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Abstract—We study theoretically and experimentally actively
modelocked fiber lasers that are used in high repetition rate op-
tical communication systems. Using an innovative numerical tech-
nique and a reduced model, we have found that the laser can op-
erate in four different operating regimes when the laser intensity
was changed; three of the regimes were experimentally observed in
a laser with a sigma configuration. An excellent quantitative agree-
ment between the theoretical and the experimental results was ob-
tained. The use of dispersion management in the sigma laser was
found to significantly improve the laser performance.

Index Terms—Modelocked lasers, nonlinear optics, optical fiber
lasers, pulsed lasers, solitons.

I. INTRODUCTION

M ODELOCKED erbium-doped fiber lasers are com-
pact and environmentally stable and can generate

dropout-free ultrashort pulses with a very high repetition rate,
a large extinction ratio, and a very low phase noise. These
features make them particularly well suited for studying the
transmission of return to zero (RZ) pulses, e.g., solitons, at
data rates where are no other short pulse sources that are as
clean available. Additionally, those sources have application
in optical high-data-rate analog to digital conversion. An
actively modelocked laser with a sigma configuration has
been demonstrated to generate a stable train of 1-ps pulses
with a repetition rate of 10 GHz and a pulse dropout ratio of
less than 10 [1]. This laser has been used in repeaterless
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transmission of 10-Gb/s data over 296 km [2] and
Gb/s wavelength-division multiplexed data over 235 km [3]. A
similar fiber laser has been recently used for transmitting 20
Gb/s of data to more than 20 000 km [4]. The sigma laser has
also exhibited an extremely low measured timing jitter of less
than 10 fs over a 100 Hz-1 MHz frequency interval [5].

Due to the stringent requirements imposed upon lasers that
are used in optical communication systems, it is important to
develop theoretical models that enable the user to accurately an-
alyze laser performance. Such models will give researchers the
means to better understand the physics of the laser and to control
and optimize its performance. Prior work for studying actively
modelocked fiber lasers or storage rings [6], [7] has been largely
based on solving the Ginzburg–Landau equation, modified to
include amplifier filtering and active modelocking (This equa-
tion is also referred to as the master equation of modelocking).
This work, which is based on earlier pioneering work by Haus
[8] and by others [9], includes a number of simplifying assump-
tions. The most important assumption in the reduced model is
that 1) every pulse in the laser cavity is the same. This assump-
tion, which is certainly false in general, makes it impossible to
study important dynamic effects in harmonically modelocked
fiber lasers and to find the precise limits on the stable operating
regime; however, it is a reasonable assumption when studying an
already-established stable pulse train. Other assumptions are: 2)
the pulse change is small at any fixed point in the laser from one
roundtrip to the next; 3) the bandwidth of the pulse is small com-
pared to the bandwidth of the gain medium and/or the optical
filtering; and 4) the time duration of the pulse is much shorter
than the period of the modelocking. Additionally, to use soliton
perturbation theory, one must assume that 5) the pulse shape re-
mains nearly hyperbolic-secant during its roundtrip through the
laser. These assumptions enable one to obtain analytical results
and to find out explicitly the dependence of the generated pulses
on the cavity parameters. In order to obtain a good quantitative
agreement between the theory and experiments, however, one
should use a more comprehensive approach that models all the
major physical phenomena that affect the laser behavior.

One of the important effects that cannot be accurately
modeled using a single pulse analysis is pulse dropout. Since
fiber lasers for optical communication systems operate at high
repetition rates, they are harmonically modelocked so that
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many pulses simultaneously propagate inside the cavity. A
major problem with this mode of operation is pulse dropout;
some pulses may drop from the pulse train and cause errors in
the system. The laser dynamics that lead to supermode compe-
tition and pulse dropout cannot be studied using a single pulse
analysis, since a single pulse cannot be dropped. Therefore,
single-pulse models cannot accurately predict the limits on the
desirable operating regime. Several methods for eliminating
dropouts have been demonstrated experimentally [1], [10],
[11]; however, stable operation could only be obtained over
a limited range of pulse durations and the limits have been
poorly understood. In principle, one can study the dynamics
of supermode competition by studying a long string of pulses,
but in practice it is not feasible even computationally to study
strings that are greater than about 24 pulses in length. We have
verified that computational results converge very slowly so that
even 24 pulses were not enough to obtain an accurate solution,
nor do the results agree well with experiments.

In this paper we introduce an innovative yet simple technique
that allows us to efficiently study pulse dropouts and other dy-
namic effects in harmonically modelocked fiber lasers. In our
simulations, we model the propagation of a limited number of
pulses and a “superpulse” that represents the pulses that are not
simulated individually; the technique enables us to accurately
model the impact of the amplifier gain on the pulse train. We
have found that the amplifier gain affects significantly the dy-
namics of the laser as well as its performance, defined in terms
of the pulse dropout ratio and the signal-to-noise ratio. We apply
our new approach to model dynamic effects such as supermode
competition, pulse dropout, and multiple pulse generation in
harmonically modelocked fiber lasers. Our simulation enables
us to accurately find the limits on the desirable operating regime
since we can model pulses with different energies and shapes
that simultaneously propagate inside the laser cavity, as occurs
near the boundaries of the stable operating regime. We believe
that our approach will also be useful in modeling a wide variety
of lasers and storage rings containing many pulses.

