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Inverse Scattering Algorithm for Reconstructing

Strongly Reflecting

Fiber Bragg Gratings

Amir Rosenthal and Moshe Horowitz

Abstract—We demonstrate a new inverse scattering algorithm
for reconstructing the structure of highly reflecting fiber Bragg
gratings. The method, called integral layer-peeling (ILP), is based
on solving the Gel'fand-Levitan-Marchenko (GLM) integral equa-
tion in a layer-peeling procedure. Unlike in previously published
layer-peeling algorithms, the structure of each layer in the ILP al-
gorithm can have a nonuniform profile. Moreover, errors due to the
limited bandwidth used to sample the reflection coefficient do not
rapidly accumulate along the grating. Therefore, the error in the
new algorithm is smaller than in previous layer peeling algorithms.
The ILP algorithm is compared to two discrete layer-peeling al-
gorithms and to an iterative solution to the GLM equation. The
comparison shows that the ILP algorithm enables to solve numer-
ically difficult inverse scattering problems, where previous algo-
rithms failed to give an accurate result. The complexity of the ILP
algorithm is on the same order as in previous layer peeling algo-
rithms. When a small error is acceptable, the complexity of the
ILP algorithm can be significantly reduced below the complexity
of previously published layer-peeling algorithms.

Index Terms—Gratings, inverse problems, optical fiber devices,
periodic structures.

. INTRODUCTION

GLM equation is obtained when the grating reflection spectrum
can be expressed as a rational function [5]. An iterative solu-
tion can be used to solve the GLM equation for a more gen-
eral reflection spectrum [6]—[8]. One of the methods that can be
easily applied is based on calculating a series of successive inte-
grals in order to estimate the kernel functions [7], [8]. The order
of the integrals is proportional to the number of iterations. Al-
though the iterative solution gives an accurate result for gratings
with a moderate reflectivity, its complexity is high and is equal
to O(N?) [9], where N is the number of points in the grating.
When the grating reflectivity is high, many iterations are needed
to obtain an accurate result. Since the reflection spectrum is
sampled with a limited bandwidth and resolution, the high-order
integrals can not be calculated accurately. Therefore, the error of
the iterative solution does not vanish for highly reflecting grat-
ings, even when the number of iterations is increased.

A newer approach for solving the inverse scattering problem
is the differential inverse scattering method, also referred to as
layer-peeling. This method was generalized by Bruckstin
al. [13] for solving various inverse scattering problems. The
layer-peeling method is based on causality principle: the front

IBER BRAGG gratings are important for various appli€dge of the impulse response is proportional to the structure at
cations in optical communication systems and in systertise beginning of the grating. In layer-peeling algorithms, the

for optical metrology. When the grating structure is known, thgrating is divided into thin layers, each assumed to have a uni-
complex reflection spectrum of the grating can be calculatéerm profile. The structure of the first layer can be determined
numerically [1], [2]. The problem of calculating the spectrundirectly from the impulse response. The extracted grating profile
from the grating profile is often referred to as a direct sca®f the first layer is used to calculate the fields at the beginning of
tering problem. However, in several important applications, tiiee next layer, using a solution to the direct scattering problem.
structure of a grating should be found from its complex refled-he process is repeated until the whole grating structure is re-
tion spectrum. In a reconstruction problem, the grating refleeealed.

tion spectrum is measured experimentally in order to extract theThe layer-peeling method was implemented using a contin-
grating profile [3], [4]. In a synthesis problem, the grating prodous [10] or a discrete [9], [11] model of the grating. In the
file is extracted from the desired spectral response [5]-[11]. THiscrete model, the grating is presented by a limited number of
problem of calculating the grating profile from its complex repoint reflectors. There are three main implementations to the
flection spectrum is often referred to as an inverse scatteridigcrete layer peeling (DLP) algorithm described in [9], [11].
problem. The DLP algorithm can be implemented in the time domain

Several methods for solving the inverse scattering problem(RDLP) [11], in the frequency domain (FDLP) [11], or in both
fiber Bragg gratings have been demonstrated [5]-[11]. The fiite frequency and time domain (FTDLP) [9]. The FTDLP is
type of solution is based on solving the GLM integral equatiokased on an extensive use of the fast Fourier transform (FFT).
The solution to the GLM equation is unique, and can be usééis algorithm is usually more robust but significantly slower
to extract the grating profile [12]. An analytical solution to théhan the FDLP algorithm. The complexity of layer-peeling
algorithms is equal ta)(N?log(N)) or O(N?), compared

. . . to O(N?) of the iterative solution to the GLM equation. In
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stable, while the continuous layer-peeling (CLP) algorithm
offers some advantages in flexibility. When both the FDLP and

0018-9197/03$17.00 © 2003 IEEE



ROSENTHAL AND HOROWITZ: INVERSE SCATTERING ALGORITHM FOR RECONSTRUCTING STRONGLY REFLECTING FIBER BRAGG GRATINGS 1019

CLP algorithms are stable, the accuracy of the two algorithméerek = 8 — = /A is the wavenumber detuning; (&, z) and

is approximately the same [11]. The limited bandwidth and,(k, z) are the complex amplitudes of the backward- and for-
resolution of the reflection coefficient is the main sourceard-propagating waves respectively, ajid) is the complex
of error in layer-peeling algorithms. The error accumulataoupling coefficient of the grating, defined as

along the grating through the peeling process. The DLP and

CLP _algorithms enable to accurately recon_struct mos_t _of t )= ni(2) exp | —if(z) + i 2m /z no(2")dz'|.
practical gratings. However, when the grating reflectivity is 2nayg A Navg\ Jo
very high, the error may become significant and may prevent 3)

an accurate reconstruction of the grating profile. Moreover, ti¥¢ assume that the gratings is written in the regiorLjONote
reconstruction accuracy of such gratings strongly depends At when the coupling coefficientz) is given, the separation
the bandwidth used to present the reflection coefficient. ~ between the average refractive index(z) and the phasé(z)

