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Inverse Scattering Algorithm for Reconstructing
Strongly Reflecting Fiber Bragg Gratings

Amir Rosenthal and Moshe Horowitz

Abstract—We demonstrate a new inverse scattering algorithm
for reconstructing the structure of highly reflecting fiber Bragg
gratings. The method, called integral layer-peeling (ILP), is based
on solving the Gel’fand-Levitan-Marchenko (GLM) integral equa-
tion in a layer-peeling procedure. Unlike in previously published
layer-peeling algorithms, the structure of each layer in the ILP al-
gorithm can have a nonuniform profile. Moreover, errors due to the
limited bandwidth used to sample the reflection coefficient do not
rapidly accumulate along the grating. Therefore, the error in the
new algorithm is smaller than in previous layer peeling algorithms.
The ILP algorithm is compared to two discrete layer-peeling al-
gorithms and to an iterative solution to the GLM equation. The
comparison shows that the ILP algorithm enables to solve numer-
ically difficult inverse scattering problems, where previous algo-
rithms failed to give an accurate result. The complexity of the ILP
algorithm is on the same order as in previous layer peeling algo-
rithms. When a small error is acceptable, the complexity of the
ILP algorithm can be significantly reduced below the complexity
of previously published layer-peeling algorithms.

Index Terms—Gratings, inverse problems, optical fiber devices,
periodic structures.

I. INTRODUCTION

F IBER BRAGG gratings are important for various appli-
cations in optical communication systems and in systems

for optical metrology. When the grating structure is known, the
complex reflection spectrum of the grating can be calculated
numerically [1], [2]. The problem of calculating the spectrum
from the grating profile is often referred to as a direct scat-
tering problem. However, in several important applications, the
structure of a grating should be found from its complex reflec-
tion spectrum. In a reconstruction problem, the grating reflec-
tion spectrum is measured experimentally in order to extract the
grating profile [3], [4]. In a synthesis problem, the grating pro-
file is extracted from the desired spectral response [5]–[11]. The
problem of calculating the grating profile from its complex re-
flection spectrum is often referred to as an inverse scattering
problem.

Several methods for solving the inverse scattering problem in
fiber Bragg gratings have been demonstrated [5]–[11]. The first
type of solution is based on solving the GLM integral equation.
The solution to the GLM equation is unique, and can be used
to extract the grating profile [12]. An analytical solution to the
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GLM equation is obtained when the grating reflection spectrum
can be expressed as a rational function [5]. An iterative solu-
tion can be used to solve the GLM equation for a more gen-
eral reflection spectrum [6]–[8]. One of the methods that can be
easily applied is based on calculating a series of successive inte-
grals in order to estimate the kernel functions [7], [8]. The order
of the integrals is proportional to the number of iterations. Al-
though the iterative solution gives an accurate result for gratings
with a moderate reflectivity, its complexity is high and is equal
to [9], where is the number of points in the grating.
When the grating reflectivity is high, many iterations are needed
to obtain an accurate result. Since the reflection spectrum is
sampled with a limited bandwidth and resolution, the high-order
integrals can not be calculated accurately. Therefore, the error of
the iterative solution does not vanish for highly reflecting grat-
ings, even when the number of iterations is increased.

A newer approach for solving the inverse scattering problem
is the differential inverse scattering method, also referred to as
layer-peeling. This method was generalized by Brucksteinet
al. [13] for solving various inverse scattering problems. The
layer-peeling method is based on causality principle: the front
edge of the impulse response is proportional to the structure at
the beginning of the grating. In layer-peeling algorithms, the
grating is divided into thin layers, each assumed to have a uni-
form profile. The structure of the first layer can be determined
directly from the impulse response. The extracted grating profile
of the first layer is used to calculate the fields at the beginning of
the next layer, using a solution to the direct scattering problem.
The process is repeated until the whole grating structure is re-
vealed.

The layer-peeling method was implemented using a contin-
uous [10] or a discrete [9], [11] model of the grating. In the
discrete model, the grating is presented by a limited number of
point reflectors. There are three main implementations to the
discrete layer peeling (DLP) algorithm described in [9], [11].
The DLP algorithm can be implemented in the time domain
(TDLP) [11], in the frequency domain (FDLP) [11], or in both
the frequency and time domain (FTDLP) [9]. The FTDLP is
based on an extensive use of the fast Fourier transform (FFT).
This algorithm is usually more robust but significantly slower
than the FDLP algorithm. The complexity of layer-peeling
algorithms is equal to or , compared
to of the iterative solution to the GLM equation. In
a recently published paper, Skaaret al. [11] compared the
discrete and continuous implementations, and found out that
the FDLP algorithm is significantly faster and is often more
stable, while the continuous layer-peeling (CLP) algorithm
offers some advantages in flexibility. When both the FDLP and

