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Design of Planar Waveguides With Prescribed
Mode-Profile Using Inverse Scattering Theory

Itay Hirsh, Moshe Horowitz, and Amir Rosenthal

Abstract—We demonstrate a new method based on inverse
scattering theory for designing the refractive index profile of
single-mode planar waveguides in order to obtain a desired
TE-mode profile. The method enables a direct design of the
waveguide profile without the need for iterative optimization
algorithms. The design is based on a first order solution to the
Gel’fand-Levitan—-Marcenko integral equation that gives a simple
linear connection between a small change in the scattering data
and the corresponding change in the kernel function. This con-
nection reduces the design problem to a simple linear constrained
minimization problem which has an explicit solution. QOur design
method allows adding additional constraints on the refractive
index profile such as the waveguide width. The method presented
in this paper can be expanded to analyze TM modes and for
designing multi-mode planar waveguides.

Index Terms—Inverse problems, optical planar waveguides.

I. INTRODUCTION

HE properties of optical waveguide structures such as the

mode profile or dispersion are very important for the de-
sign of optical components and optical systems. Although var-
ious waveguide structures have been studied thoroughly over the
years, the design of waveguides is still a challenging task that
has not been solved yet. Previous work on waveguide design
were based on specific designs or on various iterative optimiza-
tion methods [1]-[3].

Even in the simplest cases that of analyzing the TE mode
in planar waveguides without a loss, an implicit connection
between the waveguide properties and the refractive index
of an arbitrary waveguide profile has not been obtained. In a
lossless planar waveguide, the inverse problem gives a relation
between the reflection coefficients of the waveguide and the
propagation constants of the guided modes to the refractive
index profile of the waveguide. This relation, given by the
Gel’fand-Levitan—-Mar¢enko (GLM) integral equation, is ob-
tained by applying the inverse scattering transform (IST) to a
Schrodinger-like equation written for the TE-modes electric
field in a planar waveguide. However, since the reflection
coefficients are not directly connected to the desired properties
of the waveguide, the design still remains a challenging task.
Waveguides can be designed based on analytical solutions of
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the GLM equation for a reflectionless solution [4]. For such
specific waveguides the GLM equation has been used for the
design of waveguide profile parameters that support several
guided modes with prescribed propagation constants.

A rational reflection coefficient with three poles also gives an
analytical solution of the GLM equation [5]-[7]. This approach
ensures the design of a single mode waveguide. By changing the
poles parameters, different waveguide profiles can be designed.
However, there is no direct connection between the waveguide
properties and the poles.

Numerical methods for solving the GLM equation have been
published [8], [9] under the assumption that the reflection coef-
ficients and the propagation constants of the modes are known.
However, in a design problem the reflection coefficients of the
waveguide are not known and are not directly connected to the
desired waveguide properties.

In our work, we demonstrate a new method for designing the
mode profile of a TE-mode in single-mode planar waveguides.
The method is based on a linearization of the GLM equation for
a planar single-mode waveguide around a known solution. The
solution of the linearization gives a linear connection between
the scattering data of the waveguide, the refractive index pro-
file, and the mode profile. This solution transforms the design
process into a simple linear constrained minimization problem.
The solution also easily allows the imposition of additional con-
straints on the refractive index profile such as the waveguide
width, the maximum refractive index value, etc. The solution
gives a waveguide with a mode profile that is very similar to the
desired mode profile. The difference between the desired profile
and the mode profile that is obtained from the design is due the
linearization of the GLM equation. Moreover, nonphysical de-
sired profiles induce error and we do not know a priori whether
or not the desired mode profile is consistent. Nevertheless, our
design approach gives a new design tool that enables, for the
first time to our knowledge, without using complicated iterative
algorithms, the design of planar waveguides with a prescribed
TE-mode profile.

II. THEORETICAL BACKGROUND

In this section we describe the main mathematical back-
ground that is required to our design of TE-modes in planar
waveguides.