In this paper, we demonstrate a new layer-peeling algoritff@hnot be uniquely determined. . _
called integral layer-peeling (ILP). The algorithm is based on N the direct scattering problem, (2) is solved for given cou-
solving the GLM integral equation in a layer-peeling procedur8ling coefficient and boundary conditions. The solution can be
The grating is divided into several layers. Unlike in previou®und by dividing the grating into narrow uniform sections. The
layer-peeling algorithms, each layer in the ILP algorithm mat\yans_fer matrix of each section can be found using an aqalytlcal
have a nonuniform profile. The GLM equation is solved for eactP!ution [1], [2]. The transfer matrix of the whole grating is ob-
layer, in order to find the complex reflection coefficient of thd@ined by multiplying the transfer matrices of all the sections.
next layer, and in order to extract the layer profile. In contraySSUming that the boundary conditions argk, z = L) = 0
to former layer-peeling methods, errors due to the limited ban@?d u2(k, 2 = 0) = f(k), the reflection coefficient of the
width used to sample the reflection coefficient, do not rapid§ratingr (k) = ui(k,z = 0)/uz(k, 2 = 0) can be calculated.
accumulate along the grating. Hence, the total error of the I19t€ that since the problem is linear, thg_ reflection coefficient
algorithm is smaller than obtained in former layer-peeling aflo€s not depend on the boundary conditiggk, z = 0). The
gorithms. The high accuracy of the ILP algorithm is achievefEPmp'?x reflectlon spectrum is often_ used to characterlz_e grat-
with the same complexity as in former layer-peeling algorithm#!gS; Since it can be measured experimentally [3], [15]. Itis pos-
The ILP algorithm is extremely stable, and could be used §ple to present the fields in thgotlme domain using a Fourier
solve numerically difficult problems, where previous algorithm@@nsformun »(r, 2) = (1/2x) [~ ua2(k, z) exp(—ikr)dk,
[8]-[11] failed to give an accurate result using the same banf'€rer = ct/nay, is normalized timeg is the velocity of light
width and spectral resolution. The algorithm enabled to analy#vacuum, and is time. The impulse response of the grating is
even a uniform grating with an extremely high maximum reﬂe@_qual to the Fourier transform of the complex reflection coeffi-
tivity of 1—10'° = 0.999 999 999 9. When a slight inaccuracy 1Nt
is acceptable, the complexity of the algorithm can be signifi- 1 [
cantly reduced below the complexity of former layer-peeling h(r) = o /
algorithms. The dependence of the result accuracy of the ILP ’
algorithm on the bandwidth used to present the reflection specinverse scattering methods are used to calculate the grating
trum is significantly smaller than in previous algorithms. Thigrofile ¢(z) from the complex reflection coefficient k). When
advantage becomes especially important in the reconstruct{fg grating profiley(z) obeys[™_|g(z)|z™ dz < oo for every

r(k) exp(—ikT)dk. 4

— 00

of highly reflecting gratings from measurements [4]. integer numbern, the complex reflection spectrum defines a
unique solution to the inverse scattering problem [12]. There-
Il. THEORETICAL BACKGROUND fore, when the grating length is finite, there is always a unique

solution to the inverse scattering problem. There are two main
The refractive index profile of a fiber Bragg gratingz) can  gpproaches to solve inverse scattering problems in fiber Bragg

be modeled as [2], [5] gratings. The first, called layer-peeling, is based on a method
generalized by Brucksteiet al. [13]. The layer-peeling algo-
rithm uses the known solution to the direct scattering problem
in order to solve the inverse scattering problem. The grating is
divided into thin layers, each assumed to have a uniform pro-
wheren,,, is the average refractive index, (z) is the spatially file. The coupling coefficient of the first layer is proportional
dependent average refractive index/z) is the amplitude of to the front edge of the impulse response, due to causality prin-
the refractive index modulation, antl is the average grating ciple. Therefore, the coupling coefficient of the first layer can be
period. When absorption effect can be neglected, the propagatracted directly from the reflection coefficient by substituting
tion of an optical wave with a wavenumbgrcan be modeled r = 0in (4). The extracted coupling coefficient of the first layer
by the coupled mode equations [2], [5] is used to find the reflection coefficient of the second layer, using

a direct solution to the coupled-mode equations [(2)]. Then, the

1(2) = Navg + 10(2) + n1(2) sin &”2 + a(z)} )

duy(k,z) . procedure is repeated until the structure of the whole grating is
s + ikui (k, z) =q(2)ua(k, 2) revealed. The main advantages of the layer-peeling algorithm
dus(k, 2) are its simplicity and low complexity, that are compared to the