0018-9197/03$17.00 © 2003 IEEE



ROSENTHAL AND HOROWITZ: INVERSE SCATTERING ALGORITHM FOR RECONSTRUCTING STRONGLY REFLECTING FIBER BRAGG GRATINGS 1019

CLP algorithms are stable, the accuracy of the two algorithms
is approximately the same [11]. The limited bandwidth and
resolution of the reflection coefficient is the main source
of error in layer-peeling algorithms. The error accumulates
along the grating through the peeling process. The DLP and
CLP algorithms enable to accurately reconstruct most of the
practical gratings. However, when the grating reflectivity is
very high, the error may become significant and may prevent
an accurate reconstruction of the grating profile. Moreover, the
reconstruction accuracy of such gratings strongly depends on
the bandwidth used to present the reflection coefficient.

In this paper, we demonstrate a new layer-peeling algorithm
called integral layer-peeling (ILP). The algorithm is based on
solving the GLM integral equation in a layer-peeling procedure.
The grating is divided into several layers. Unlike in previous
layer-peeling algorithms, each layer in the ILP algorithm may
have a nonuniform profile. The GLM equation is solved for each
layer, in order to find the complex reflection coefficient of the
next layer, and in order to extract the layer profile. In contrary
to former layer-peeling methods, errors due to the limited band-
width used to sample the reflection coefficient, do not rapidly
accumulate along the grating. Hence, the total error of the ILP
algorithm is smaller than obtained in former layer-peeling al-
gorithms. The high accuracy of the ILP algorithm is achieved
with the same complexity as in former layer-peeling algorithms.
The ILP algorithm is extremely stable, and could be used to
solve numerically difficult problems, where previous algorithms
[8]–[11] failed to give an accurate result using the same band-
width and spectral resolution. The algorithm enabled to analyze
even a uniform grating with an extremely high maximum reflec-
tivity of 10 . When a slight inaccuracy
is acceptable, the complexity of the algorithm can be signifi-
cantly reduced below the complexity of former layer-peeling
algorithms. The dependence of the result accuracy of the ILP
algorithm on the bandwidth used to present the reflection spec-
trum is significantly smaller than in previous algorithms. This
advantage becomes especially important in the reconstruction
of highly reflecting gratings from measurements [4].

II. THEORETICAL BACKGROUND

The refractive index profile of a fiber Bragg grating can
be modeled as [2], [5]

(1)

where is the average refractive index, is the spatially
dependent average refractive index, is the amplitude of
the refractive index modulation, and is the average grating
period. When absorption effect can be neglected, the propaga-
tion of an optical wave with a wavenumbercan be modeled
by the coupled mode equations [2], [5]

(2)

where is the wavenumber detuning, and
are the complex amplitudes of the backward- and for-

ward-propagating waves respectively, and is the complex
coupling coefficient of the grating, defined as

(3)
We assume that the gratings is written in the region [0,]. Note
that when the coupling coefficient is given, the separation
between the average refractive index and the phase
cannot be uniquely determined.

In the direct scattering problem, (2) is solved for given cou-
pling coefficient and boundary conditions. The solution can be
found by dividing the grating into narrow uniform sections. The
transfer matrix of each section can be found using an analytical
solution [1], [2]. The transfer matrix of the whole grating is ob-
tained by multiplying the transfer matrices of all the sections.
Assuming that the boundary conditions are
and , the reflection coefficient of the
grating can be calculated.
Note that since the problem is linear, the reflection coefficient
does not depend on the boundary condition . The
complex reflection spectrum is often used to characterize grat-
ings, since it can be measured experimentally [3], [15]. It is pos-
sible to present the fields in the time domain using a Fourier
transform ,
where is normalized time, is the velocity of light
in vacuum, and is time. The impulse response of the grating is
equal to the Fourier transform of the complex reflection coeffi-
cient

(4)