A. Planar Waveguides

The propagation of light in an inhomogeneous linear lossless
dielectric media can be d~escribed, in the frgquency domain, as-
suming an electric field E(r,t) = E(r)e™"", as [10]
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where e is the relative permittivity. In a planar waveguide where
the refractive index varies only in a single direction, z, the elec-
tric field of the TE modes equals [10]

E = ¢(x)e?*g ()
where 4 is the unit vector in the y direction, ¢(x) is the electric
field profile, and (3 is the propagation constant. Substituting (2)
into (1) yields a scalar wave equation for the electric field am-
plitude [10]:

LA 1 [ i) - 7] ot =0

3)

with n(x), the refractive index profile, defined as n(z) =

e(x).

In order to be able to use methods developed in the field
of Inverse Scattering Theory (IST) on (3) we require that the
potential (i.e., w?/c? n?(x)) has to decay to 0 at z — +oo.
Clearly, this is not the case since n(z) > 1. We limit our anal-
ysis to profiles with the same asymptotic refractive index values
at x — $oo [4]:

lim n(z) =neo

w2 2
q(z) = el n2(a:) — ?ngo
w2
k* = C—ano - 3% 4)
Substituting (4) into (3), we have [4]
d2
dgi(f) + [q(z) + k%] ¢(z) = 0. (5)

Equation (5) can be also used to analyze TM modes, with
¢(z) and ¢(z) defined as [7]

¢(x) = e(x) /P By,
'(z) 3[e)]? w? 9
~ 2(w) 4L<x>] * ]

where E, is the 2 component of the electric field and the tag
sign represents a derivative with respect to z.

(6)

B. Inverse Scattering Theory in Planar Waveguides

Equation (5) is the scalar Schrodinger eigenvalue problem
with a decaying potential. Therefore, it can be solved by using
IST. The use of IST to study the scalar Schrodinger equation is
described in detail in [11]. We will give below the main results
needed for our design method. The analysis can be expanded to
analyze TM modes in planar waveguides [4].

In order to define the scattering data, three solutions of the
Schrédinger equation are chosen: ¢(k, x), 9 (k, x), 1 (k, x) with
the following boundary conditions [11]:

(7
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Since the two solutions 9 (k,z), 1 (k,x) are independent
[11], the solution ¢(k, x) can be expressed as a linear combina-
tion of the two solutions:

¢(k,x) = a(k)y(k, z) + b(k)(k, ). ®

The reflection coefficient (k) and the transmission coefficients
t(k) are defined using the functions a(k), b(k) as follows [11]:

_bk)
"= k)
W) = ©)

~—

The two independent functions % (k, ), ¢(k, ) can be rep-
resented as [11]

Pk, z) =™ + / K(z,s)e**ds

Pk, z) =e kT 4 / K(z,s)e”*ds (10)

where K (x, y) is a kernel function that is identical for both solu-
tions. Equations (5) and (10) result in the GLM integral equation
for K(z,y) [11]:

K(z,y)+ F(z +vy) +/ K(z,8)F(s+y)ds =0 (11)
where
F(z) =Y Cje " + h(x)
J

1 / r(k)ee dk.

2 ) o

h(w) = F. [r(k)] = (12)

In input data for the GLM equation are the mode coefficients s ;
and C; and the impulse response h(z). The potential, ¢(z), can
be derived from the kernel function by [11]

q(z) = ZEK(:U, x).

. (13)

For the jth guided mode the reflection coefficient r(k) has
a pole on the positive imaginary axis at a point k = ¢x; with
residue C;. The field of the jth mode, ¢;(x), is given using
(8)=(10), by
r(ikj)
t(iﬁj)
where K (z,y) is the solution of (11). The poles «; are con-
nected to the guided modes propagation constants (3; as shown

in (4). The poles also give the decay of the guided modes at
r = +oo [11]:

¢j(z) =

[e”ﬂ+/ K(z,s)e ™%ds (14)

r(ih5) _pa
¢j(z) — We )
pj(z) —e™”,

r — 0

15)

r — —0Q.
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Fig. 1. (a)Impulse response h(x) and (b) reflection coefficient 7(k) of a single
mode 3-layer slab waveguide with a width of 1 xm at a wavelength of 1.5 pm.

