection spectrum of FBGs
uniquely defines their structure [3]. However, in practice,
when the grating reflectivity is high, the reconstruction is
limited by noise in the measurement. Theoretical analysis
of this problem has shown that an accurate reconstruc-
tion of the grating profile requires that the noise within
the Bragg zone of the reflection spectrum be lower than
the minimum of the transmission intensity of the grating
[4,5]. However, since interferometric measurements are
used to measure the complex reflection spectrum, the
noise level is highest at the Bragg-zone frequencies of
the spectrum [6]. As a result, the structure of highly re-
flecting FBGs cannot be reconstructed by applying an IS
algorithm directly on their measured complex reflection
spectrum.

In previous works, we have experimentally demon-
strated methods for reconstructing highly reflecting grat-
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ings by combining the results from two different spectrum
measurements. In [7], the grating was reconstructed us-
ing the reflection spectrum measured from both sides of
the grating, and in [6] the grating was reconstructed by
measuring both its transmission and reflection spectra.
One of the main disadvantages of these methods is the re-
quirement to access the grating from both of its sides. In
many cases, such an experimental setup may be difficult
to implement.

When only the reflection spectrum is known, several
regularization methods have been theoretically demon-
strated to enable the reconstruction of highly reflecting
gratings [4,5,8]. For a regularization method to be useful,
it is required that it be able to produce good results at a
realistic noise level, which is on the order of a few per-
centage points of the complex reflection spectrum ampli-
tude. Only the method developed in [5] has been theoreti-
cally demonstrated to reconstruct FBGs from reflection
spectra that contained significant noise, which is compa-
rable with experimental noise. For example, the regular-
ization method in [5] was used to accurately reconstruct a
uniform grating with a maximum reflectivity of 0.9999 af-
ter adding white Gaussian noise with a standard devia-
tion of up to 0.1 to the complex reflection spectrum. Such
a problem cannot be analyzed using other regularization
methods. The reconstruction method developed in [5] does
not require any a priori information about the grating ex-
cept for its approximate length, which can be easily deter-
mined during the writing of the grating. In cases where
the grating profile ends with a discontinuity, the grating
length can also be estimated directly from the measured
complex reflection spectrum.

The regularization method developed in [5] is based on
correcting the amplitude of the Bragg zone of the reflec-
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tion spectrum by using the reflection outside the Bragg
zone. This procedure is most accurate when the spectral
width of the Bragg zone is narrow and may become un-
stable if the spectral width of the Bragg zone is too wide.
Thus, the method is most suitable for reconstructing
quasi-uniform gratings, which are characterized by a nar-
row Bragg zone. The method is not suitable for analyzing
gratings that have a significant chirp or for apodized grat-
ings with suppressed sidelobes because such gratings
have a significantly wider Bragg zone than quasi-uniform
gratings. Quantitative conditions on the width of the
Bragg zone that is required for an accurate reconstruction
are given in Section 2.

In this paper we demonstrate, for what we believe is
the first time, the experimental reconstruction of a highly
reflecting FBG using only the measurement of the grating
reflection spectrum. To reconstruct the grating, we use
the regularization method developed in [5] and the
integral-layer-peeling (ILP) IS algorithm [9]. We note that
this is the first experimental use of a regularization
method for reconstructing highly reflecting FBGs. The re-
constructed grating had an approximately uniform profile
and a maximum reflectivity of 99.98%. We verified the ac-
curacy of the reconstruction method by extracting the
grating from both of its sides. The difference between the
grating amplitude of the two reconstructions was less
than 4% of the maximum grating amplitude.

2. REGULARIZATION ALGORITHM

In this section, we briefly describe the regularization al-
gorithm used in our work. A detailed description of the
method is given in [5]. The algorithm is based on correct-
ing the amplitude of the Bragg zone of the reflection spec-
trum by using the reflection outside the Bragg zone. The
correction is based on the mathematical properties of the
complex reflection spectrum. Since IS algorithms are sen-
sitive mainly to noise in the amplitude of the Bragg zone
[5], the corrected spectrum enables us to accurately recon-
struct the grating.