We have included in our model the principal physical phe-
nomena that affect laser performance. We have modeled the
propagation of pulses in a cavity that contains fibers with a
nonuniform dispersion map, an erbium-doped fiber amplifier
with spontaneous emission noise and saturation, and a mode-
locker. We have developed a new model for calculating the sat-
uration of homogeneously broadened amplifiers [12]. We have
shown by solving the Maxwell–Bloch equations that, when a
broadband pulse propagates inside a homogeneously broadened
amplifier, the saturation is determined by the overlap between
the amplifier gain profile and the pulse spectrum rather than by
the energy of the pulse, as is assumed in the conventional models
[6], [7], [13], [14]. Since an erbium-doped fiber amplifier is es-
sentially homogeneously broadened [15] our model was used to
accurately model the saturation in our laser.

We have applied our theoretical approach for studying a laser
with the sigma configuration [1] and have obtained excellent
quantitative agreement between the theoretical and experi-
mental pulse spectra, autocorrelation traces, and dependence of
the pulse duration on the laser power. We have also been able
to obtain excellent agreement between the theoretical and the

experimental autocorrelation traces of the noise surrounding
the pulse and to calculate the standard deviation of the pulse
energy, frequency, and jitter. We have found that an actively
modelocked fiber laser can pass through four different oper-
ating regimes as the intracavity power increases; three of these
regimes are observed experimentally in the sigma laser. Good
agreement was obtained between theory and experiment for
the power boundaries of the first three operating regimes. In
the first regime the intracavity power is small and the pulse
amplitude fluctuates in time. In the second regime, the Kerr
effect becomes important as the intracavity power increases,
leading to pulse shortening and pulse dropout. When the power
increases further the laser enters a third regime, a stable mode
of operation with very few pulse dropouts. Finally, still higher
powers force the laser into the forth regime, in which pulse
pairs are generated in some time slots. The fourth regime
imposes an upper power limit upon the regime of stable pulse
generation. In the sigma laser the last regime is not observed,
however, because dispersion management of the laser cavity
significantly increases the power at which the fourth regime
occurs, making it nearly unobservable experimentally.

We have also studied the stability of the energy of a single
pulse that propagates in the cavity using Lyapunov’s method,
assuming that all the pulses have the same amplitude and shape.
Prior work for studying the stability of modelocked fiber lasers
[7] and storage ring [6] were performed using soliton perturba-
tion theory. Lyapunov’s method is simpler than soliton perturba-
tion theory, yet it gives more general and more accurate results.
In particular, we could study the stability of pulses with arbitrary
shapes rather than hyperbolic-secant, as is assumed in soliton
perturbation theory. We found that pulses are stable only when
their duration is shorter than a threshold value that depends on
the mode-locker the amplifier, and the pulse shape [22]. There-
fore, when the laser is insufficiently pumped it generates a lim-
ited number of pulses with dropouts in some time slots. When
the repetition rate increases, the minimum average power that
is needed for stable operation sharply increases. We have vali-
dated these results by comparison to complete simulations and
have found that the prediction of the parametric dependence of
the threshold is quite good, although there are quantitative dif-
ferences.

II. L ASER AND MODEL DESCRIPTION

A. Experimental Configuration

The laser studied experimentally was an actively
mode-locked sigma laser [1]. The laser configuration, shown
in Fig. 1, contains a single-polarization branch [16], allowing
the incorporation of nonpolarization-maintaining fibers into
a laser which acts essentially as a polarization-maintaining
(PM) unidirectional ring laser. Linearly polarized light is
injected from a PM fiber loop through a polarizing beamsplitter
into a non-PM branch; the polarization state of the light
evolves as it propagates through the branch. A 45Faraday
rotator and mirror at the end of the branch returns light in a
polarization state orthogonal to that of the incident light, and
(for linear propagation) the polarization state of the returning
light is orthogonal to that of the incident light at every point
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Fig. 1. Schematic description of the laser configuration that was used in the
experiments. EFA is an erbium-doped fiber amplifier and DCF is dispersion
compensating fiber.

in the branch. Light exiting the branch into the polarizing
beamsplitter is linearly polarized and rotated by 90from the
incident light. The orthogonally polarized counterpropagating
light compensates birefringence variations, a major source
of environmental instability in non-PM lasers. The non-PM
branch contains a tunable filter with a 3-dB bandwidth of 16
nm, 12 m of Yb : Er gain fiber, 60 m of payout fiber (reduced
dispersion fiber that can be rotated around a drum with a
small diameter without adding a significant loss), and 13 m of
dispersion-compensating fiber (DCF). The loop also contains
an isolator, an output coupler, and a Mach–Zehnder intensity
modulator driven by a microwave synthesizer.

A feedback system compares the phase of the laser pulse
train with the synthesizer output to generate an error signal.
This signal is amplified, integrated, and fed to a piezoelectric
cylinder, around which is wound the payout fiber, to regulate
the cavity length. The effective length of the laser is 192 m, cor-
responding to a fundamental repetition rate of 1 MHz. When
driven at 10 GHz, the laser operates at a harmonic order number
of 10 .