— g thua(k,z) =¢7(z)us(k, ) (2)  solution of the direct problem [10].
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Several different layer-peeling algorithms have been demawerforming a Fourier transform, the GLM integral equation is
strated [9]-[11] and can accurately reconstruct most of the prattained as follows:
tical gratings. However, when the algorithms are used to solve
numerically difficult inverse scattering problems, such as recoA(r, z) + [0} h(z+ )
structing gratings with a very high reflectivity, the error may . .
become significant and may prevent an accurate reconstruction + / [AQ(Q: Z)} hy+7)dy =0, 1<z (7)
of the grating profile. The inaccuracies in layer-peeling algo- . Ai(y, z) ( ( 7

rithms are mainly caused by the numerical calculation of ( derivi :
) . . : . 7), dth lity of th blafmr, z) =0
using a FFT with a finite bandwidth and spectral resolution [16, r frinr;g (7), we used the causality of the problatm, z)

In a practical problgm, the bandwidth ‘?‘”9' the resolution use‘?' toAfter the kernel functions\ (7, z) are calculated, the profile
present the reflection spectrum are limited. When the grati

profile is reconstructed from experimental measurements, t%?ethe grating can be found by substituting (6) into (2){12]
resolution and the bandwidth are limited by the experimental q(z) = 241(z, 2). (8)
setup. When a grating is synthesized, the resolution and band-

width are limited by calculation runtime. The inaccuracy in calFhe refractive index profile of the grating can be found from the
culating FFT causes an error in calculating the grating profit®upling coefficient(z) using (3). The fields inside the grating
and in propagating the fields along the grating. The numerica(k, z) can be found from the kernel functions using (5) and (6).
error in propagating the fields accumulates through the peelinglhe zero-order solution to (7), often referred to as the Born
procedure. Another source of error in layer-peeling algorithnagproximation, is obtained by neglecting the integral terms in
is the assumption that each layer has a uniform structure (@)

formed by a discrete reflector. The error in extracting the grating

profile becomes significant in gratings with a very high reflec- A(r,z)=— [
tivity. In a highly reflecting grating, the forward-propagating

wave rapidly decays along the grating. Therefore, the sectionThe Born approximation is accurate when multiple reflec-
of the grating, located close to the output end, does not signifons inside the grating are negligible. Multiple reflections can
cantly affect the reflection coefficient of the whole grating [4]pe neglected in gratings with a weak reflectivity or at the be-
Since the intenSity of the transmitted wave rapldly decays alogmning of h|gh|y reﬂecting gratingSZ( ~ 0) Therefore, the

a highly reflecting grating, the accumulated error may becomgofile close to the input end of a grating can be extracted by
on the same order as the reflection from the region, located negpstituting (9) into (8)

the output end of the grating.
The second approach for solving the inverse scattering q(z) = —2h(22). (20)

problem in fiber Bragg gratings is based on a solution to the ) ) ) .
GLM integral equation [12]. Since our approach requires When multiple reflections can not be neglected, an iterative

solving the GLM equation, in the following, we give a shorfolution to the GLM equation can be used [7], [8]. The zero-

— 00

1

0} hz+71) 7<=z 9

theoretical background on the subject. order solution of the iterative algorithm is given by the Born
We use a vectorial notation to present the inverse sc&RProximation [(9)]. The solution of iteratiant 1 (i > 0) can

tering problem u(k,z) = (ui(k,z),us(k,2)), where be calculated from the solution of iteratigrusing the recursive

ui(k,z), us(k,z) are the solutions to coupled-mode equd®€lation

tions [(2)] with the boundary conditiong, (k,z = L) = 0 ; z i .

and us(k,z = 0) = 1. Since coupled-mode equations Ai(r,2) = — Mz +7) - ./—oo {420, 2))h(y + 7)dy

are linear, the solutionu(k,z) can be written as sum . z ‘

of two independent solution®(k,z) , ®(k,z) with the  A5"'(r,2) Z—/ {AL(y, 2)} h(y + 7)dy (11)

boundary conditions®(k,z — —oo) = (exp[—ikz],0) e

and ®(k,z — —oo) = (0,exp[ikz)]) [12]. Since whereAi ,(r,z) are the two kernel functions of thiéh itera-

u(k,0) = (r(k),1), we obtain tion.

_ When the grating reflectivity is high, a large number of it-
u(k,z) = ®(k, 2) + r(k)®(k, 2). ()  erations is needed to accurately solve the GLM equation [14].
Using the symmetry properties of (2), it can be shown tthurthermore, the accuracy of t.he iterative solution dgcreases as
Bk,2) = (Bi(k,2), (k. 2)) wheré 1 o(k, 2) are the fhe dlstanc_e along thg grating increases, _dueto the increased ef-
vethJr componeznts7 oi;(klz)7[12]' The vecté@(}c ») can be fect of multiple reflect|0n_s. Theref_ore,_reglons that are_close_rto
represented as [12] ’ ’ ’ the output end of the grating, require higher number of iterations
than regions located at the beginning of the grating [14]. The-
* [ Ay(r,2) ik g oretically, the iterative procedure converges and t.he error can
[Az(T, Z)] e ar be reduced as needed [8]. In practice, the reflection spectrum
is presented using a finite bandwidth and resolution that pre-
whereA(r, z) = (A1 (7, 2), A2(T, 2)), are the kernel functions, vent an accurate calculation of high-order iterations. Therefore,
that give the difference between the solutidr(k, z), and the in highly reflecting gratings, the error of the iterative algorithm
boundary value at = —oo. By substituting (6) into (5) and does not vanish when the number of iterations is increased. In

B(k,z2) = [ﬂ exp(ikz) + /

J —o0



ROSENTHAL AND HOROWITZ: INVERSE SCATTERING ALGORITHM FOR RECONSTRUCTING STRONGLY REFLECTING FIBER BRAGG GRATINGS 1021

order to reduce the error in calculating high-order iterations, tinhere

time resolution should be increased. Therefore, the reconstruc- 2z
tion of highly reflecting gratings requires a very high time reso- a(k) :/ Ay (T — z,2) exp(ikT)dT
lution that dramatically increases the complexity of the solution. o
B(k) :/ As(z — 7, 2) exp(—ikT)dr. (14)
0

lll. THE ILP ALGORITHM . . . . :
Equation (13) is the basic equation of the ILP algorithm.