Inverse scattering methods are used to calculate the grating
profile from the complex reflection coefficient . When
the grating profile obeys for every
integer number , the complex reflection spectrum defines a
unique solution to the inverse scattering problem [12]. There-
fore, when the grating length is finite, there is always a unique
solution to the inverse scattering problem. There are two main
approaches to solve inverse scattering problems in fiber Bragg
gratings. The first, called layer-peeling, is based on a method
generalized by Brucksteinet al. [13]. The layer-peeling algo-
rithm uses the known solution to the direct scattering problem
in order to solve the inverse scattering problem. The grating is
divided into thin layers, each assumed to have a uniform pro-
file. The coupling coefficient of the first layer is proportional
to the front edge of the impulse response, due to causality prin-
ciple. Therefore, the coupling coefficient of the first layer can be
extracted directly from the reflection coefficient by substituting

in (4). The extracted coupling coefficient of the first layer
is used to find the reflection coefficient of the second layer, using
a direct solution to the coupled-mode equations [(2)]. Then, the
procedure is repeated until the structure of the whole grating is
revealed. The main advantages of the layer-peeling algorithm
are its simplicity and low complexity, that are compared to the
solution of the direct problem [10].
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Several different layer-peeling algorithms have been demon-
strated [9]–[11] and can accurately reconstruct most of the prac-
tical gratings. However, when the algorithms are used to solve
numerically difficult inverse scattering problems, such as recon-
structing gratings with a very high reflectivity, the error may
become significant and may prevent an accurate reconstruction
of the grating profile. The inaccuracies in layer-peeling algo-
rithms are mainly caused by the numerical calculation of (4),
using a FFT with a finite bandwidth and spectral resolution [16].
In a practical problem, the bandwidth and the resolution used to
present the reflection spectrum are limited. When the grating
profile is reconstructed from experimental measurements, the
resolution and the bandwidth are limited by the experimental
setup. When a grating is synthesized, the resolution and band-
width are limited by calculation runtime. The inaccuracy in cal-
culating FFT causes an error in calculating the grating profile
and in propagating the fields along the grating. The numerical
error in propagating the fields accumulates through the peeling
procedure. Another source of error in layer-peeling algorithms
is the assumption that each layer has a uniform structure or
formed by a discrete reflector. The error in extracting the grating
profile becomes significant in gratings with a very high reflec-
tivity. In a highly reflecting grating, the forward-propagating
wave rapidly decays along the grating. Therefore, the section
of the grating, located close to the output end, does not signifi-
cantly affect the reflection coefficient of the whole grating [4].
Since the intensity of the transmitted wave rapidly decays along
a highly reflecting grating, the accumulated error may become
on the same order as the reflection from the region, located near
the output end of the grating.

The second approach for solving the inverse scattering
problem in fiber Bragg gratings is based on a solution to the
GLM integral equation [12]. Since our approach requires
solving the GLM equation, in the following, we give a short
theoretical background on the subject.

We use a vectorial notation to present the inverse scat-
tering problem , where

are the solutions to coupled-mode equa-
tions [(2)] with the boundary conditions
and . Since coupled-mode equations
are linear, the solution can be written as sum
of two independent solutions , with the
boundary conditions:
and [12]. Since

, we obtain

(5)

Using the symmetry properties of (2), it can be shown that
, where are the

vector components of [12]. The vector can be
represented as [12]

(6)

where , are the kernel functions,
that give the difference between the solution, , and the
boundary value at . By substituting (6) into (5) and

performing a Fourier transform, the GLM integral equation is
obtained as follows:

(7)

In deriving (7), we used the causality of the problem
for .

After the kernel functions are calculated, the profile
of the grating can be found by substituting (6) into (2)[12]

(8)

The refractive index profile of the grating can be found from the
coupling coefficient using (3). The fields inside the grating

can be found from the kernel functions using (5) and (6).
The zero-order solution to (7), often referred to as the Born

approximation, is obtained by neglecting the integral terms in
(7)

(9)

The Born approximation is accurate when multiple reflec-
tions inside the grating are negligible. Multiple reflections can
be neglected in gratings with a weak reflectivity or at the be-
ginning of highly reflecting gratings ( ). Therefore, the
profile close to the input end of a grating can be extracted by
substituting (9) into (8)

(10)

When multiple reflections can not be neglected, an iterative
solution to the GLM equation can be used [7], [8]. The zero-
order solution of the iterative algorithm is given by the Born
approximation [(9)]. The solution of iteration ( ) can
be calculated from the solution of iteration, using the recursive
relation

(11)

where are the two kernel functions of theth itera-
tion.

When the grating reflectivity is high, a large number of it-
erations is needed to accurately solve the GLM equation [14].
Furthermore, the accuracy of the iterative solution decreases as
the distance along the grating increases, due to the increased ef-
fect of multiple reflections. Therefore, regions that are closer to
the output end of the grating, require higher number of iterations
than regions located at the beginning of the grating [14]. The-
oretically, the iterative procedure converges and the error can
be reduced as needed [8]. In practice, the reflection spectrum
is presented using a finite bandwidth and resolution that pre-
vent an accurate calculation of high-order iterations. Therefore,
in highly reflecting gratings, the error of the iterative algorithm
does not vanish when the number of iterations is increased. In
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order to reduce the error in calculating high-order iterations, the
time resolution should be increased. Therefore, the reconstruc-
tion of highly reflecting gratings requires a very high time reso-
lution that dramatically increases the complexity of the solution.