B. Laser Model

The laser configuration in the theoretical model, shown
in Fig. 2, is similar to that used in the sigma laser [1]. The
dispersion map contained 60 m of payout fiber with
13.38 ps/nm-km, 26 m of dispersion compensating fiber with

92 ps/nm-km, 60 m of payout fiber with
ps/nm-km, and 46 m of fiber with 17.7 ps/nm-km. The
theoretically estimated average dispersion at the operating
wavelength of 1560.5 nm was 0.14 0.01 ps/nm-km.
This estimate was obtained by requiring optimum agreement
between theory and experiments; due to uncertainties in
estimating the cavity losses, the accuracy of the theoretical
estimation of the average dispersion was limited to about 0.01
ps/nm-km. The theoretical average cavity dispersion should
be compared with the experimental estimate 0.15
ps/nm-km, obtained by assuming that the pulse duration in-
creases rapidly when crosses through zero as the operating
wavelength is tuned from the anomalous to the normal regime.
The nonlinear coefficient of the dispersion-compensating fiber
was taken to be 4.0 W km , while the nonlinear
coefficient of the other fibers was 2.1 W km .

Fig. 2. Schematic description of the laser configuration that was analyzed
theoretically. EDFA is an erbium-doped fiber amplifier, BPF is an optical
bandpass filter, andD are fibers with a dispersion coefficientD and a
nonlinear effect.

We have also studied theoretically and experimentally a sim-
ilar laser configuration with a higher average dispersion of 0.22
ps/nm-km. The length of the dispersion-compensating fiber in
this configuration was 25.8 m while the other fiber lengths were
unchanged. In order to analyze the effect of dispersion manage-
ment on the sigma laser we have also modeled a laser with a
uniform dispersion map that generates pulses with similar ener-
gies and durations as the sigma laser.

We calculated the pulse propagation in the fiber by solving the
Manakov equation [17] using the split-step Fourier method [18].
We found that when the pulse duration was longer than about 1.1
ps, the nonlinear polarization rotation could be neglected, and
the pulse propagation could be analyzed using the scalar non-
linear Schrödinger equation. In our simulation we used a ring
rather than the sigma configuration in order to simplify the am-
plifier modeling. The optical amplifier in a laser with the sigma
configuration amplifies two waves that propagate in opposite
directions. Using the split-step Fourier method we could only
study the propagation in a single direction and therefore we had
to separately analyze the propagation of the two counterprop-
agating waves inside the amplifier. Since both waves affect the
gain saturation of the amplifier and since the waves are also cou-
pled due to the cavity mirror, one should strictly speaking use
an iterative procedure in order to model the amplifier satura-
tion. If a unidirectional ring cavity is modeled instead, the wave
propagates in a single direction and the amplifier model there-
fore becomes significantly simpler. The use of a unidirectional
ring rather than the full geometry of the sigma cavity does not
significantly affect the amplifier model, as the excellent quanti-
tative agreement between theory and experiment indicates. This
result is not surprising because the amplifier operates in a highly
saturated regime where the amplifier gain is determined by the
cavity loss.

We assume an internal loss of 5 dB at the mode-locker, 1 dB at
each of the two ends of the amplifier, 1 dB due to the polarizing
beam splitter, 2 dB due to an output coupler that was put at the
end of the amplifier, and 1 dB due to the other optical compo-
nents. These losses in the laser cavity cause a strong variation of
the power and, consequently, the strength of the nonlinear effect
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inside the cavity. The mode-locker transmissivity was taken
as where GHz
and the optical bandpass filer was Lorentzian with a full width
at half-maximum of 16 nm, located between the amplifier and
the output coupler.

Approximately 10 000 pulses simultaneously propa-
gate inside the laser cavity. Since it is only possible to model
the propagation of 5 to 24 pulses, and since we found
that computational results converge very slowly so that even
24 pulses were not enough to obtain an accurate solution, we
added a superpulse that represents the pulses that are
not simulated individually. The cavity energy was given by:

where is the energy of the su-
perpulse and is the sum of the energies of the ordinary
pulses in the simulation. The shape of the superpulse was up-
dated using the shape of the ordinary pulses. The update of the
superpulse shape was done by replacing the shape of the super-
pulse with the average shape of one of the pulses that remains
in the cavity. We cannot use an average over several pulses be-
cause their phases are different, but we verified that the result
does not depend on which pulse we choose as long as the pulse
is not dropping out. The averaging was performed over a time
period that starts at the previous update of the superpulse. Typ-
ically, we updated the superpulse every 2000 roundtrips, and
we confirmed that the results are not sensitive to this choice.
In order to model pulse dropout we added a variablerepre-
senting the fraction of the pulses that remain in the cavity. The
value of was self-consistently determined in our simulation.
It was updated each time that we changed the shape of the su-
perpulse by requiring that the energy of the superpulse, which
represents the total energy of all the pulses that are not kept in
the simulation, remains constant. The use of a superpulse guar-
antees that the saturation energy of the amplifier is not strongly
affected by one of the ordinary pulses, so that some of the or-
dinary pulses drop out while others equilibrate with the proper
pulse shape. We have carefully validated this approach by grad-
ually increasing the number of simulated pulses, and we found
that the results typically converge beyond 5 pulses.

Since the superpulse represents pulses and the
response time of the erbium-doped amplifier is slow, the noise
from different pulses is averaged and does not strongly affect
the amplifier saturation. Therefore, the density of the amplifier
noise amplitude for the superpulse was taken to be smaller by a
factor of relative to that of the ordinary pulses.