In this section, we describe a new algorithm for solving the We divide the grating inta\/ layers, each having a width
inverse scattering problem in fiber Bragg gratings. The algof Az. We define the local reflection coefficient of each
rithm, that will be referred to as the ILP, is a layer-peeling algdayer r,,,(k) = r(k,mAz), wherem = 0,1,...,M — 1.
rithm that is based on a solution to the GLM integral equationhe Fourier transform of the local reflection coefficient,
[(7)]. The ILP algorithm enables to solve numerically difficults,,, (1) = 1/(2) jf"oo rm (k) exp(—ikT)dk, gives the impulse
inverse scattering problems, where previous algorithms failedrtgsponse of the grating section located at the regianf, L].
give an accurate result. Using the ILP algorithm, we could aThe propagation of the local reflection coefficient along the
curately solve the inverse scatteriqg problem for gratings witrating is obtained from (13)
a very high reflectivity, up td — 10" ~". The complexity of the .
ILP algorithm is on the same order as former layer-peeling algor,,, , ; (k) = exp(—2ikAz) T (KL + i (F)] + oo (K)
rithms. When a slight inaccuracy is allowed, the complexity of L+ 7 (k)og, (k) + B (k)
the ILP algorithm can be reduced significantly below the comyhere
plexity of previously published layer-peeling algorithms. 9Az

The ILP algorithm is based on an iterative solution to the am (k) :/ Apm(T — Az, Az) exp(ikT)dr
GLM equation combined with a layer-peeling procedure. The —o0
grating is divided into several layers that may have a nonuni- B (k) = /Oo Ao Az — 7, Az) exp(—ikr)dr. (16)
form profile. A solution to the GLM equation is used to calcu- 0 ’ ’

late the reflection coefficient of each layer in the grating fron?,he kernel functionsd, .. (, z) and As.,.(r, =) are the solu-

the reflection coefficient of the preceding layer. The SOIu“Oﬁons to (7) obtained by substituting the local impulse response

to the GLM equation in each layer is also used to extract tI}Le (r), instead of the impulse responaér). Equation (15)
g '

prof[!le oftthet Iaygr. The llargc_ercri]ure ||3 tr'epetatt(;d lgtlllvlthe en: (g%es the exact recursive connection between the reflection co-
grating structure is revealed. The solution to the equatiof ionts of successive layers,

for each_layer is found gsing the iterative algorithm describedlln.l.he grating structure of theuth layer is extracted from the
the previous chapter. Since we need to solve the GLM equatioh +ion to the GLM equation using (8)

for a narrow layer only, a small number of iterations is all that is

needed to obtain accurate results. Therefore, the complexity of g(mAz + 2') = 241 . (2', 2') 0<z <Az  (17)

the ILP algorithm remains on the same order as previously pub- . )

lished layer-peeling algorithms. The calculation of the reflectidNote that t_he extrac_:t(_ad grating structure Is not used to propagate
coefficient of each layer is not based on the extracted profile &€ reflection coefficient in (15). Therefore, the error in evalu-
other layers in the grating. Therefore, inaccuracies in extracti#§nd the grating profile does not accumulate along the grating.
the grating profile do not accumulate through the peeling proce-Vhen the width of each layekz is short enough, the Born
dure. A detailed description of our ILP algorithm is given belowPProximation, given in (9), can be accurately used. Substituting

(15)

We define the local reflection coefficient(k,z) = (9) into (15) and (16), we obtain a simple equation for propa-
uy (k, z) Jus(k, z), wherewus (k, z) andus(k, z) are the back- gating the complex reflection coefficient along the grating
ward- and forward-propagating waves calculated for the _ P (k) = T (k)
boundary conditions,; (k, z = L) = 0 anduy(k, z = 0) = 1. rmt1(k) = eXP(—Q’LkAz)m (18)

Since our problem is linear,(k, z) is equal to the reflection

from the section of the grating located at the regierf]]. The Where
fields inside the grating are calculated by substituting (6) into 2Az
(5), and are given in (12), shown at the bottom of the page. The Tm(k) = /
local reflection coefficient is obtained from (12) as

hom (T) exp(ikT)dT. (29)
Equation (18) is the Born approximation to (15). The grating

profile is extracted using the connection
r(k)[L+ B° (k,2)] + alk, 2)

rlh2) = e (k) s ) Bk ) qmAz ) = —2h(27),  0<Z <Az (20)

|:U1(k7 z)} _ |:’I‘(k‘) exp(—ikz) + [7__ Ay(7,z)exp(ikT)dr + r(k) [~ __ A3(r, z)exp(—ikT)dr