The total power of the jth guided mode is given [11]:

" 0O . 2
[ i = 1)
NS J J
The reflection coefficient function r (k) that is defined on the
real axis k or its Fourier transform, the impulse response h(x),
represent the radiative and the evanescent modes [12]. The im-
pulse response should be a continuous function with possible
discontinuities in its derivative. When assuming a semi-finite
potential with nonzero values at the region (—oo, L] the impulse
response obeys

(16)

h(z > 2L) )

Z Cie "7

due to the causality of F'(x), F'(z > 2L) = 0 [5]. Fig. 1 shows
the reflection coefficient and impulse response of a single mode
slab waveguide with a core in the region [—0.5,0.5] pm. The
refractive index of the core and the cladding are equal to n., =
1.2 and n., = 1 respectively. The results are calculated at a
wavelength A = 1.5 pm using transfer matrix method [13].
The figure shows the discontinuities of the impulse response
derivative at the waveguide ends at z = £2L as well as the
exponential behavior of the function at x > 2L as described
by (17).

III. APPROXIMATE SOLUTION TO THE GLM EQUATION

The inverse scattering method gives a connection between
the scattering data and the waveguide mode profile. However,
the connection between the scattering data and the mode profile
is highly nonlinear. Therefore, the solution of the problem re-
quires optimization methods with a long computation duration.
We have developed a simple approximation to the solution of
the GLM equation that gives an explicit linear connection be-
tween a perturbation in the reflection coefficient (k) and the
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corresponding perturbation in the solution to the GLM equation,
K(x,y). This approximation is based on a first order expansion
of the GLM equation around a known zero order solution. We
will use a zero order solution that corresponds to a reflection-
less waveguide that supports only a single mode with a known
propagation constant.

We assume that the kernel function Kq(z,y) is a solution of
the GLM equation for the scattering data Fo(z). Adding a small
perturbation to the scattering data F'(z) = Fo(z) + eFi(z)
results in a small change in the kernel function K(z,y) =
Ko(z,y) + eK1(x,y). The GLM equation for the functions
K(z,y), F(z) is given by

0=Ko(z,y)+ Fo(z +y)+ / Ko(z,s)Fo(s +y)ds
+eKi(w,y) +eFi(z +y)
e / Ky (5, 8) Fo(s + y)ds

: / Ko(z,$)Fi(s + y)ds

+52/ Ki(z,s)Fi(s + y)ds. (18)

The first three terms in the right-hand side of (18) are equal to
zero. By assuming that F' () is of the same order of magnitude
as Fy(x) and requiring that ¢ < 1, we can neglect terms of the
order of £2 and obtain

Ky(e.y) + Fi(e +y) + / Ky (2, 8)Fo(s + )ds
+ /'00 Ko(z,s)Fi(s+y)ds=0. (19)

We perform the linearization of the GLM equation around a
zero-order solution Ko(x, y) that corresponds to a reflectionless
potential, 7(k) = 0, of a single mode waveguide. We also as-
sume that the propagation constant /3 is given. For a single mode
reflectionless waveguide, the zero-order scattering data equals

Fo(x) = Ce™"". (20)
This scattering function gives an explicit expression for
K0($, y) [4]
2kCe™""
Ko(z,y) = - -

2k 4+ Ce—2s= @D

By assuming that the perturbation only changes the impulse

response and not the mode coefficients C' and £ we obtain

Fi(z) = h(x) (22)

where h(z) is the impulse response after the perturbation.

The solution of (19) is derived in the Appendix. The re-

sult gives an approximate solution to the GLM equation,
K(.ﬁl?/y) = Ko(x/y) + K1($7y):

K(z,y) = Ko(w,y) — Fasy [r(k)] — Ko(,7)Fosy [’:(__’f)}

- Kalo) (Ko ) | 0] 4 7 | T
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where F,, is the inverse Fourier transform operator defined in
(12). We can also express K (x,y) in terms of the impulse re-
sponse:

K(z,y)
= —Ko(z, z)e"@+Y) / h(s)e™"%ds
J oty

— Ko(z,y)e*"™ <K0(:17, x) h h(s)(s —2z)e™"*ds
J2x
+ h h(s)e_'“ds>
J2x
— h(z +y)+ Ko(z,y). (24)

The refractive index profile can now be calculated by using (4)
and (13).