III. T HE ILP ALGORITHM

In this section, we describe a new algorithm for solving the
inverse scattering problem in fiber Bragg gratings. The algo-
rithm, that will be referred to as the ILP, is a layer-peeling algo-
rithm that is based on a solution to the GLM integral equation
[(7)]. The ILP algorithm enables to solve numerically difficult
inverse scattering problems, where previous algorithms failed to
give an accurate result. Using the ILP algorithm, we could ac-
curately solve the inverse scattering problem for gratings with
a very high reflectivity, up to 10 . The complexity of the
ILP algorithm is on the same order as former layer-peeling algo-
rithms. When a slight inaccuracy is allowed, the complexity of
the ILP algorithm can be reduced significantly below the com-
plexity of previously published layer-peeling algorithms.

The ILP algorithm is based on an iterative solution to the
GLM equation combined with a layer-peeling procedure. The
grating is divided into several layers that may have a nonuni-
form profile. A solution to the GLM equation is used to calcu-
late the reflection coefficient of each layer in the grating from
the reflection coefficient of the preceding layer. The solution
to the GLM equation in each layer is also used to extract the
profile of the layer. The procedure is repeated until the entire
grating structure is revealed. The solution to the GLM equation
for each layer is found using the iterative algorithm described in
the previous chapter. Since we need to solve the GLM equation
for a narrow layer only, a small number of iterations is all that is
needed to obtain accurate results. Therefore, the complexity of
the ILP algorithm remains on the same order as previously pub-
lished layer-peeling algorithms. The calculation of the reflection
coefficient of each layer is not based on the extracted profile of
other layers in the grating. Therefore, inaccuracies in extracting
the grating profile do not accumulate through the peeling proce-
dure. A detailed description of our ILP algorithm is given below.

We define the local reflection coefficient
, where and are the back-

ward- and forward-propagating waves calculated for the
boundary conditions and .
Since our problem is linear, is equal to the reflection
from the section of the grating located at the region []. The
fields inside the grating are calculated by substituting (6) into
(5), and are given in (12), shown at the bottom of the page. The
local reflection coefficient is obtained from (12) as

(13)

where

(14)

Equation (13) is the basic equation of the ILP algorithm.
We divide the grating into layers, each having a width

of . We define the local reflection coefficient of each
layer , where .
The Fourier transform of the local reflection coefficient,

, gives the impulse
response of the grating section located at the region [ ].
The propagation of the local reflection coefficient along the
grating is obtained from (13)

(15)

where

(16)

The kernel functions and are the solu-
tions to (7) obtained by substituting the local impulse response

, instead of the impulse response . Equation (15)
gives the exact recursive connection between the reflection co-
efficients of successive layers.

The grating structure of the th layer is extracted from the
solution to the GLM equation using (8)

(17)

Note that the extracted grating structure is not used to propagate
the reflection coefficient in (15). Therefore, the error in evalu-
ating the grating profile does not accumulate along the grating.

When the width of each layer is short enough, the Born
approximation, given in (9), can be accurately used. Substituting
(9) into (15) and (16), we obtain a simple equation for propa-
gating the complex reflection coefficient along the grating

(18)

where

(19)

Equation (18) is the Born approximation to (15). The grating
profile is extracted using the connection

(20)

(12)
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Since the local impulse response is a causal function,
the lower limit of the integral in (19) can be theoretically re-
placed by 0. In practice, the function is computed from
the local reflection coefficient using FFT. The numer-
ically calculated impulse function becomes inaccurate
and noncausal due to the finite bandwidth and spectral resolu-
tion used to present the local reflection coefficient. Therefore,
a lower limit of is needed in order to accurately propagate
the local reflection coefficient. The use the lower limit of
significantly decreases the error due to numerical inaccuracies
such as Gibbs phenomenon.

Equation (18) resembles the equation, that was used to propa-
gate the reflection coefficient in the FDLP algorithm [11]. How-
ever, in [11], a constant number, that does not depend on the fre-
quency, was used instead of the frequency-dependent function

used in (18). Therefore, our solution is more general and
more accurate than the solution used in [11]. We note that even
in the case when each layer in the ILP algorithm contains only a
single point, the function depends on the frequency since
the lower limit in (19) is taken to be .