exp(ikz) + ffoo Ao (T, 2)exp(ikT)dT + r(k) ffoo Aj (1, 2)exp(—ikT)dr (12)
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Since the local impulse responkg (7) is a causal function, Since the length of each layer is short, only a limited number
the lower limit of the integral in (19) can be theoretically reef iterations is needed to obtain an accurate result. We divide
placed by 0. In practice, the functidn, () is computed from the grating intoM layers; each contain&/2M points of the
the local reflection coefficient,,(k) using FFT. The numer- grating profile. We note that although the spectrum contains
ically calculated impulse functioh,,,(7) becomes inaccurate N points, the profile of the whole grating contains oriy/2
and noncausal due to the finite bandwidth and spectral resohwints, due to the casuality of the solution. The complexity of
tion used to present the local reflection coefficient. Thereforpropagating the reflection coefficient from one layer to another
a lower limit of —co is needed in order to accurately propagatesing (11), (15), and (16) is equal@{¢N log(N)+N log(N)).
the local reflection coefficient. The use the lower limit-ebo  The complexity of calculating the profile of a single layer using
significantly decreases the error due to numerical inaccurac{@g) and (17) is equal t& (¢(N/M)? log(N/M) + N log(N)).
such as Gibbs phenomenon. Since the grating profile is calculated fof layers, the overall

Equation (18) resembles the equation, that was used to propamplexity of extracting the whole grating structure is equal to
gate the reflection coefficient in the FDLP algorithm [11]. HowO(£(N)? /M log(N) + (£ + 1)N M log(N)). When Born ap-
ever, in[11], a constant number, that does not depend on the fsesximation ¢ = 0) can be used to solve the GLM equation, the
quency, was used instead of the frequency-dependent functiemplexity of the ILP algorithm reduces &@(N M log(N)).

T (k) used in (18). Therefore, our solution is more general andThe most accurate result in reconstructing the grating is ob-
more accurate than the solution used in [11]. We note that egfhed when the length of each layer in the ILP algorithm is min-
in the case when each layer in the ILP algorithm contains onlyir@al. In this case, each layer contains one point, and therefore
single point, the function,,, (k) depends on the frequency sincghe number of layers equald = N/2. When each layer con-

the lower limit in (19) is taken to be cc. tains only one point, Born approximation should be used and
the complexity of the solution is equal @(N?log(N)). In a
IV. COMPLEXITY AND NUMERICAL IMPLEMENTATION case where a slight decrease in the accuracy is acceptable, wider

In this section, we discuss the numerical implementation afY€'S ¢an be used, resulting in fewer layers. By decreasing the
the complexity of the ILP algorithm. As explained in the prenumlger of layers, the total complexity can be reduced below
vious section, we need to solve the GLM equation for each lay@f ¥~ 108()). When the length of the layers is increased, the

in the grating, using the iterative procedure described in Sétge of the Born approximation may cause errors. The accuracy
tion II. When the iterative solution to the GLM equation is imOf the solution may be improved in this case by increasing the

plemented directly, the complexity of the solution for each itepuMber of itera_ltions used to sol\_/e thE_ GLM quation. Although
ation is equal ta)(N?) [9], where N is the number of points the use of a higher number of iterations requires more calcu-
in the grating spectrum. We use a new implementation of tfgdions, ththotaI comple>_<ity can still be si_gnificantly redu_ced
iterative solution to the GLM equation, that reduces the corR€loW O(N"log(N)), as is demonstrated in the next section.
plexity of the calculations t©(N? log(N)). The implementa- Therefore, by reducing the number of layers, we can signifi-
tion is based on using FFT in the calculations of the integrals §@Ntly decrease the complexity of the ILP algorithm below that
(11). obtained by previously published layer-peeling algorithms.

The integrals in (11) can be calculated using the connection "€ use of the ILP algorithm enables to overcome numer-
ical problems that limit previous inverse scattering algorithms.

Y o The profile of the grating in a layer-peeling algorithm is ob-
/_OO Ava(y, 2y +7)dy = /_OO Gra(r=y, 2)hly)dy (21) tained from the local impulse responae,(t), calculated by
performing FFT on the local reflection coefficient (k). Since
where the bandwidth and the resolution of the local reflection coef-
; Al (=7,2), T> -z ficient r,,,(k) are limited, the calculated impulse response be-
12(7,2) = { 0, ’ ' otherwise. (22)  comes inaccurate. In order to reduce the error, the spectral res-

olution should be high enough to avoid aliasing effect in the
Aj.(r, z) are the kernel functions of thih iteration § = 1, time domain [16]. Since the impulse response is a rapidly de-
2). Since each of the two integrals in (21) is a convolution afaying function, a high enough spectral resolution can be prac-
two functions,h(7) andG? ,(7, ), the integrals can be calcu-tically chosen. The limited spectral bandwidth used to present
lated in the frequency domain using FFT. Using (11) and (2he reflection coefficient posses a more difficult problem. When
the complexity of calculating the kernel functioAsr, ) fora the reflectivity of the grating is high, an extremely broad spec-
given value ofz is O(¢N log(N)), wherel > 0 is the number trum is required in order to avoid a significant error when using
of iterations. The number of iterations significantly affects thearmer inverse scattering algorithms [8]-[11]. When the grating
computation time. Therefore, we choose to emphasize the pfefile is reconstructed from measurements, the bandwidth is
fect of the number of iterations by adding it to the complexitiimited by experimental setup. When the grating is synthesized,
calculations. Using (8) to calculate the grating profile, the tot#the bandwidth is limited by calculation time. The limited band-
complexity needed to extract the grating profile is reduced taidth causes numerical errors, such as the Gibbs phenomenon,
O({N?log(N) + Nlog(N)). The last term in the complexity at the front edge of the impulse response [16]. Since the grating
expression gives the complexity of Born approximatibe=(0). profile is extracted from the front edge of the impulse response,
In our implementation of the ILP algorithm, we solve the large error is caused by the Gibbs phenomenon. Moreover,
GLM equation for each layer using FFT as described aboube error in extracting the grating profile accumulates in former
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layer-peeling algorithms ([9]-[11]) through the propagation of
the reflection coefficient. Since numerical errors, caused by in-
sufficient bandwidth, do not rapidly accumulate in the ILP algo-
rithm, the total error in reconstructing the grating is significantly
reduced. Therefore, our algorithm can be used to analyze highly
reflecting gratings with a narrower spectral bandwidth. More-
over, unlike in previously published layer-peeling algorithms,
the Gibbs phenomenon can be further reduced in the ILP algo-