By substituting (24) into (14), we obtain an explicit expres-
sion that connects the guided mode profile and the impulse re-
sponse:

d(z) = e " [1 + 7Koéx7$)] (1 — e b h(s)e™"*ds
R J2x

—Ko(z, )™ h h(s)(s — 2:v)e_”5ds>. (25)

J2x

This linear connection will be used in the next section to design
the waveguide.

The quality of the reconstruction depends on the magnitude
of the perturbation in the function F'(z).

In order to demonstrate the accuracy of the linearization, we
numerically analyzed two refractive index profiles that were
obtained by changing the refractive index profile of an hy-
perbolic secant waveguide that corresponds to a reflectionless
waveguide. The impulse response and the mode coefficients C'
and k were calculated separately for each of the refractive index
profiles using the transfer matrix method [13]. Then, by using
(13) and (24) we have calculated the refractive index profile
and compared the result to the original refractive index profile.
For each waveguide, the linearization of the GLM solution was
performed about a reflectionless waveguide with the parameters
C and k that was calculated for that profile. Fig. 2 shows the
reconstructed and the original refractive index profiles. The
figures shows that the linearization caused a very small error in
the reconstruction.

IV. OPTIMIZATION PROCEDURE

The problem we intend to solve in this manuscript is to design
a single-mode planar waveguide with a prescribed TE-mode
profile. The width of the nonuniform region of the waveguide
equals 2L,, and the mode profile equals

et T < —Ly,
G (L ) e 5@ Lw) x> Ly

ba(r) = (26)

In order to design the waveguide one should prescribe the
mode profile in the region where the refractive index can be
controlled, ¢,,(z) and also prescribe the mode coefficient x
that determines the attenuation of the mode in the cladding. The
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Fig.2. Comparison between the original and the extracted refractive index pro-
files that were reconstructed from the linearized GLM equation. Both profiles
were obtained by changing the refractive index profile of an hyperbolic secant
waveguide that corresponds to a reflectionless waveguide. An excellent agree-
ment between the reconstructed (dotted line) and the original (solid line) profiles
was obtained for (a) a truncated hyperbolic secant profile and (b) a sinusoidal
perturbation.

mode profile should be a continuous function with a continuous
derivative. We note that the definition of the mode profile in (26)
does not assume that the total mode power is equal to 1 as is
often assumed in waveguide analysis.

In order to calculate the refractive index profile of a single
mode waveguide with a prescribed mode profile we solve an
optimization problem. We require the mode profile of the wave-
guide, ¢ to be as close as possible to the desired mode field
¢q. Mathematically, we look for a waveguide mode that mini-
mizes the square error between the waveguide mode and the de-
sired mode profiles. We choose to solve a minimization problem
rather than give an accurate solution to the problem since the de-
sired profile may not be always attainable in a waveguide with a
finite width and a finite refractive index. Moreover, the problem
is ill conditioned by its nature. Waveguides with different struc-
tures may give a similar mode profile. There might be also a
difference between the mode profiles of substantially different
waveguides in regions where the mode amplitude is weak. Op-
timization procedures also enable the imposition of constraints
on the solution such as practical limitations on the waveguide
width or on the maximum refractive index change.
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We start the design by calculating the parameter C' using (15)
and (16):

oo [ da(z) } ’ 1
¢a(—2)] [, bala’)?da’

The connection between the mode field ¢(2) and the impulse re-
sponse is given by the linearized equation-(25). The impulse re-

sponse can then be obtained by solving the following Lagrange
constrained optimization problem:

h(z) = arg min Iga(x) = ()|

oo
subject to 1./

— 00

2. Im [h(z)] =0

T > Ly. Q27)

h(z)dz = —1.
(28)

where ||f(z)|* = JZ5_|f(z)|?dz. The first constraint is ob-
tained in a finite waveguide since 7(k = 0) = —1 [14] and
the second constraint is obtained since the waveguide is lossless
[15]. Other constraints on the impulse response may be added
depending on limitations that can be impose on the waveguide
structure such as the maximum allowable change in refractive
index or the maximum waveguide width 2L,,.