C. Amplifier Model

The erbium-doped fiber amplifier in our laser was modeled
as an ideal three-level system with a full width at half-max-
imum of 20 nm and a small signal gain of 25 dB. The frequency
dependence of the absorption and the gain cross sections [19]
were not included in the model and instead a Lorentzian line-
shape was used. This choice was justified by two facts. First,
the pulse bandwidth is much narrower than that of the amplifier
and therefore only the quadratic term in the frequency expan-
sion of the gain is important. Second, the operating wavelength
is around 1560 nm and the effect of the gain peak around 1530
nm is therefore small. The results of our model were insensi-
tive to this choice for the gain profile. The length of the ampli-

fier was 12 m and the effective filter bandwidth of the amplifier
was estimated to be 17 nm. The response time of the ampli-
fier was estimated as 100s and independent of the intracavity
power. We modeled the propagation in the amplifier by solving
the Ginzburg–Landau equation [13] using a split-step Fourier
method.

The amplifier saturation was modeled using a new model that
takes into account the dependence of the saturation of the signal
spectrum [12]. We have shown by solving the Maxwell–Bloch
equations for a homogeneously broadened amplifier that the sat-
uration of the amplifier is determined by the overlap between
the pulse spectra and the amplifier gain profile and not by the
pulse energy, as is often assumed [6], [7], [13], [14]. The new
model significantly changes the effective filtering in the am-
plifier and it therefore affects the pulse duration predicted by
our model. For ultrashort pulses that are generated by passively
modelocked fiber lasers the new model also predicts a signifi-
cantly higher power than that calculated using pulse energy sat-
uration of the amplifier.

Assuming that a train of pulses propagate
along the amplifier, where is the location along the amplifier
and is the spectrum of theth pulse, we can calculate
the gain coefficient for theth pulse at a location, using [12]

(1)

where
gain coefficient for theth pulse;
small signal gain;
population relaxation time;
time interval between pulses;
frequency;
electric permeability;
location along the amplifier;
imaginary part of amplifier susceptibility that is
proportional to the gain profile.

The spontaneous emission noise was simulated as white noise
generated and amplified along the whole amplifier length, in
order to take into account the dependence of the noise com-
ponents on the frequency. In an erbium-doped fiber amplifier
atoms are pumped into a high energy manifold and then drop im-
mediately to an intermediate quasistable energy manifold. Am-
plification is attained due to a transition between the interme-
diate and the ground state manifolds. The gain coefficientis
proportional to the population difference [18]–[20],
where and are the population density of the atoms in
the intermediate and the ground states, respectively; the sponta-
neous emission power density is proportional to. Assuming
the atomic population in the uppermost energy level is negli-
gible, the small signal gain is proportional to the total den-
sity of atoms, . Using the relation

/2 we can calculate the spectral power density of the
spontaneous emission

(2)
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Fig. 3. Comparison between the theoretical and the experimental
autocorrelation traces for a sigma laser with an average dispersion of
(a)D = 0.14 ps/nm-km and (b)D = 0.22 ps/nm-km.

Fig. 4. Comparison between the theoretical and the experimental dependence
of the full width at half-maximum of the pulse duration versus the power at
the output of the coupler for a sigma laser with an average dispersion of (a)
D = 0:14 ps/nm-km and (b)D = 0.22 ps/nm-km.

where is the signal frequency and is the gain profile.
Note that instead of using the spontaneous emission factor
we use a more accurate model that gives the variation of the
spontaneous emission density along the amplifier. The model
also predicts strong noise when the amplifier is strongly satu-
rated and the gain is small, since an erbium-doped fiber ampli-
fier is a three-level system and therefore more than half of the
atomic population must be pumped in order to obtain net gain.

III. SINGLE PULSE CHARACTERISTICS

In order to verify that we have included in our model the main
physical phenomena that affect our laser, we have compared the
theoretical and the experimental autocorrelation traces, pulse
spectra, and the dependence of the pulse duration on the power.
The results, shown in Figs. 3–5 were obtained for a laser with
a) an average dispersion of 0.14 ps/nm-km and b) an
average dispersion of 0.22 ps/nm-km. The figures
demonstrate that our model does obtain an excellent quantitative
agreement between theory and experiment. The comparison of
the theoretical and the experimental autocorrelation traces also
yields a good quantitative agreement of the noise levels around
thepulse.Webelieve, therefore, that thenoisemodelused isvalid.

Our simulation results indicate that when the average dis-
persion is 0.14 ps/nm-km and the pulse duration is about 1.4

Fig. 5. Comparison between the theoretical and the experimental pulse spectra
for a sigma laser with an average dispersion of (a)D = 0.14 ps/nm-km and
(b) D = 0.22 ps/nm-km.

ps, the standard deviation of the jitter is 32 fs, the normalized
standard deviation of the pulse energy is 1.0%, the normalized
standard deviation of the pulse amplitude is 1.3% and the stan-
dard deviation of the average pulse wavelength is 0.05 nm. The
central pulse time, was calculated using the relation [23],

and the central pulse frequency, was
calculated using the relation, ,
where is the pulse energy, is the pulse amplitude, and is
the time derivative of . The measured jitter in the sigma laser
was less than 10 fs over a frequency range of 100 Hz–1 MHz
[5]. The jitter was measured in the experiments by converting
the phase noise of the laser into an amplitude noise via mixing
the detected pulse train with a low-noise synthesizer [24]. The
jitter is proportional to the total power of the phase noise [24].
The lowest frequency components of the phase noise of the laser
could not be measured due to phase noise originating in the
synthesizer; therefore, the theoretical and the experimental re-
sults cannot be easily compared.