rithm. The profile of each layer in the ILP algorithm is extracted '-.‘ s //“;\ &

by solving the GLM equation. The solution to the GLM equa- " E\/ ':‘; DA

tion for a given layer can be used to accurately extract the struc- T : ‘ —a
: ; . 0 2 4 6 8

ture of nearby layers. The error in calculating the profile of one

layer from the solution to the GLM equation in a nearby layer Z (mm)

can be significantly lower than the error caused by the Gibbs
phenomenon. Mathematically, when the Born approximationﬁ?!%!- 1. RegonSth(Cjteld _modulatimdgdex(g) of fioundiforrr gra;in% Xvith a
. . . refractive index modulation amplitude, = 6.5 x 10~*, a length of 4 mm,
used, the proflle of the_ﬂh I_ayer is calculated from the Impulseand a maximum reflectivity of 99.99%, calculated using the ILP algorithm
response of layet — j using (10) (solid line), the FDLP algorithm (dashed line), and iterative solution to the
GLM equation with 70 iterations (dotted line). The reflection spectrum was
sampled over a bandwidth of 40 nm with a resolution of 0.01 nm. The figure
qmAz + 2" = —2hp—;[2(j Az + 2')] 0< 2 <Az shows that an excellent reconstruction of the grating was obtained using the
(23 ILP algorithm, while the FDLP algorithm and the iterative solution to the GLM

. . . equation gave a large error. The inset of the figure shows a zoom on the profile
Equation (23) enables to extract the profile of the grating frog%se to tﬁe input eﬂd of the grating. 9 P

parts of the impulse response that are less affected by the Gibbs
phenomenon. This procedure, that could not be implemented in

previous layer-peeling methods, enables to reduce the ripp|e§)13haccurately used to propagate the reflection coefficient [(18)].
the extracted profile. After calculating the local reflection coefficient of each layer in

the grating, the profile of the grating was extracted using (23)
with j = 3. A Hanning window was used in the calculation
of the grating profile from the reflection coefficient [(23)]. The
In this section, we demonstrate the use of the ILP algorithwindow was used to reduce the ripples along the grating, caused
for reconstructing highly reflecting fiber Bragg gratings. Wéy the abrupt change at the boundaries of the uniform grating.
compared the results of the ILP algorithm to the results of tviye note that the window was used only in the extraction of
DLP algorithms: FDLP [11] and FTDLP [9], as well as to arthe grating profile, and not for propagating the reflection coeffi-
iterative solution to the GLM equation [8]. The ILP algorithnreient. Therefore, an error that may be caused by the smoothing
was found to be more accurate than the former algorithms wheperation of the window does not accumulate along the grating.
implemented with the same bandwidth and spectral resolutidrich a filter can not be used in conventional layer-peeling algo-
When the reflectivity of the grating was not very high, the preithms, since the filter affects the propagation of the reflection
vious layer-peeling algorithms gave an accurate result. Hogeefficient.
ever, when the grating reflectivity was very high, only the ILP Fig. 1 compares the reconstructed profile of the grating,
algorithm enabled to solve the numerically difficult inverse scatalculated using the ILP algorithm, the FDLP algorithm [11],
tering problem. The complexity of the ILP algorithm was foundnd the iterative solution to the GLM equation [8]. The iterative
to be similar or lower than the complexity of the most efficiensolution was implemented using 70 iterations. We have found
inverse scattering algorithm-FDLP algorithm, described in [11fhat the error did not change significantly when the number
When a small error in the result was acceptable, the complexdf iterations was increased above 70, due to an insufficient
of the ILP algorithm was reduced below that of the DLP algapectral width used to present the spectrum. The results shown
rithms. in Fig. 1 demonstrate that an excellent reconstruction of the
In the first example, shown in Fig. 1, we demonstrate the higimiform grating was obtained using the ILP algorithm. On
accuracy of the ILP algorithm compared to previously publishetle other hand, the FDLP algorithm as well as the iterative
inverse scattering algorithms. The grating that was analyzed tsdution to the GLM equation gave a large error. The iterative
a uniform profile with a refractive index modulation amplitudesolution to the GLM equation was the slowest algorithm, and
ny = 6.5 x 10~* and a length of 4 mm. The spectral bandgave the worst results. Similar performance of the iterative
width of the grating reflection was 0.8 nm, and the maximursolution was obtained in [9] for a weaker grating. Therefore, we
reflectivity was equal to 99.99%. The reflection coefficient olvill not show in the next examples the results of the iterative
the grating was calculated using an implicit expression [1], [Bblution to the GLM equation. The FDLP algorithm required
and was sampled over a bandwidth of 40 nm with a spectral res+ extremely broad spectrum of about 1000 nm in order to
olution of 0.01 nm. The central wavelength of all the gratingsccurately reconstruct the highly reflecting grating, analyzed
analyzed in this paper is equal }0= 2n,,z A = 1550 nm. in Fig. 1. Such a huge bandwidth is not practical, and therefore
Each layer in the implementation of the ILP algorithm corthe large error caused by the FDLP algorithm may not be
tained one point, and therefore the Born approximation coudgtoided for such a highly reflecting uniform grating. We have