We implement the minimization problem described by (28)
by discretizing the problem along the z-axis. We assume that the
waveguide is uniformly sampled in the analyzed region [— L, L]
with a step size A, where L is chosen to be significantly larger
than the width of the mode field L,,. The integrals in (25) are
then replaced by Riemann sums. The discrete form of (25) is
given by

¢=0h+¢@ (29)
where bar and double bar represent a vector and a matrix, re-
spectively, ; = —L +iA, ¢; = ¢(x;),

. Ko(xi.:l?i)
h,‘ =h(2 i)s P = R _ s
; =h(2z;), pi=e < + )

0ij |j<i=0,
i |joi= —2A(1 + 2u; — 2,)en@20) (1 ; M)

2K
(30)

andi,j = 1,2,3,..., N = 2L/A + 1.
Substituting (29) into the minimization problem presented in
(28) results in the linear quadratic system with constraints:

minimize %BTC@B +él'h
subject to ATh=1b (3D
where
Q=00 c=0" (p— )
A=A, b= —%. (32)

The first constraint given in (28) is implemented by approx-
imating the integral as a Riemann sum using the vector A and
the scalar b. The second constraint that i (z) should be real is a
direct result of (33).
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In case that ) is a positive definite matrix, the solution of the

quadratic system given in (31) equals to [16]
h=Q 'AATQ TA)TUATQ e+t -Q & (33)

Since the matrix () is not necessarily positive definite and
since in most examples that we checked the matrix () was ill-
conditioned we could not use directly (33). Equation (25) in-
dicates that ¢(z) has a weak dependence on the values of the
impulse response for || > x~!. Therefore, different impulse
response functions will result in similar mode profiles and hence
in most examples we analyzed the matrix () has a large condi-
tion number.

In order to overcome the ill-conditioned problem we use the
Tikhonov regularization method [17]. This method stabilizes the
solution and ensures the possibility to numerically invert the
matrix Q. The Tikhonov regularization method also ensures that
the matrix () will become positive definite as required for the
solution given in (33).

The Tikhonov regularization method is obtained by adding a
positive real constant « to the diagonal of Q:

Quew = Q@ +al (34)
where [ is the unit matrix. Then, the solution to the system is
obtained by replacing Q) with Q... in (33). The eigenvalues of
the matrix )., are shifted by o compared to the that of the ma-
trix Q. Therefore, in order to ensure that () is positive definite
o must be larger then the absolute value of the most negative
eigenvalue of Q). However, when the value of « is too high the
error in the mode profile becomes large. Our numerical results
shows that reasonable values for « are in the range of 1%-30%
of the largest positive eigenvalue of Q. This choice ensures that
the condition number of the matrix @ will be sufficiently low
to yield a stable solution. The optimal value for the constant «
can be determined by slightly changing the value of o and com-
paring the mode field that is obtained to the desired mode field.
The use of Tikhonov regularization also decreases the absolute
value of peaks in the impulse response and hence it improves
the accuracy of our linearized solution to the GLM equation.
An example of the dependence of the solution accuracy on the
choice of the constant « is shown in Section V.

In order to obtain the refractive index we need to solve the
GLM equation given in (11) with the scattering data, F(z) =
Ce™"" 4 h(x), where C is extracted by using (27), and h(z) is
the impulse response obtained using the optimization procedure.
Since in the design process we used a linearized solution of
the GLM equation we will also use this approximation to solve
the GLM equation. The discrete form of (24) after substituting
y = z is given by

K; =K(z,x;) = Ko(z, ;)

N
X (1 — 4Ae2Emi Z hje_Q”"T‘f
Jj=t
N
— 4AK0(JI1', $i)62m“ Z hj(xj — xi)62nxj> — h;.
Jj=t

(35)
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The calculation of the potential is then performed by using (13):
Kiy1— K;

A (36)

q(zi) =2
Equation (35) shows that the errors in the reconstruction in-
crease when x; decreases. For improving the design accuracy
we apply the procedure described from both sides of the wave-
guide and extract each half side of the waveguide from its cor-
responding impulse response. Thus, two optimization proce-
dures are performed. In the first optimization we extract half
of the waveguide as described above. In the second step we ex-
tract the other half of the waveguide by repeating the above de-
scribed method for ¢(—=x) instead of ¢(x). We have checked
that the error in the reconstruction can be further decreased by
solving the GLM equation for the scattering data obtained in
the optimization procedure by using methods as in [18], [19],
[20] instead of using (35). Moreover, the scattering data F'(x)
should correspond to a single mode waveguide. However, we
have found that errors in (35) or nonphysical requirements on
the mode profile may result in a multi-mode waveguide.