The sigma laser uses a strong dispersion-management
scheme. We have studied theoretically the effect of dispersion
management on the laser noise by comparing the noise in the
sigma laser to the noise in a laser with a uniform dispersion
map and a dispersion coefficient 1.2 ps/nm-km. The
loss map in the uniform dispersion laser was the same as in
the sigma laser. The value of was chosen in order to obtain
the same output power in the uniform dispersion laser and
in the sigma laser at a pulse duration of 1.4 ps. The jitter in
the laser with uniform dispersion map was about 120 fs, the
energy noise was about 0.65%, and the noise level around the
pulse (the “continuum”) was about 10 dB higher than in the
sigma laser. The decrease in the jitter of the sigma laser is due
mainly to the decrease in the average cavity dispersion, as is
the case in optical transmission systems [23]. The pulse energy
is stabilized in soliton lasers since changes in the pulse energy
affect the pulse bandwidth and hence affect the cavity loss
for that pulse due to the effective amplifier bandwidth [6]. In
the laser with the uniform dispersion map this feedback was
stronger and therefore the energy noise was slightly weaker
than in the sigma laser; however, due to the increase in the con-
tinuum level in the uniform-dispersion laser, the improvement
in the amplitude noise was relatively small. A more detailed
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discussion of the effect of dispersion management on the laser
operation is given in [25].

IV. THE FOUR OPERATING REGIMES

Our theoretical approach enables us to study the propaga-
tion of several pulses with different energies and shapes inside
the laser as appropriate to high-repetition rate fiber lasers that
are used in optical communication systems. Therefore, we can
accurately study dynamic effects that limit stable operation of
fiber lasers, such as pulse dropout or supermode competition.
A single-pulse analysis cannot accurately find the limits on the
stable operating regime, since close to the limits of this regime
pulses with different energies and temporal profiles simultane-
ously propagate in the cavity and since the dependence of the
number of pulses on the average cavity power exhibits a bistable
behavior.

We found that a laser with a uniform dispersion map passes
through four different operating regimes as the laser power
changes; three of these regimes are observed experimentally in
the sigma laser. The last operating regime was not observed in
the sigma laser. This laser contains strong dispersion manage-
ment which significantly increases the power at which the last
regime occurs, making it nearly unobservable experimentally
and theoretically. Therefore, the first three operating regimes
were studied in the sigma laser, while the last regime was
modeled for a laser with a uniform dispersion map.

A. First Regime—Linear Evolution

When the energy inside the cavity is very low, nonlinear
effects can be neglected. Fig. 6(a) shows the pulse train in this
case. In this first regime the results of the simulation indicate
that the pulses are noisy, exhibiting amplitude and pulse shape
fluctuations. This noisy behavior, which leads to supermode
competition in the frequency domain, is due to the lack of
stabilization from nonlinear effects, so that the pulse amplitude
can change without affecting its bandwidth. The temporal
pulse shape is approximately Gaussian with an average full
width at half-maximum of 4.5 ps consistent with the 4.4 ps
Kuizenga–Siegman limit [26]. The transition between this
regime and the next is smooth and is caused by the amplified
spontaneous emission noise that limits the coherence time of
the laser. Without this noise, the nonlinearity always becomes
important on a sufficiently long time scale and leads to pulse
dropout even when the intensity is extremely low. We obtained
this result by running long simulations without including the
spontaneous emission noise and by performing a stability
analysis using our reduced model, described below. The noise
limits the coherence length of the laser and the time over which
the nonlinear effect can accumulate. The transition to the next
operating regime will therefore occur only when the pulse
power is sufficiently large that the nonlinear length is shorter
than the coherence length of the laser. In this case the nonlinear
effect will lead to pulse dropout and transition to the second
operating regime as described below. We note that when the
power level is small enough so that even a single pulse is not
affected by the nonlinearity, then no pulse dropout occurs even
without including the spontaneous emission noise [6]. This

Fig. 6. Pulse train for an output power of (a)P = 14�W, (b) 2 mW, (c) 32
mW, obtained for a laser with a sigma configuration and an average dispersion
D = 0.14 ps/nm-km. Pulse train for an output power of (d)P = 42 mW
obtained for a laser with a uniform dispersion map with a dispersion coefficient
D =1.2 ps/nm-km. Six pulses are simulated and the first pulse is the superpulse.
The results displayed here were obtained after 150 000 iterations.

issue is important in lasers that only support a small number
of pulses, but in the laser that we are studying, which contains
about 10 000 pulses, this power level is around 50 nW; so, this
issue is not important.

Due to the significant cavity loss,11 dB, the optical power
changes significantly with position inside the cavity. Therefore,
we define our intracavity power at a specific location—the
input end of the output coupler. In fact, the power in the nonpo-
larization maintaining branch, where most fibers are located, is
around 2.6 times weaker than the power at the input end of the
coupler.