V. NUMERICAL RESULTS
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Fig. 2. Reconstructed modulation index;(z) of a chirped raised Fig. 3. Reconstructed average refractive index profil¢z) of the chirped
cosine grating with a maximum refractive index modulation(: = raised cosine grating shown in Fig. 2, calculated using the FTDLP algorithm
2 mm) = 1.45 x 10~3, a length of 4 mm, and an average refractive indedotted line), the FDLP algorithm (dashed line), and the ILP algorithm (solid
no = 0.25(4 x 10~% — z). The grating had a maximum reflectivity of line). The reflection spectrum was sampled over a bandwidth of 15 nm with

99.99%, a spectral bandwidth of about 1.7 nm, and a dispersion slope of 286#esolution of 0.01 nm. Excellent reconstruction of the grating profile was
nm/cm. The reflection spectrum was sampled over a bandwidth of 15 nm wiRtained using the ILP algorithm, while a significant error was obtained in the
a resolution of 0.01 nm. The grating profile was extracted using the FTDLPSUlt of both DLP algorithms.

algorithm [9] (dotted line), the FDLP algorithm [11] (dashed line), and the ILP

algorithm (solid line). The inset of the figure shows a zoom on the profile near

the output end of the grating. 1.5X10‘3

also reconstructed the grating using the FTDLP algorithm [9].
Although the FTDLP algorithm is usually more robust than the . 1.0x10°
FDLP algorithm, in the particular example, shown in Fig. 1, the =
FTDLP gave a worse result than that obtained using the FDLP
algorithm. 0.5x10°1
The reconstruction of a uniform grating is a numerically dif-
ficult task due to the abrupt change in the refractive index at the
boundaries of the grating. In the next example, we show that T
even when the grating has a smooth profile, the ILP algorithm 0 2 4
can give a more accurate result than obtained by both DLP algo- 4 (mm)
rithms. The grating that was analyzed had a chirped raised co- o , o
sine profile with a length of 4 mm. The refractive index _pgr,ofiI%’?"éff{;1 Ctis:fﬁé‘:;r‘iﬁg%%g%?;’llafnlfgf‘fg%?;ﬁ e‘;’;’:ﬁrg; grﬂm? a"r‘]’gha
had a maximum amplitude of; (z = 2 mm) = 1.45 x 107°.  maximum reflectivity oft — 10~'°, calculated using the ILP algorithm. The
The average refractive index profile, that caused the chirp, wafiection spectrum was sampled over a bandwidth of 80 nm with a resolution
equal tong(z) = 0.25(4 x 10~ — z). The grating had a max- °f 0005 nm.
imum reflectivity of 99.99%, a spectral bandwidth of about 1.7
nm, and a dispersion slope of 2.64 nm/cm. Each layer in theln order to further demonstrate the stability and the accuracy
ILP algorithm contained one point, and the GLM equation was the ILP algorithm, we reconstructed a uniform grating with
solved using Born approximation [(18)—(20)]. Since the gratirg maximum reflectivity ofl — 107'* = 0.9999999999. The
profile was smooth, we did not use a Hanning window to extragtating had a uniform profile with a refractive index modula-
the grating profile as in the first example. The reflection spetion amplitude ofn; = 1.5 x 102 and length of 4 mm. The
trum was sampled over a bandwidth of 15 nm with a resolutioaflection coefficient was sampled over a bandwidth of 80 nm
of 0.01 nm. Figs. 2 and 3 show the profile of the grating amplwith a spectral resolution of 0.005 nm. The extraction of the
tude,n;(z), and the average refractive indeux,(z), calculated grating profile was performed as in the first example. Fig. 4
using the FTDLP algorithm [9] (dotted line), the FDLP algoshows the profile of the grating, reconstructed by the ILP al-
rithm [11] (dashed line), and the ILP algorithm (solid line). Thgorithm. The figure demonstrates that an excellent reconstruc-
figures demonstrate again that an excellent reconstruction of then was obtained even for such a highly reflecting grating. The
grating profile was obtained using the ILP algorithm. On thEDLP and the FTDLP algorithms as well as the iterative solution
other hand, the result of both DLP algorithms contained a sip-the GLM equation could not reconstruct the highly reflecting
nificant error especially in the reconstructed average refractigeating using a practical bandwidth.
index of the gratingno(z). The implementation of the FTDLP  The ILP algorithm enables to accurately reconstruct highly
algorithm, gave a more accurate result than obtained using telecting gratings from a reflection coefficient sampled over a
FDLP algorithm. When the bandwidth of the reflection specignificantly narrower bandwidth than required by former DLP
trum was greater than about 25 nm, the FTDLP algorithm gaa&gorithms. This advantage of the ILP algorithm becomes es-
an accurate result. pecially important in reconstructing highly reflecting gratings
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0 N 3.0x10™*4
0 0.002 0.004 0.006
z (mm)
(@ \
0 2 4
. z (mm)
1x10°
* Fig. 6. Reconstructed modulation index profile(z) of a Gaussian grating
with a maximum refractive index amplitude, (= = 2 mm) = 7 x 10*, a