The accuracy of the regularization algorithm is deter-
mined by the maximum reflectivity of the grating and the
product of the grating length, L, and the full width at
half-maximum (FWHM) of the main lobe of the grating
intensity reflection function, which we denote by
bandwidth (BW) [5]. For a given grating reflectivity, the
algorithm is most accurate when the product BWL is the
smallest. In accordance, we found in numerical simula-
tions that the algorithm gives the most accurate results
for quasi-uniform gratings, which are characterized by a
narrow Bragg zone and a high level of sidelobes. In our
numerical simulations, we found that for gratings with
a maximum reflectivity of 99.98%, an accurate recon-
struction is obtained for gratings that fulfil BWL
=<0.37 nm cm when white noise with a standard deviation
of 0.02 is added to the complex reflection amplitude. For
comparison, in a grating with a uniform profile, and with
a maximum reflectivity of 99.98%, the product BWL is
equal to BWL=0.29 nm cm. In the case of apodized grat-
ings with highly suppressed spectral sidelobes or in grat-
ings with a strong chirp, the product BWL may be too
high, and the algorithm may not be useful.
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We define the function B(k):
Ir(R)[?

BB =1 e

(1)
where % is the wavenumber detuning [9]. The Fourier
transform of B(k) is denoted by B(7):

.
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In [5], it is shown that when the reflection spectrum r(k)
does not contain an error, the function B(7) equals zero
outside the interval [-2L,2L], where L is the grating
length. This property is used to regularize the reflection
spectrum.

We denote the error in the reflection spectrum by
Ar(k)=7(k)-r(k), where 7(k) and r(k) are the noisy and
the accurate reflection spectra, respectively. The functions
B(k) and B(k) can be calculated from the reflection func-
tions 7(k) and r(k) by using Eq. (1). Assuming that the re-
flection spectrum is sampled, the error function AB(k)
=B(k)-B(k) can be approximated by [5]:

N

AB(7) =D ¢, exp(-ik,7), (3)
1

where N is the number of sampled spectral points inside
the Bragg zone, k, are the corresponding wavenumber
components, and the coefficients ¢, correspond to the
samples of AB(k) at the frequencies k,,.

In contrast to [8], where the function B(7) was set to
zero outside the interval [-2L,2L], we use the data out-
side that interval to calculate the error function AB(7)
and correct the reflection spectrum inside the Bragg zone

of the grating. Since B(7)=0 for |7>2L, the function B(7)
is equal to the error function AB(7) outside the interval
[-2L,2L]. Thus, the coefficients ¢, can be calculated by

minimizing the square error between B(7) and
Ezlvcn exp(ik, 1) outside the interval [-2L,2L]. Since the
square error is the quadratic function of the coefficients
¢,, only a single solution exists.

Once the coefficients ¢, are recovered, the error func-
tion AB(7) can be calculated by using Eq. (3). The error
function AB(7) is then used to calculate the function B(k),
which in turn is used to correct the amplitude of the re-
flection spectrum r(k) by using Eq. (1). Afterward, the ILP
algorithm [9] is used to accurately reconstruct the grating
structure from the regularized reflection spectrum.

3. EXPERIMENT AND RESULTS

The grating that was reconstructed in our work was writ-
ten using a uniform phase mask with an approximate
length of 1.5 cm. The complex reflection spectrum of the
grating was measured using the interferometric setup
described in [2,6]. The spectral bandwidth and the reso-
lution of the measurement were 10 nm and 1 pm, respec-
tively.

The intensity of the measured complex reflection spec-
trum of the grating is shown in Fig. 1. The impulse re-
sponse of the grating is calculated by using the Fourier
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Fig. 1. Intensity of the measured complex reflection spectrum.

transform on the complex reflection spectrum [7], and is
shown in Fig. 2. Since the grating profile ends abruptly,
we can estimate the grating length from the impulse re-
sponse function of the grating. The discontinuity in the
impulse response at approximately ¢t=149.5 ps, indicates
that the round-trip time between the two grating ends is
approximately equal to 149.5 ps, which corresponds to a
grating length of 1.55 cm. The location of the discontinu-
ity was taken as the midpoint of the sharp rise in the im-
pulse response amplitude near ¢=150 ps. We note that
the reconstruction is not sensitive to the exact grating
length. An accurate reconstruction can also be obtained if
the grating length is estimated as the length of the phase
mask used to write the grating—1.5 cm.

The FWHM of the main lobe in the reflection intensity
is approximately equal to BW=0.194 nm. The maximum
reflectivity obtained by measuring the intensity of the
backreflected wave is approximately equal to 99.98%.
Thus, according to the analysis in [4,5], in order to accu-
rately reconstruct the grating, it is required that the noise
level at the Bragg-zone frequencies be considerably lower
than 2x 10~%. However, Fig. 1 shows that the maximum
error at the Bragg zone of the grating reflectivity is ap-
proximately equal to 0.05, which is considerably larger
than required for accurately reconstructing the grating.
Therefore, the grating cannot be reconstructed without
regularizing its reflection spectrum. The bandwidth-
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Fig. 2. Amplitude of the grating impulse response. The discon-

tinuity at approximately ¢=150 ps is caused by a reflection from
the grating end.
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Fig. 3. Intensity of the measured complex reflection spectrum

after performing spectrum regularization.

length product of the grating is approximately equal to
BWL=0.31 nm cm, and thus the grating is suitable for
our regularization method.