Noisy pulse generation in the first operating regime is demon-
strated for the sigma laser in Fig. 7(a). The figure presents sam-
pling oscilloscope density contour plots of the output of the
laser, as detected by a 20 GHz photodiode, at two intra-
cavity powers (measured at the input end of the output cou-
pler). The left trace was taken at the lowest power measured;
the right trace was taken at a power near the upper boundary
of the first regime. The filled-in traces indicate large amplitude
fluctuations in the pulse. Fig. 8 presents the measured pulse du-
ration , the 3-dB bandwidth , and duration-bandwidth
product for the sigma laser over the measured range of
intracavity powers. Since the autocorrelation trace of the pulse
resembles a Gaussian autocorrelation trace more than a hyper-
bolic-secant trace as is often assumed, we estimated the pulse
duration from the measured autocorrelation trace assuming that
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Fig. 7. Sampling oscilloscope contour density plots of the detected pulses
formed by the sigma laser as a function of the intracavity average powerP .
Three of the four predicted regimes of operation are observed: (a) the linear
pulse production regime, showing noisy pulse production; (b) the low-power
nonlinear regime, in which the number of dropouts decreases asP increases;
(c) dropout-free pulse production. In the last regime the amplitude noise can be
seen to decrease with increasingP .

Fig. 8. The pulse duration, optical bandwidth, and the duration-bandwidth
product� �� of the pulses produced by the sigma laser as a function of
the intracavity average powerP . The vertical dotted lines divide the graph into
the three observed regimes of operation; the horizontal dotted line indicates the
transform-limited duration-bandwidth product of 0.44 for Gaussian pulses.

the pulse shape has a Gaussian profile. In the first operating
regime ranges from 4.7–4.4 ps and is greater than
the transform limit of 0.44 for Gaussian pulses.

The theoretical intracavity power at the boundary between
the first and the second operating regimes is about 0.45–0.55
mW. This transition occurs over a broad power regime and the
power at the boundary between the regimes strongly depends
on the noise in the laser. The power at the boundary between
the regimes measured experimentally is about 0.6 mW. This re-
sult as well as the smooth behavior of the transition that was
observed in the experiments are in a good agreement with the
theoretical results.

B. Second Regime—Nonlinear Evolution with Pulse Dropout

In the second regime, shown in Fig. 6(b), nonlinear effects
become important and decrease the pulse duration from about
3.9 ps (full width at half-maximum) to about 2.9 ps at the upper
boundary of this regime. The experimental results, shown in
Fig. 8 indicate that the duration-bandwidth product is very close
to the transform limit for Gaussian pulses, even though the pulse

duration decreases from 3.6 ps at the lower boundary of this
regime to 2.7 ps at the upper boundary.

The direct interaction between the cavity pulses is weak in
actively modelocked lasers due to the mode-locker; however,
the pulses all interact indirectlyvia the amplifier. Due to the
very slow response time of the Er-doped amplifier, the pulses
all affect the amplifier saturation, causing some pulses to drop
out, while the remaining pulses will possess nearly identical
shapes and amplitudes. Pulses drop out due to a positive feed-
back caused by the gain saturation and the mode-locker. When
the pulse duration is long the cavity loss due to the mode-locker
is higher than the loss caused by the effective amplifier band-
width. For such pulses, an increase of the energy in one of the
pulses leads to a decrease in its duration due to nonlinear ef-
fects, increasing the transmissivity of the mode locker for that
pulse, and leading to a further increase in its energy. Eventually,
the pulse duration will decrease and will reach its steady-state
value due to the saturation of the amplifier gain and due to the
increase of the loss caused by the effective amplifier optical fil-
tering. Pulse dropout is caused by the amplifier saturation. The
increase of the energy of some pulses saturates the amplifier
gain until the gain becomes equal to the loss for those pulses.
The pulses that maintain their original duration will have higher
loss in the mode-locker and will therefore experience net loss in
a roundtrip; they will eventually disappear. The decrease of the
amplifier gain due to the decrease of the loss for pulses that re-
main in the cavity will prevent unstable growth of noise and/or
new pulses in the spaces where pulses previously dropped, in
contrast to the prediction for a system that only contains a single
pulse or a stream of pulses that is exactly periodic [6].

Fig. 9 shows the energy, the duration, and the mode-locker
transmissivity for a pulse that is dropped and for a pulse that
continues to propagate in the cavity. It also shows the average
amplifier gain. Six pulses were simulated; the first pulse is the
superpulse. It is assumed that at 0 all the other pulses have
the same amplitude. The transmissivity of the mode-locker for a
pulse is defined as the energy of the pulse at the output of the el-
ement divided by the energy at the input. The average transmis-
sivity of the amplifier is defined as the constant cavity loss mul-
tiplied by the ratio between the average output energy and the
average input energy of the amplifier. The results shown in Fig. 9
were calculated for a laser with a uniform dispersion map with
a dispersion coefficient of 2 ps/nm-km. In this laser the av-
erage dispersion is higher than in the sigma laser and the pulse
dropout is obtained at significantly higher powers. Therefore,
the effect of the noise is smaller than in the sigma laser while
the effect of the nonlinearity on the pulse parameters is stronger,
making it easier to observe the pulse dropout dynamics.