IV. COMPLEXITY AND NUMERICAL IMPLEMENTATION

In this section, we discuss the numerical implementation and
the complexity of the ILP algorithm. As explained in the pre-
vious section, we need to solve the GLM equation for each layer
in the grating, using the iterative procedure described in Sec-
tion II. When the iterative solution to the GLM equation is im-
plemented directly, the complexity of the solution for each iter-
ation is equal to [9], where is the number of points
in the grating spectrum. We use a new implementation of the
iterative solution to the GLM equation, that reduces the com-
plexity of the calculations to . The implementa-
tion is based on using FFT in the calculations of the integrals in
(11).

The integrals in (11) can be calculated using the connection

(21)

where

otherwise.
(22)

are the kernel functions of theth iteration ( ,
2). Since each of the two integrals in (21) is a convolution of
two functions, and , the integrals can be calcu-
lated in the frequency domain using FFT. Using (11) and (21),
the complexity of calculating the kernel functions for a
given value of is , where is the number
of iterations. The number of iterations significantly affects the
computation time. Therefore, we choose to emphasize the ef-
fect of the number of iterations by adding it to the complexity
calculations. Using (8) to calculate the grating profile, the total
complexity needed to extract the grating profile is reduced to

. The last term in the complexity
expression gives the complexity of Born approximation ( ).

In our implementation of the ILP algorithm, we solve the
GLM equation for each layer using FFT as described above.

Since the length of each layer is short, only a limited number
of iterations is needed to obtain an accurate result. We divide
the grating into layers; each contains points of the
grating profile. We note that although the spectrum contains

points, the profile of the whole grating contains only
points, due to the casuality of the solution. The complexity of
propagating the reflection coefficient from one layer to another
using (11), (15), and (16) is equal to .
The complexity of calculating the profile of a single layer using
(11) and (17) is equal to .
Since the grating profile is calculated for layers, the overall
complexity of extracting the whole grating structure is equal to

. When Born ap-
proximation ( ) can be used to solve the GLM equation, the
complexity of the ILP algorithm reduces to .

The most accurate result in reconstructing the grating is ob-
tained when the length of each layer in the ILP algorithm is min-
imal. In this case, each layer contains one point, and therefore
the number of layers equals . When each layer con-
tains only one point, Born approximation should be used and
the complexity of the solution is equal to . In a
case where a slight decrease in the accuracy is acceptable, wider
layers can be used, resulting in fewer layers. By decreasing the
number of layers, the total complexity can be reduced below

. When the length of the layers is increased, the
use of the Born approximation may cause errors. The accuracy
of the solution may be improved in this case by increasing the
number of iterations used to solve the GLM equation. Although
the use of a higher number of iterations requires more calcu-
lations, the total complexity can still be significantly reduced
below , as is demonstrated in the next section.
Therefore, by reducing the number of layers, we can signifi-
cantly decrease the complexity of the ILP algorithm below that
obtained by previously published layer-peeling algorithms.

The use of the ILP algorithm enables to overcome numer-
ical problems that limit previous inverse scattering algorithms.
The profile of the grating in a layer-peeling algorithm is ob-
tained from the local impulse response , calculated by
performing FFT on the local reflection coefficient . Since
the bandwidth and the resolution of the local reflection coef-
ficient are limited, the calculated impulse response be-
comes inaccurate. In order to reduce the error, the spectral res-
olution should be high enough to avoid aliasing effect in the
time domain [16]. Since the impulse response is a rapidly de-
caying function, a high enough spectral resolution can be prac-
tically chosen. The limited spectral bandwidth used to present
the reflection coefficient posses a more difficult problem. When
the reflectivity of the grating is high, an extremely broad spec-
trum is required in order to avoid a significant error when using
former inverse scattering algorithms [8]–[11]. When the grating
profile is reconstructed from measurements, the bandwidth is
limited by experimental setup. When the grating is synthesized,
the bandwidth is limited by calculation time. The limited band-
width causes numerical errors, such as the Gibbs phenomenon,
at the front edge of the impulse response [16]. Since the grating
profile is extracted from the front edge of the impulse response,
a large error is caused by the Gibbs phenomenon. Moreover,
the error in extracting the grating profile accumulates in former
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layer-peeling algorithms ([9]–[11]) through the propagation of
the reflection coefficient. Since numerical errors, caused by in-
sufficient bandwidth, do not rapidly accumulate in the ILP algo-
rithm, the total error in reconstructing the grating is significantly
reduced. Therefore, our algorithm can be used to analyze highly
reflecting gratings with a narrower spectral bandwidth. More-
over, unlike in previously published layer-peeling algorithms,
the Gibbs phenomenon can be further reduced in the ILP algo-
rithm. The profile of each layer in the ILP algorithm is extracted
by solving the GLM equation. The solution to the GLM equa-
tion for a given layer can be used to accurately extract the struc-
ture of nearby layers. The error in calculating the profile of one
layer from the solution to the GLM equation in a nearby layer
can be significantly lower than the error caused by the Gibbs
phenomenon. Mathematically, when the Born approximation is
used, the profile of the th layer is calculated from the impulse
response of layer using (10)

(23)
Equation (23) enables to extract the profile of the grating from
parts of the impulse response that are less affected by the Gibbs
phenomenon. This procedure, that could not be implemented in
previous layer-peeling methods, enables to reduce the ripples in
the extracted profile.

