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In order to reconstruct the structure of a long-period grating, both the complex core-to-core transmission func-
tion and the complex core-to-cladding transmission function should be known. However, in practice, only the
core-to-core transmission function of the grating can be measured. We demonstrate theoretically the recon-
struction of long-period gratings from only the core-to-core transmission function. The reconstruction is per-
formed by extracting the complex core-to-cladding transmission function of the grating from its core-to-core
transmission function. Generally, the extraction is not unique; however, we show that by writing an additional
grating in cascade to the interrogated grating, a unique reconstruction can be obtained. In weak long-period
gratings, only the amplitude of the core-to-core transmission function is needed to reconstruct the grating. The
results of our work can enable the experimental reconstruction of long-period gratings from their transmission
function as well as the development of novel distributed sensors. © 2006 Optical Society of America

OCIS codes: 050.2770, 290.3200, 100.5070.

1. INTRODUCTION

In recent years, there has been extensive research on the
use of long-period fiber gratings (LPGs) and fiber Bragg
gratings (FBGs) as spectral filters and as fiber sensors.’ ™
The complex reflection spectrum of a FBG can be used for
uniquely reconstructing the grating profile by using
inverse-scattering algorithms.> The reconstruction tech-
niques of FBGs have been used for improving the writing
process of the gratings and for developing novel distrib-
uted fiber Bragg sensors.”

Inverse-scattering algorithms were also developed for
reconstructing the structure of LPGs.'>1* These algo-
rithms were used for synthesizing LPGs according to
their desired spectral properties. The inverse-scattering
algorithms require knowledge of both the complex core-to-
core and the complex core-to-cladding transmission spec-
tra. The complex core-to-core transmission spectrum can
be simply measured by using techniques such as low-
coherence spectral in‘cerferome‘cry.15717 Generally, the
core-to-core transmission spectrum does not uniquely de-
fine the grating structure, and many different gratings
may have the same core-to-core transmission spectrum.14
Therefore, the measurement of only the complex core-to-
core transmission spectrum is not sufficient for uniquely
characterizing LPGs. In principle, the complex core-to-
cladding transmission spectrum may be measured by in-
terfering the transmitted cladding mode with a reference
beam. However, such a measurement would require com-
plicated bulk optics and cannot be performed when the
long-period grating is used as a sensor. In Ref. 18, the lo-
cal period of LPGs was directly measured by illuminating
the fiber from its side and measuring the diffraction pat-
tern. However, this method was not used for measuring
the amplitude of the refractive index modulation of LPGs
owing to the complicated diffraction pattern.'® Moreover,
such a method cannot be implemented for interrogating
LPG-based sensors. To the best of our knowledge, the
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structure of a LPG has not been measured yet. A recon-
struction technique for interrogating LPGs is important
for developing novel distributed fiber sensors and for im-
proving the writing process and the performance of such
gratings, as performed for FBGs.%!°

In this paper we demonstrate what we believe to be a
new method that allows us to extract the complex core-to-
cladding transmission spectrum of LPGs from their com-
plex core-to-core transmission spectrum. By applying an
inverse-scattering algorithm, we use the extracted core-
to-cladding transmission spectrum together with the core-
to-core transmission spectrum for uniquely reconstruct-
ing the grating structure. In order to uniquely reconstruct
the grating, our method requires writing an additional
grating, with a structure that should not be known a pri-
ori, in cascade to the interrogated grating. In general, the
core-to-core transmission function of a LPG does not
uniquely determine its core-to-cladding transmission
function, and many possible core-to-cladding transmis-
sion functions may exist that correspond to the same core-
to-core transmission function. However, we show that if
the grating structure is composed of two cascaded grat-
ings with a sufficient gap between them, there is only one
core-to-cladding transmission function that corresponds
to such a cascaded structure. Therefore, the a priori
knowledge that the structure is composed of two cascaded
gratings and that the gap is large enough enables a
unique reconstruction of the interrogated grating. This
result does not contradict previous conclusions, which
state that, for an arbitrary LPG structure, both the core-
to-core and the core-to-cladding complex transmission
spectra are needed to uniquely reconstruct the grating
structure.!*

In our analysis, we assume a coupling between the core
mode and only one of the cladding modes. A similar model
was used in Refs. 12-14 for implementing inverse-
scattering algorithms for LPGs. The assumption of cou-
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pling to only a single cladding mode limits the spectral
bandwidth that can be used to reconstruct the grating,
since, when we increase bandwidth, coupling to other
cladding modes may occur. Although this effect limits the
maximum bandwidth that can be used, we were able to
obtain a reconstruction of a LPG with a resolution of
about eight times the grating period. The grating profile
was reconstructed from the core-to-core transmission
spectrum, calculated by using a multimode simulation of
the cladding modes. In comparison, the FBG that was in-
terrogated in Ref. 17 was measured with a spatial resolu-
tion that was equal to about 140 times the grating period.