Note the large fluctuations, on a long time scale, in the energy
of the pulse that remains in the cavity, shown in Fig. 9. These
slow fluctuations are caused by the slow response time of the
amplifier. The change in the energy of the pulses affects the am-
plifier gain only after a relatively long time. Until the amplifier
reaches its steady state gain, the energies of all the pulses un-
dergo large fluctuations.

Fig. 7 shows sampling oscilloscope contour density plots for
two pulses near the lower and upper intracavity power bound-
aries of the second regime. The traces demonstrate that dropouts
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Fig. 9. Theoretical results for the pulse energyW , duration� , and the
transmissivity of the mode-lockerT , for a pulse which is eventually dropped
(dotted curves) and for a pulse that remains (solid curves). Also shown in the
figure the average amplifier gainT . At t = 0 all the six pulses that were
simulated have the same amplitude and shape. The results were obtained for
a laser with a uniform dispersion map and a dispersion coefficientD = 2
ps/nm-km. The average intracavity power equals 12 mW.

occur in the pulse train; as increases, the fraction of pulses that
drop out decreases. However, it is expected that the number of
filled slots is not a simple function of the intracavity power but
also depends on the previous state of the laser, since it is pos-
sible to remove some fraction of the pulses after they have been
established. The others compensate by increasing their energies
and decreasing their duration. This effect causes a bistable tran-
sition to the next operating regime where there is no dropout, as
described below.

C. Third Regime—Nonlinear Evolution Without Pulse Dropout

Beyond 2.5 mW we enter the third regime in which all
the time slots can be filled, as shown in Fig. 6(c). The ampli-
tude of the pulses is stabilized due to the effective amplifier fil-
tering [14]. When all time slots are filled the equilibrium pulse
characteristics may be determined by the conventional analysis
[8], [14]; however, inclusion of the gain dynamics allows us to
calculate the low-frequency noise components due to the ampli-
fier gain, and to analyze dynamic effects, such as the ability of
the laser to recover when a pulse is removed. When the average
power is below 5 mW, some pulses may be removed, as in the
second regime; however, above this power level, the system will
quickly restore pulses that drop. Clearly, the latter regime is the
optimal regime in which to operate a laser. By contrast, fiber
storage rings, which are in many ways analogous to lasers [14],
[29] should not work in this regime. The approach described

in this paper should allow the user to determine the fraction of
pulses that may be safely removed from a storage ring with fixed
intracavity power. We would also note that we obtained in our
simulations strong noise at very low frequencies (on the order
of tens of kHz) that are due to relaxation oscillations.

The theoretical simulations indicate that the minimum power
needed for stable operation without dropouts is about 2.5 mW.
A practical laser, however, should also be able to recover from
random dropouts due to changes in the environmental condi-
tions. The minimum power needed for the laser to recover from
random pulse dropout is about 5 mW. This result is in good
quantitative agreement with the experimentally measured lower
limit of the stable operating regime—5.5 mW.

When the laser power increases above the minimum power
needed to recover from dropouts the pulse duration sharply
increases from about 2.9–3.4 ps, since when the missing pulses
are restored, the number of pulses increases, and the pulse
energy decreases. The experimental results, shown in Fig. 7(c)
and 8, indicates that the pulse duration increases abruptly from
2.7–3.3 ps through the transition between the second and the
third regime. The pulse duration decreases smoothly to a min-
imum observed value of 1.4 ps asincreases to its maximum
value of 34 mW. The duration-bandwidth product increases
above the Gaussian limit as increases in this regime. Fig. 7
also demonstrates that the amplitude noise decreases as
increases.

The difference between the minimum power needed for
stable operation and the power needed to recover from a
dropout causes a bistable transition between the second and the
third operating regimes that was observed both experimentally
and theoretically. When approaching the transition to the
third regime from below, some pulses are missing, and the
laser must possess sufficient intracavity power to restore the
missing pulses. When approaching the transition from above,
dropout-free operation will be maintained as long as the pulse
energies are greater than the minimum power needed for stable
propagation of the pulses. The model predicts that a bistable
region might exist between cavity powers 2.5 and 5.0
mW. In the bistable region the laser can theoretically operate
without dropouts and therefore this regime is included in the
third operating regime. In practice, the lower power of the
bistable region strongly depend on the number of pulses in
the cavity and on the effect of the environmental conditions
on the stability of the pulses. Environmental perturbations can
significantly narrow this bistable region; in the sigma laser, it
extends only over a power range of approximately 5%.

The lowest power that is needed for stable operation can be
estimated for our laser with fair accuracy using Lyapunov’s
method [27], [28]. This methods predicts the stability condition
of one of the pulses propagating inside the laser cavity, assuming
that all the pulses have the same amplitude and shape [22]. Be-
cause our stability analyzes ignores many-body effects, its accu-
racy is limited; however, it is computationally rapid and allows
its user to explore a wide parameter range. Stability analysis for
solitons propagating inside a storage ring has been performed
in previous work using soliton perturbation theory [6], based on
modifications of the Ginzburg–Landau equation [8], [9]. Our
approach gives more general and accurate results with a little
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additional effort. We calculate the energy change in each of the
cavity elements without using the assumptions needed to derive
the modified Ginzburg–Landau equation and without assuming
that the dependence of the pulse energy on the pulse duration is
the same as in the case of hyperbolic-secant solitons. We need
only assume that the full width at half-maximum,, is a de-
creasing function of the pulse energy,.