V. NUMERICAL RESULTS

We demonstrate our method for designing the mode profile
of a single mode planar waveguide with desired super-Gaussian
TE-mode profiles.

In the first example we demonstrate the dependence of the de-
sign method on the Tikhonov regularization. In this example the
numerical discretization is chosen with resolution A = 0.04 pym
and a simulation length 40 ym (L = 20 pm). The wavelength
is equal to 1550 nm. The desired mode has a super-Gaussian
profile

er g T < =Ly
¢a(x) = { Bem (/2T [, <o < Ly 37
e " T > Ly

where j = 3, 0 = 5 pum. The desired waveguide width was
equal to 2L,, = 8 um, and the parameters x, B were chosen in
order to obtain a continuous function ¢4(z) and its derivative at
T = xL,.

Fig. 3 shows the extracted refractive index profile (a) and the
desired mode profile (b) for four values of the Tikhonov param-
eter a: o« = 2.45 x 10716 (red dashed curve), @ = 2.45 x 10~
(purple dotted curve), & = 4.9 x 10~ (blue dashed-dotted
curve) and @ = 9.8 x 10~7'3 (cyan dashed-dot-dot curve).
These parameters are equal to 0.01%, 1%, 20%, and 40% of
the maximum eigenvalue of the matrix ). The maximum errors
in the nonuniform region of the waveguide are 0.8%, 0.4%, 6%,
and 8%, respectively. The mode profile was calculated from the
extracted refractive-index profile using transfer matrix method
[15]. The results indicate that in our example the optimum re-
sult is obtained for & = 2.45 x 107'%. A smaller value of
« = 2.45 x 10716 gives a high change in the refractive index
while the error in the mode profile slightly increases. This re-
sult is obtained since the condition number of the matrix ) be-
comes too high—10*. Since it is practically desirable to reduce
the maximum change in the refractive index, the Tikhonov pa-
rameter « should not be chosen to be too small. Larger values
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Fig. 3. (a) Designed refractive index profile and (b) the corresponding mode
profile of a waveguide with a desired super-Gaussian mode for four different
values of the regularization constant cv: v = 2.45 x 1076 (red dashed curve),
a = 2.45x 10~ (purple dotted curve), v = 4.9 x 1012 (blue dashed-dotted
curve), and o = 9.8 x 10712 (cyan dashed-dot-dot curve). The desired mode
profile is shown as a solid curve. The inset gives a zoom on the mode profile in
the middle of the waveguide.

for v give profiles with lower maximum refractive index values.
However, in this case, the dependence of the designed profile on
the desired mode profile decreases and hence the error in the ob-
tained mode-profile increases as can be seen in Fig. 3(b).

In the next three examples, we demonstrate the capability
of our design method to accurately design planar waveguides
with different mode profiles. The different mode profiles that
were chosen are super-Gaussian as given in (37). The mode co-
efficients equal to 5 = 1,2,4 in Figs. 4-6, respectively. The
other parameters are the waveguide width 2L,, = 16 um and
o = 10 um. The parameters «, B were chosen in order to obtain
a continuous function ¢4(x) and derivative at x = +L,,. The
spatial resolution equals A = 0.16 pm, the analysis window
equals 2. = 160 pm, and the Tikhonov constant equals in each
example to 1% of the largest positive eigenvalue of the matrix
Q. Due to the small errors in the optimization procedure and in
the linearization of the GLM equation the resulting waveguide
profile had a width that slightly exceeds 2L,,. The waveguide
width at 10% of the maximum refractive index of the obtained
waveguides was about 4%, 6%, and 8% longer than 2L,, for
7 = 1,2, 4, respectively. Therefore, we truncated the waveguide
profile at z = £L,, in order to get an exact width of the wave-
guide profile. In all of the waveguides that were designed, the
truncation of the waveguide profile did not cause a significant
error in the mode-profile as shown below. The runtime of the
analysis on a standard personal computer was less than 1 minute.