V. NUMERICAL RESULTS

In this section, we demonstrate the use of the ILP algorithm
for reconstructing highly reflecting fiber Bragg gratings. We
compared the results of the ILP algorithm to the results of two
DLP algorithms: FDLP [11] and FTDLP [9], as well as to an
iterative solution to the GLM equation [8]. The ILP algorithm
was found to be more accurate than the former algorithms when
implemented with the same bandwidth and spectral resolution.
When the reflectivity of the grating was not very high, the pre-
vious layer-peeling algorithms gave an accurate result. How-
ever, when the grating reflectivity was very high, only the ILP
algorithm enabled to solve the numerically difficult inverse scat-
tering problem. The complexity of the ILP algorithm was found
to be similar or lower than the complexity of the most efficient
inverse scattering algorithm-FDLP algorithm, described in [11].
When a small error in the result was acceptable, the complexity
of the ILP algorithm was reduced below that of the DLP algo-
rithms.

In the first example, shown in Fig. 1, we demonstrate the high
accuracy of the ILP algorithm compared to previously published
inverse scattering algorithms. The grating that was analyzed had
a uniform profile with a refractive index modulation amplitude

10 and a length of 4 mm. The spectral band-
width of the grating reflection was 0.8 nm, and the maximum
reflectivity was equal to 99.99%. The reflection coefficient of
the grating was calculated using an implicit expression [1], [2]
and was sampled over a bandwidth of 40 nm with a spectral res-
olution of 0.01 nm. The central wavelength of all the gratings
analyzed in this paper is equal to nm.

Each layer in the implementation of the ILP algorithm con-
tained one point, and therefore the Born approximation could

Fig. 1. Reconstructed modulation indexn (z) of a uniform grating with a
refractive index modulation amplituden = 6:5 � 10 , a length of 4 mm,
and a maximum reflectivity of 99.99%, calculated using the ILP algorithm
(solid line), the FDLP algorithm (dashed line), and iterative solution to the
GLM equation with 70 iterations (dotted line). The reflection spectrum was
sampled over a bandwidth of 40 nm with a resolution of 0.01 nm. The figure
shows that an excellent reconstruction of the grating was obtained using the
ILP algorithm, while the FDLP algorithm and the iterative solution to the GLM
equation gave a large error. The inset of the figure shows a zoom on the profile
close to the input end of the grating.

be accurately used to propagate the reflection coefficient [(18)].
After calculating the local reflection coefficient of each layer in
the grating, the profile of the grating was extracted using (23)
with . A Hanning window was used in the calculation
of the grating profile from the reflection coefficient [(23)]. The
window was used to reduce the ripples along the grating, caused
by the abrupt change at the boundaries of the uniform grating.
We note that the window was used only in the extraction of
the grating profile, and not for propagating the reflection coeffi-
cient. Therefore, an error that may be caused by the smoothing
operation of the window does not accumulate along the grating.
Such a filter can not be used in conventional layer-peeling algo-
rithms, since the filter affects the propagation of the reflection
coefficient.

Fig. 1 compares the reconstructed profile of the grating,
calculated using the ILP algorithm, the FDLP algorithm [11],
and the iterative solution to the GLM equation [8]. The iterative
solution was implemented using 70 iterations. We have found
that the error did not change significantly when the number
of iterations was increased above 70, due to an insufficient
spectral width used to present the spectrum. The results shown
in Fig. 1 demonstrate that an excellent reconstruction of the
uniform grating was obtained using the ILP algorithm. On
the other hand, the FDLP algorithm as well as the iterative
solution to the GLM equation gave a large error. The iterative
solution to the GLM equation was the slowest algorithm, and
gave the worst results. Similar performance of the iterative
solution was obtained in [9] for a weaker grating. Therefore, we
will not show in the next examples the results of the iterative
solution to the GLM equation. The FDLP algorithm required
an extremely broad spectrum of about 1000 nm in order to
accurately reconstruct the highly reflecting grating, analyzed
in Fig. 1. Such a huge bandwidth is not practical, and therefore
the large error caused by the FDLP algorithm may not be
avoided for such a highly reflecting uniform grating. We have
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Fig. 2. Reconstructed modulation indexn (z) of a chirped raised
cosine grating with a maximum refractive index modulationn (z =
2 mm) = 1:45 � 10 , a length of 4 mm, and an average refractive index
n = 0:25(4 � 10 � z). The grating had a maximum reflectivity of
99.99%, a spectral bandwidth of about 1.7 nm, and a dispersion slope of 2.64
nm/cm. The reflection spectrum was sampled over a bandwidth of 15 nm with
a resolution of 0.01 nm. The grating profile was extracted using the FTDLP
algorithm [9] (dotted line), the FDLP algorithm [11] (dashed line), and the ILP
algorithm (solid line). The inset of the figure shows a zoom on the profile near
the output end of the grating.