The maximum value of the full width at half-maximum
possible for stable operation is given by [22]

(3)

where
average gain coefficient;

energy transmissivity of the laser cavity
that does not depend on the pulse;
amplifier length;
small signal gain;
modulation frequency;
amplifier bandwidth;
modulation depth;

,

,
and is the pulse profile at the
mode-locker and the amplifier.

For a Gaussian pulse the coefficient equals .
The minimum average intracavity power, needed for stable

operation, approximately equals

(4)

where is the average dispersion andis the energy en-
hancement factor [30], [31]. When the intracavity power is less
than , the laser generates a limited number of short and
intense pulses with a duration shorter than , while other
pulses are dropped from the pulse train. Note that the minimum
power sharply increases when the repetition rate increases due
to the increase of the pulse number (proportional to), the
increase in the mode-locker effect (proportional to ), and
the increase in the energy enhancement factor, which strongly
depends on [30], [31].

Assuming that the pulse shape is Gaussian, the average dis-
persion is 0.14 ps/nm-km, and the dispersion map strength
factor [30], [31] equals 6.2 for pulses with a 1.4 ps duration we
can use (4) and the connection between theand [30], [31],
and obtain, 3.1 ps and 3.0 mW at the input end
of the coupler. This result is in a good agreement with the re-
sults obtained by our full model, 3.5 ps and 2.5
mW. We note the result of (4) was adjusted in order to take into
account the transmission of the coupler and the change in the
power along the cavity due to losses. We assumed that the power
at the input end of the output coupler is about 2.6 times higher

than in the non polarization-preserving branch where most of
the dispersion map is located.

D. Fourth Regime—Multiple Pulse Generation

In some harmonically mode-locked laser configurations, a
fourth operating regime exists in which more than one pulse oc-
cupies a single time slot. In order to clearly observe the fourth
operating regime we modeled a laser with a uniform dispersion
map and a dispersion coefficient 1.2 ps/nm-km. When
the pulse duration equals 1.4 ps and the laser performance is
optimal, the output power in the uniform dispersion laser and
in the sigma laser are the same. The fourth operating regime
is shown in Fig. 6(d). The figure shows that when the output
power equals 42 mW, a pair of pulses is generated in some of
the time slots. The interaction between the two pulses contin-
uously changes their energy and shape; these changes lead to
noise in the other pulses. The energy in a pulse pair is about 1.7
times larger than in a single pulse. This ratio is less than two
since a mutual pulse interaction prevents obtaining an optimum
transmissivity for the pulse pair in the mode-locker. In our laser
model the transition from a single to a complex pulse is as sharp
as in the case of passively modelocked lasers [32]. The forma-
tion of pulse pair limits the minimum pulse duration in this laser
to about 1 ps. In previous work, Kärtneret al. [7] found an an-
alytical limit on the minimum pulse duration due to the gener-
ation of a continuum around the pulse. The difference between
the limits stems at least in part from our inclusion of more than
one pulse in the model. Therefore, a small excess of energy in
several pulses may accumulate in a single pulse to form a pulse
pair rather than a continuum around each pulse.

The formation of pulse pairs is due to excess loss from ampli-
fier bandwidth filtering and from nonlinear effects. As the en-
ergy of a pulse increases so does its bandwidth. Since the trans-
missivity of the mode-locker does not change significantly on a
time scale on the order of the pulse duration, at some point it be-
comes energetically favorable to generate two pulses with a nar-
rower bandwidths in the same time slot. Nonlinear effects also
promote the generation of pulse pairs since single pulses have
higher intensities and therefore they are deteriorated and expe-
rience higher loss in the mode-locker. In fact, when the laser
power was slightly lower than the boundary between the third
and the fourth operating regimes we observed in the simula-
tion results an ordered modulation in the pulse envelope, similar
to that caused by the modulational instability effect on solitons
[33].

We found both theoretically and experimentally that the
fourth operating regime did not appear in the sigma laser for the
highest power that was investigated in our simulations—150
mW—and for the maximum power that was available in the
experiment—34 mW. However, the simulations indicate that as
the power increases, the pulse shape deteriorates and the band-
width increases similar to what occurs in optical transmission
systems [31]. We have also found out that when the power is
excessive there is also an increase in the intensity of the pulse
tails and the noise level (“continuum”) around the pulse that
may limit the use of such pulses in optical communication
systems.
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V. CONCLUSIONS

We have analyzed an harmonically modelocked fiber laser
that employs the Kerr effect in order to shorten the pulse du-
ration. In order to analyze this laser system, which contains
about 10 pulses in its cavity, we used an innovative numerical
approach, based on the use of a superpulse and a new model
for the amplifier. By carefully modeling the main physical phe-
nomena that affect the laser we obtained an excellent quanti-
tative agreement between the theoretical and the experimental
results for a laser with a sigma configuration. Four different be-
havior regimes were theoretically observed, depending on the
intracavity power, in a laser with a uniform dispersion map;
three of the regimes were observed experimentally in the sigma
laser. The use of a dispersion map in the sigma laser signifi-
cantly broadens the stable operating regime and decreases the
jitter and the noise around the generated pulses (“continuum”).
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