Figs. 4-6 show the designed refractive index profile and a
comparison between the desired super-Gaussian mode profile
with parameter 7 = 1,2,4 and the obtained mode profile, re-
spectively. The obtained mode profile was calculated from the
extracted waveguide profile by using the transfer matrix method
[15]. The figure shows a very good quantitative agreement be-
tween the desired profiles and the obtained mode profiles. The
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Fig.4. (a)Designed refractive index profile and (b) corresponding mode profile
(red dashed curve) that is compared to the desired mode profile (blue solid curve)
for a super-Gaussian waveguide with a width of 16 um and a mode parameter
J=1L

1x10™
=
<
0
-10 0 10
X[um]
Q
o
=
=
g o5
<
20 0 20
X[pm]

Fig.5. (a)Designed refractive index profile and (b) corresponding mode profile
(red dashed curve) that is compared to the desired mode profile (blue solid curve)
for a super-Gaussian waveguide with a width of 16 y#m and a mode parameter
] = 2.

maximum relative error between the mode profiles of the de-
sired and the obtained profiles equals 2%, 1.6%, and 1.9% for
7 = 1,2 4, respectively. The error in the cladding or the uni-
form region of the waveguide is calculated as the relative error
between the desired and designed mode coefficient . The rel-
ative error in the mode coefficient « equals to 4%, 1.9%, 1.3%
for 7 = 1, 2,4, respectively.

We note that our design method is not limited to waveg-
uides with a small change in the refractive index profile as was
shown in Figs. 4-6. In the examples that are shown in these fig-
ures, the requirements of a single-mode waveguide with the de-
sired waveguide widths and the desired mode profiles resulted
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Fig. 6. (a)Designed refractive index profile and (b) corresponding mode profile
(red dashed curve) that is compared to the desired mode profile (blue solid curve)
for a super-Gaussian waveguide with a width of 16 um and a mode parameter
] = 4.

in small changes in the refractive index profiles. Our method
also enables designing waveguides with a high contrast refrac-
tive index profile where the relative change in the refractive
index is high. For example, we have successfully designed a
single mode waveguide with a width of 2L,, = 2 pm and
with a super-Gaussian mode profile with parameters j = 4 and
o = 1.3 pm. The design was performed at an optical wave-
length of 5 pm. In this example the obtained peak to peak refrac-
tive index difference in the waveguide profile was larger then
0.65. A very good agreement between the desired and the ob-
tained mode profiles was obtained. The maximum relative error
between the mode profile of the desired and the obtained pro-
file equals 0.6% and the relative error in the mode coefficient
equals to 7%. Our design method gives a large error when the
linearization used in (19) becomes not valid. Such a case is more
likely to occur when the refractive index profile is complicated
and the changes in refractive index are high. The error may be
avoided by linearizing the solution to the GLM equation around
a different waveguide profile than the reflectionless waveguide
used in this work.

In the last example, shown in Fig. 5 we show that an increase
in the desired waveguide width L,, may result in a multi-mode
waveguide. In a waveguide with a super-Gaussian profile, given
in (37), an increase in the size of the nonuniform part of the
waveguide, L,,, results in an increase in the mode coefficient
K that is required of a continuous mode profile with a contin-
uous derivative. Therefore, the conditions for the emergence of
another mode are relaxed. Fig. 7 shows the refractive index pro-
file and the two guided mode profiles for a designed waveguide
with L,, = 10 pum. The other parameters are the same as in
Fig. 5. Fig. 7 shows excellent agreement between the desired
mode profile (blue solid curve) and the first guided mode (red
dashed curve) with a maximum error of 2.4%. However, in this
example small errors in the refractive index profile design cause
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Fig. 7. (a) Designed refractive index profile and (b) obtained mode profile
(dashed curve) that is compared to the desired mode profile (solid curve) for
a waveguide with a super-Gaussian profile having a width of 20 gzm. The other
parameters are the same as in Fig. 5.

the generation of a second guided mode that is shown in the
green dotted curve in Fig. 7.