length of 4 mm, a full-width at half-maximum of 1.34 mm, and a maximum
reflectivity of 93%. The grating was reconstructed using Born approximation
(dotted line) and first-order approximation to the GLM equation (dashed line).
The results are compared with exact grating profile (solid line). The reflection
spectrum was sampled over a bandwidth of 40 nm with a resolution of 0.08
z (mm) nm. The first-order approximation gave an accurate result with a complexity of
3/2100( N
() O(N3/21og(N)).
Fig. 5. Reconstructed modulation index,; (=), of a raised cosine grating _. . . . . . .
with a refractive index modulation, = 1.35 x 102, a length of 4 mm, tion (dotted line) and using a first-order |terat|9n (daSh_ed ||ne_)-
calculated using (a) the FDLP algorithm and (b) the ILP algorithm . Thhe results are compared to the known grating profile (solid
reflection spectrum was sampled over a bandwidth 20 nm (solid line), 10 ’Eﬂlrve). The figure shows that an accurate reconstruction of the
(dashed line), and 5 nm (dotted line), with a resolution of 0.01 nm. . . . . . .
grating was obtained when first-order iterative solution to the
. GLM equation was used. Therefore the complexity of the solu-
from measurements. Fig. 5 shows the reconstructed modulat{on 3/2 ;
index nq(z) of a raised cosine grating with a refractive index o Was equal /) (N log(N)), compared to a complexity
" 9 g of O(N?), needed in the FDLP algorithm. Indeed, the runtime

. _ = 73
modula_1t|orm1 = 1.35% 10 7, a Iength of 4 mm, and a spectral f the ILP algorithm was about half of the runtime of the FDLP
bandwidth of 1.4 nm, calculated using the FTDLP algorithm [ : : . ;
Igorithm. The difference between the runtimes is smaller than

and the ILP algorithm. The maximum reflectivity of the gratin%an be expected by comparing the complexity of the two aldo-
was equal to 99.99%. The reflection spectrum was sampled over P y paring plexity 9

. . ; rithms. Since the computer code of the ILP algorithm is more
a bandwidth of 20 nm (solid line), 10 nm (dashed line), andcomplicated than the code of the FDLP algorithm, we expect

nm (dotted line), with a resolution of 0.01 nm. The FDLP algot_hat the difference between the runtime of the two algorithms

rithm gave a larger error than Ob“"?'”ed n the_ FTDLP algorlt_hm n be significantly increased by optimizing the code of the ILP
and therefore we did not include its results in the graph. F|g.a qorithm

shows that a bandwidth of 5 nm was sufficient to obtain an accu=
rate result using the ILP algorithm, while the FTDLP algorithm
required a bandwidth of 20 nm.

The FTDLP algorithm is more complex and requires a longer We have demonstrated a new inverse scattering method
runtime than the FDLP or the ILP algorithms. In the last eXor reconstructing highly reflecting fiber Bragg gratings. The
ample, we show that when a slight decrease in the accuracyradthod, ILP, is based on solving the GLM integral equation
the calculation is acceptable, the complexity of the ILP algdn a layer-peeling procedure. Unlike in previously published
rithm can be reduced below that of the FDLP algorithm. THayer-peeling algorithms, the structure of each layer in the ILP
FDLP algorithm was considered in previous work as the mosigorithm can have a nonuniform profile. Moreover, errors due
efficient inverse scattering algorithm [11]. The decrease in the the limited bandwidth used to sample the reflection coeffi-
complexity of the ILP algorithm was obtained by increasing theient, do not rapidly accumulate along the grating. Therefore,
length of the layers, without significantly increasing the numbeie error in the new algorithm is smaller than in previous layer
of iterations required to accurately solve the GLM equation. Theeeling algorithms. The integral layer-peeling algorithm was
grating that was analyzed had a Gaussian profile with a maempared to two DLP algorithms and to an iterative solution
imum modulation amplitudez; (z = 2 mm) = 7 x 107™*, a to the GLM equation. The comparison indicates that the ILP
length of 4 mm, and a full-width at half-maximum of 1.34 mmalgorithm enables to solve numerically difficult inverse scat-
The maximum reflectivity of the grating was 93%. No chirp watering problems, such as to reconstruct gratings with a very
added to the grating. The reflection spectrum was sampled ohégh reflectivity, where previous algorithms failed to give an
a bandwidth of 40 nm with a resolution of 0.08 nm. The numbeiccurate result. The complexity of the ILP algorithm is on the
of points in the grating profile was equal f¢/2 = 250. The same order as in previous peeling algorithms. When a small
grating was divided into 16¢ N'/2) layers, and therefore theerror is acceptable, the complexity of the ILP algorithm could
complexity of the solution was equal@(N?3/2 log(N)). Fig.6 be significantly reduced below the complexity of previously
shows the reconstructed profile obtained using Born approxinmaiblished layer-peeling algorithms.

0 0002  0.004  0.006

VI. CONCLUSIONS
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