The paper is organized as follows. In Section 2 we give
the theoretical background required by our analysis. In
Section 3 we discuss the conditions for a unique recon-
struction of the interrogated grating. The conditions are
given for three different types of the input data used in
the algorithm. In Section 4 we discuss two algorithms for
reconstructing the interrogated grating: the phase-
retrieval algorithm and the deconvolution algorithm. In
Section 5 we give numerical examples to demonstrate our
reconstruction method.

2. THEORETICAL MODEL FOR ANALYZING
LONG-PERIOD GRATINGS

In this section, we describe the mathematical model used
for analyzing LPGs. In our analysis, we neglect the loss
along the grating and consider the coupling between two
copropagating modes: the core mode and one of the clad-
ding modes. Under these assumptions, the propagation of
the fields inside the grating can be described by the
coupled-mode equations19

du,(k,z)
_— = ikucl(k,z) = q(Z)uco(k,Z)’

dueo(k,2) .
— tikuy(k,z) =—q @uylk,2), 1)

where % is the wavenumber detuning defined by 2=(23,,
-Bu)/2-m/A; B, and B,, are the wavenumbers of the
cladding and core modes, respectively; u.(k,z) and
u.,(k,z) are the slowly varying complex amplitudes of the
cladding mode and the core mode, respectively; and ¢(z) is
the complex coupling coefficient of the grating.'® The ac-
tual electric fields inside the grating e, (% ,2) are related
to the fields u,, .(k,z) by the following relations®’:

Bco + ,Bc w
ecolk,2) = uw(k,z)exp<i et ixz> ,
ﬂco + :Bc T
eqlk,z) = ucz(k,z)exp(i . e - in) , (2)

where A is the grating period.

We assume that the grating is written in the region
[0,L] and consider the vectorial solution to Egs. (1),
U(k,2)=(uy(k,2),u.(k,2)), that fulfills the following
boundary conditions, U(k,z=0)=(0,f(k)=1). The solution
U(k,z) describes the propagation of the fields in the core
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and cladding modes when the core mode is excited at the
input end of the grating. We define the core-to-cladding
and core-to-core transmission functions b(k) and a(k), re-
spectively, by (b(k),a(k))=U(k,z=L)/f(k). Since the sys-
tem is linear, the transmission functions a(k) and 6(%k) do
not depend on the choice of the input spectrum f(k).
Therefore, the transmission functions a(k) and b(k) are
determined solely by the coupling coefficient ¢(z). Using
the theory of characteristics, as performed in Ref. 21, the
functions a(k) and b(k) can be represented by using two
time-domain functions «(7) and B(7) in the following inte-
gral forms:

L
a(k) =exp(-ikL) + J a(nexp(ikndr,
-L
L
b(k) = f B(nexp(ik7)dr. (3)
-L

The time-domain functions «(7) and B(7) are equal to the
Fourier transform of the functions a(k)-exp(-ikL) and
b(k), respectively, and are nonzero only in the time region
re[-L,L].

When the energy is conserved, the amplitudes of the
core-to-cladding and core-to-core transmission spectra are
connected by the conservation of power relation, obtained
from Egs. (1),

la(®)[? +[b(R)* = 1. 4

In characterizing LPGs, the transmission function a(k)
can be easily measured. When the grating is lossless, the
core-to-core transmission function a(k) can be used to find
the amplitude of the core-to-cladding transmission func-
tion |b(k)|. However, there is no general relation between
the phase of the function b(k) and the function a (k). Fur-
thermore, in contrast to the case of FBGs, the function
a(k) is not necessarily a minimum phase-shift function,
and therefore there is no unique relation between the
phase and the amplitude of the function a(k).1

Since Egs. (1) are linear ordinary differential equations
of U(k,z), the fields at the output end of the grating,
U(k,z=L), are equal to a linear superposition of the fields
at the input end of the grating, U(k,z=0). Thus, we can
define a transfer matrix, T(k), that connects the fields at
the input end of the grating, z=0, and the fields at the
output end of the grating, z=L:

U(k,z=L)=T(k)U(k,z=0). (5)

Using the symmetry of Egs. (1), it can be shown that the
transfer matrix is given by'*%

a’(k) b(k)}

-b'(k) a(k) ©

T(k)= [
The transfer matrix of a propagation through a uniform
fiber (q(2)=0) with a length of L, is given by

[exp(ika) 0 }

0 exp(-ikLy) @)

Ty(k) =

In Section 3 of this paper, we show that a unique recon-
struction of a LPG from its core-to-core transmission spec-
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trum is possible when an additional grating is written in
cascade to the interrogated grating. A schematic descrip-
tion of the cascaded structure is given in Fig. 1. The
lengths of the auxiliary and the interrogated gratings are
denoted by L; and L, respectively. The transfer matrix of
the whole structure can be calculated by multiplying the
transfer matrices of the gratings with a free-propagation
matrix,