VI. CONCLUSION

We have demonstrated a new method, based on inverse scat-
tering theory, for designing the refractive index profile of single
mode planar waveguides in order to obtain a desired TE-mode
profile. The method enables, for the first time, a direct design of
planar waveguides without the need for time-consuming itera-
tive optimization algorithms. The design is based on a first order
solution of the GLM equation for a single mode planar-wave-
guide. By using this approximation we obtain a simple linear re-
lation between a small change in the scattering data of the wave-
guide and the change in the kernel function. This relation allows
us to reduce the design problem to a simple linear constrained
minimization problem with an explicit solution. Therefore, our
design method does not require time consuming trial and error
optimization methods. Our design method also allows the direct
imposition of additional constraints on the scattering data or on
the refractive index profile such as the waveguide width or the
maximum change in the refractive index profile. The method
presented in this paper can be also directly implemented for de-
signing multi mode planar waveguides. The method can be also
easily extended to analyze TM-modes in waveguides with a rel-
ative small change in the refractive index by solving additional
differential equation that relates the potential ¢(x) that is ob-
tained in the design and the refractive index profile [7].

APPENDIX

In this Appendix, we derive a solution to GLM equation based
on a linearization about a reflectionless potential of a single-
mode planar waveguide. For given mode parameters C' and &,
the kernel function K(x,y) is calculated by solving the equa-
tion

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 45, NO. 9, SEPTEMBER 2009

Ko(z,y) + Ce™"=+v) 4 / Ko(z,s)Ce "6t ds = 0.
(38)
The solution is given by

2kCe~ (= +y)

Koo ) = =53 Geom

(39)

We proceed by calculating the first-order kernel function
K1 (z,y), by solving (19):

1 e -
Ki(z,y) + %/ r(k)eR @) df;

+ / K (z,5)Ce "5+ s

x

+/ Ko(x,S){%/ r(k)eik(sﬂ)dk}ds:o.
(40)

The last term in the left-hand side of (40) can be simplified
by changing the order of integration and inserting the explicit
expression for Ky(z, s) given in (39):

/ Ko(z, ) {%/ T(k)eik(sﬂ)dk} ds

Y iky > 2pCerlots) .
=5 /_oor(k)e {/T 2/{—{—0@—2’“6 ds p dk
L[ (k) a
- K, — Y ik(zty) g
g(x,:v)27r ./—ooK’_ike dk 41)
We now define an auxiliary function f;(z):
fl(:v):/ Ki(x,s)e "°ds, 42)
and rewrite (40) to obtain
E(ey)=—5 [ Rk 0 i)
0 — 00
1 * T(k) ik(z+y)
K0($7$)27r /_Oo e dk. (43)
By substituting (43) into (42) we obtain
> 1 * 1 —Ks
filx) :_/m {5/_00 r(k)e”“@“’s)dk} e ds
—fl(w)/ Ce 2rds
(1 [ rk) i
- K — AV ik(zts)
o(a:,x)./z {27r/_oof<a—ike dk}
X e " ds. (44)

Equation (44) is simplified by changing the order of integra-
tion and integrating with respect to the variable s. The result is

_ — KT 1 > T(k) 21kx C —2KkT
filw) = 21 J_ oo K — ik dk 2" (@)
1 [ rk ;
—KO(LIZ',LIZ')C_ng / ﬁemkzdlﬂ (45)
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By solving (45) for f1(x) and substituting the result into (43)
we obtain a solution to (19):

Kq(2,y) = —Fugy [r(E)]
- K0(35=$)-7:x+y |:

Kk — ik
- Ko(z,y) (KO(xv‘T)]:Qz {%]

=]

The result gives an approximate solution to the GLM equa-
tion, K (z,y) = Ko(z,y) + Ki(z,y), that is given in (23) in
Section III.

+ For [ (40)
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