also reconstructed the grating using the FTDLP algorithm [9].
Although the FTDLP algorithm is usually more robust than the
FDLP algorithm, in the particular example, shown in Fig. 1, the
FTDLP gave a worse result than that obtained using the FDLP
algorithm.

The reconstruction of a uniform grating is a numerically dif-
ficult task due to the abrupt change in the refractive index at the
boundaries of the grating. In the next example, we show that
even when the grating has a smooth profile, the ILP algorithm
can give a more accurate result than obtained by both DLP algo-
rithms. The grating that was analyzed had a chirped raised co-
sine profile with a length of 4 mm. The refractive index profile
had a maximum amplitude of mm 10 .
The average refractive index profile, that caused the chirp, was
equal to 10 . The grating had a max-
imum reflectivity of 99.99%, a spectral bandwidth of about 1.7
nm, and a dispersion slope of 2.64 nm/cm. Each layer in the
ILP algorithm contained one point, and the GLM equation was
solved using Born approximation [(18)–(20)]. Since the grating
profile was smooth, we did not use a Hanning window to extract
the grating profile as in the first example. The reflection spec-
trum was sampled over a bandwidth of 15 nm with a resolution
of 0.01 nm. Figs. 2 and 3 show the profile of the grating ampli-
tude, , and the average refractive index, , calculated
using the FTDLP algorithm [9] (dotted line), the FDLP algo-
rithm [11] (dashed line), and the ILP algorithm (solid line). The
figures demonstrate again that an excellent reconstruction of the
grating profile was obtained using the ILP algorithm. On the
other hand, the result of both DLP algorithms contained a sig-
nificant error especially in the reconstructed average refractive
index of the grating, . The implementation of the FTDLP
algorithm, gave a more accurate result than obtained using the
FDLP algorithm. When the bandwidth of the reflection spec-
trum was greater than about 25 nm, the FTDLP algorithm gave
an accurate result.

Fig. 3. Reconstructed average refractive index profilen (z) of the chirped
raised cosine grating shown in Fig. 2, calculated using the FTDLP algorithm
(dotted line), the FDLP algorithm (dashed line), and the ILP algorithm (solid
line). The reflection spectrum was sampled over a bandwidth of 15 nm with
a resolution of 0.01 nm. Excellent reconstruction of the grating profile was
obtained using the ILP algorithm, while a significant error was obtained in the
result of both DLP algorithms.

Fig. 4. Reconstructed modulation indexn (z) of a uniform grating with
a refractive index modulationn = 1:5 � 10 , a length of 4 mm, and a
maximum reflectivity of1 � 10 , calculated using the ILP algorithm. The
reflection spectrum was sampled over a bandwidth of 80 nm with a resolution
of 0.005 nm.

In order to further demonstrate the stability and the accuracy
of the ILP algorithm, we reconstructed a uniform grating with
a maximum reflectivity of 10 . The
grating had a uniform profile with a refractive index modula-
tion amplitude of 10 and length of 4 mm. The
reflection coefficient was sampled over a bandwidth of 80 nm
with a spectral resolution of 0.005 nm. The extraction of the
grating profile was performed as in the first example. Fig. 4
shows the profile of the grating, reconstructed by the ILP al-
gorithm. The figure demonstrates that an excellent reconstruc-
tion was obtained even for such a highly reflecting grating. The
FDLP and the FTDLP algorithms as well as the iterative solution
to the GLM equation could not reconstruct the highly reflecting
grating using a practical bandwidth.