Using our regularization algorithm, we corrected the
amplitude of the measured complex reflection spectrum.
In the regularization algorithm, we used L=1.55 cm, and
the reflection spectrum was corrected at frequencies at
which the reflection intensity exceeded 60%. The regular-
ized reflection spectrum had a maximum reflectivity of
99.98%, according to the measured result. The intensity
of the regularized reflection spectrum is shown in Fig. 3.
The figure clearly shows that the high frequency noise
components inside the Bragg region of the grating cannot
be observed after the spectrum regularization. The grat-
ing was reconstructed from the regularized reflection
spectrum by using the ILP algorithm [9].

To validate our results, we reconstructed the grating
from both of its sides using the same reconstruction pro-
cedure. The amplitude and phase of the two reconstructed
profiles are shown in Figs. 4 and 5, respectively, where
the solid curve corresponds to the data shown in Figs. 1
and 2 and the dashed curve corresponds to the recon-
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Fig. 4. (Color online) Amplitude of the reconstructed grating
performed from the two grating sides. The solid curve corre-
sponds to the data shown in Figs. 1 and 2, whereas the dashed
curve corresponds to the reconstruction from the other side of the
grating. The figure shows an excellent agreement between the
two reconstructions. The maximum difference between the two
reconstructed amplitude profiles is equal to 4% of the maximum
grating amplitude.
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Fig. 5. (Color online) Phase of the reconstructed grating per-
formed from the two grating sides. The maximum difference be-

tween the two reconstructed phase profiles is 0.03 rad. Curve
definitions as in Fig. 4.

struction performed from the other grating end. The
figure shows excellent agreement between the two recon-
structions. Thus, we can conclude that the nonuniformi-
ties in the reconstructed grating profile, shown in Figs. 4
and 5, are a result of grating defects and were not caused
by errors in the reconstruction. The maximum difference
between the two reconstructions is equal to 4% of the
maximum grating amplitude. The maximum difference
between the two reconstructed phase profiles is 0.03 rad.
We note that similar results were obtained when the grat-
ing length used in our regularization algorithm was in the
interval between 1.5 and 1.7 cm. Therefore, the recon-
struction method is not sensitive to the exact choice of the
grating length.

To obtain an accurate reconstruction of the grating, it
was essential to use both the regularization algorithm
and the ILP algorithm. Figure 6 shows the reconstruction
of the grating from both its sides in the case where only
the ILP algorithm was used and the spectrum was not
regularized. The figure clearly shows that the noise in the
measurement prevented the reconstruction of the grating.
Figure 7 shows the reconstruction of the grating from
both its sides in the case where the regularization algo-
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Fig. 6. (Color online) Grating amplitude, reconstructed from
both grating sides when the reflection spectrum is not regular-
ized and the ILP algorithm is used. The figure shows that the
grating cannot be reconstructed without regularizing its reflec-
tion spectrum. Curve definitions as in Fig. 4.
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Fig. 7. (Color online) Grating amplitude, reconstructed from
both grating sides when the reflection spectrum is regularized,
but the DLP algorithm is used instead of the ILP algorithm. The
figure shows that the grating cannot be reconstructed using the
DLP algorithm. Thus, it is essential that the ILP IS algorithm be
used. Curve definitions as in Fig. 4.

rithm was used, but instead of using the ILP algorithm,
the discrete-layer-peeling (DLP) algorithm [10] was used.
In this case, the reconstruction is again not accurate be-
cause the DLP algorithm is not suitable for reconstruct-
ing uniform gratings with a reflectivity higher than ap-
proximately 99%. We also note that the regularization
methods given in [4,8] were not suitable for reconstruct-
ing the profile of our grating.

4. CONCLUSION

We have experimentally demonstrated the use of a regu-
larization method for reconstructing the structure of a
highly reflecting FBG using only a measurement of its
complex reflection spectrum. In our experiment, we have
successfully reconstructed the structure of an approxi-
mately uniform grating with a maximum reflectivity of
99.98%. To the best of our knowledge, this is the first ac-
curate reconstruction of a highly reflecting grating using
only a measurement of the complex reflection spectrum.
Our method can be used for improving the manufacturing
process of highly reflecting FBGs.
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