The ILP algorithm enables to accurately reconstruct highly
reflecting gratings from a reflection coefficient sampled over a
significantly narrower bandwidth than required by former DLP
algorithms. This advantage of the ILP algorithm becomes es-
pecially important in reconstructing highly reflecting gratings
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(a)

(b)

Fig. 5. Reconstructed modulation index,n (z), of a raised cosine grating
with a refractive index modulationn = 1:35 � 10 , a length of 4 mm,
calculated using (a) the FDLP algorithm and (b) the ILP algorithm . The
reflection spectrum was sampled over a bandwidth 20 nm (solid line), 10 nm
(dashed line), and 5 nm (dotted line), with a resolution of 0.01 nm.

from measurements. Fig. 5 shows the reconstructed modulation
index of a raised cosine grating with a refractive index
modulation 10 , a length of 4 mm, and a spectral
bandwidth of 1.4 nm, calculated using the FTDLP algorithm [9]
and the ILP algorithm. The maximum reflectivity of the grating
was equal to 99.99%. The reflection spectrum was sampled over
a bandwidth of 20 nm (solid line), 10 nm (dashed line), and 5
nm (dotted line), with a resolution of 0.01 nm. The FDLP algo-
rithm gave a larger error than obtained in the FTDLP algorithm,
and therefore we did not include its results in the graph. Fig. 5
shows that a bandwidth of 5 nm was sufficient to obtain an accu-
rate result using the ILP algorithm, while the FTDLP algorithm
required a bandwidth of 20 nm.

The FTDLP algorithm is more complex and requires a longer
runtime than the FDLP or the ILP algorithms. In the last ex-
ample, we show that when a slight decrease in the accuracy of
the calculation is acceptable, the complexity of the ILP algo-
rithm can be reduced below that of the FDLP algorithm. The
FDLP algorithm was considered in previous work as the most
efficient inverse scattering algorithm [11]. The decrease in the
complexity of the ILP algorithm was obtained by increasing the
length of the layers, without significantly increasing the number
of iterations required to accurately solve the GLM equation. The
grating that was analyzed had a Gaussian profile with a max-
imum modulation amplitude, mm 10 , a
length of 4 mm, and a full-width at half-maximum of 1.34 mm.
The maximum reflectivity of the grating was 93%. No chirp was
added to the grating. The reflection spectrum was sampled over
a bandwidth of 40 nm with a resolution of 0.08 nm. The number
of points in the grating profile was equal to . The
grating was divided into 16( ) layers, and therefore the
complexity of the solution was equal to . Fig. 6
shows the reconstructed profile obtained using Born approxima-

Fig. 6. Reconstructed modulation index profilen (z) of a Gaussian grating
with a maximum refractive index amplituden (z = 2 mm) = 7 � 10 , a
length of 4 mm, a full-width at half-maximum of 1.34 mm, and a maximum
reflectivity of 93%. The grating was reconstructed using Born approximation
(dotted line) and first-order approximation to the GLM equation (dashed line).
The results are compared with exact grating profile (solid line). The reflection
spectrum was sampled over a bandwidth of 40 nm with a resolution of 0.08
nm. The first-order approximation gave an accurate result with a complexity of
O(N log(N)).

tion (dotted line) and using a first-order iteration (dashed line).
The results are compared to the known grating profile (solid
curve). The figure shows that an accurate reconstruction of the
grating was obtained when first-order iterative solution to the
GLM equation was used. Therefore the complexity of the solu-
tion was equal to , compared to a complexity
of , needed in the FDLP algorithm. Indeed, the runtime
of the ILP algorithm was about half of the runtime of the FDLP
algorithm. The difference between the runtimes is smaller than
can be expected by comparing the complexity of the two algo-
rithms. Since the computer code of the ILP algorithm is more
complicated than the code of the FDLP algorithm, we expect
that the difference between the runtime of the two algorithms
can be significantly increased by optimizing the code of the ILP
algorithm.

VI. CONCLUSIONS

We have demonstrated a new inverse scattering method
for reconstructing highly reflecting fiber Bragg gratings. The
method, ILP, is based on solving the GLM integral equation
in a layer-peeling procedure. Unlike in previously published
layer-peeling algorithms, the structure of each layer in the ILP
algorithm can have a nonuniform profile. Moreover, errors due
to the limited bandwidth used to sample the reflection coeffi-
cient, do not rapidly accumulate along the grating. Therefore,
the error in the new algorithm is smaller than in previous layer
peeling algorithms. The integral layer-peeling algorithm was
compared to two DLP algorithms and to an iterative solution
to the GLM equation. The comparison indicates that the ILP
algorithm enables to solve numerically difficult inverse scat-
tering problems, such as to reconstruct gratings with a very
high reflectivity, where previous algorithms failed to give an
accurate result. The complexity of the ILP algorithm is on the
same order as in previous peeling algorithms. When a small
error is acceptable, the complexity of the ILP algorithm could
be significantly reduced below the complexity of previously
published layer-peeling algorithms.
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