Tio1(k) = To(k)TAR)T,(k), (8

where T;(k) and Ty(k) are the transfer matrices of the
two gratings and TAk) is the transfer matrix of the gap.
Using Eq. (8), we calculate the core-to-core and core-to-
cladding transmission functions:

aot(k) = a1(R)ag(k)exp(- ikLy) - b1(k)by(k)exp(ikLy),

biot(k) = a1(k)bo(R)exp(- ikLy) + by (R)ay(k)exp(ikLy),
)

where a,(k),b,(k) are the coefficients of the transfer ma-
trix of the ¢th grating (€=1, 2), as given in Eq. (6).

When the grating is weak [i.e., /7. |q(z)|dz< 1], the Born
approximation can be used. In this case, the grating is
considered a small perturbation, ¢(z)=eq'(z) (e<1), and
the transmission functions are given by

cladding
~.
T X
wi(k,z=0)=0 bi(k) b :(kg

core
L Lt L2
Auxiliary Interrogated
grating grating

Fig. 1. Schematic description of the grating structure analyzed
in the paper. Two cascaded LPGs with lengths L; and L, are
separated by a gap with a length L. The fields of the core mode
and cladding mode at the input end of the structure are denoted
by us(k,z=0) and u(k,z=0), respectively. The core-to-core and
core-to-cladding transmission functions of the first grating are
denoted by a;(k) and b,(k), respectively, and the core-to-core and
core-to-cladding transmission functions of the total structure are
denoted by a,(k) and b.(k), respectively.
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a(k) = exp(~ ikL) + O(€?),

1 (L L-1
b(k) = e—J q" exp(ik)dr+ O(€%). (10)
2),"\ 2

Using Egs. (3) and (10), we find that the coupling coeffi-
cient can be directly calculated from the function

B(7):q(7)=2B(L-27).

3. UNIQUENESS OF THE RECONSTRUCTION

It has been shown in Refs. 13 and 14 that LPGs can be
uniquely reconstructed when both the complex core-to-
core and the core-to-cladding transmission functions are
known. However, only the complex core-to-core transmis-
sion function of LPGs can be easily measured. Therefore,
in order to reconstruct the profile of a LPG, we need to ex-
tract the complex core-to-cladding transmission function
of the grating from its complex core-to-core transmission
function. Generally, the reconstruction of the complex
core-to-cladding transmission function is not unique, and
the grating cannot be reconstructed from its core-to-core
transmission function. However, in the case of a cascaded
grating structure, a unique reconstruction is possible if
the gap between the gratings is sufficiently long.

In this section we refer to three different cases of the
reconstruction problem; in each case different input data
are given. In the first case, only the complex core-to-core
transmission function of the total structure, aiy(k), is
known. In the second case, both the complex core-to-core
transmission function of one of the cascaded gratings and
the complex core-to-core transmission function of the total
structure, ayy(k), are known. In the third case, we assume
that the two gratings are weak and only the amplitude of
the core-to-core transmission function of the total struc-
ture, |ai:(k)|, is known. The constraints that ensure a
unique reconstruction in the three cases described in this
section are summarized in Table 1.

We assume in our analysis that the grating structure is
lossless and, therefore, the amplitude of the function
bioi(k) can be calculated from the amplitude of the func-
tion ai(k) by using the conservation of power relation,
given in Eq. (4). We note that our numerical simulation,
described below, shows that even when there is a small
loss along the grating structure we can still use Eq. (4) for
finding a good approximation to the amplitude of the
function b,(k). In this case, the loss will cause only a
small decrease in the amplitude of the reconstructed grat-
ing.

Since the amplitude of the function b;,(k) can be easily
calculated by using Eq. (4), only the phase of the function
bioi(k), denoted by ¢ (%), is needed to ensure a unique re-

Table 1. Summary of Reconstruction Cases and Methods

Case” Data Constraints Stability against Noise Proposed Reconstruction Methods
1 i) L;>2(L1+Ly) Unstable Phase retrieval

(k) and aq(k) L;>Ly+L, Stable if L; <L, Phase retrieval or deconvolution
3 @ (R)] L;>max{Ly,Ly} and |a;5(k)|20.9 Stable if L; <L, Phase retrieval

“Cases 1, 2, and 3 correspond to the cases presented in Subsections 3.A-3.C, respectively.
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construction of the grating. In general, the retrieval of the
phase of a spectral function from its amplitude is not
unique.23 In Ref. 23, the uniqueness of the phase-retrieval
problem is studied for spectral functions whose Fourier
transform has a disconnected support. We define the sup-
port of a spectral function, denoted by D, as the union of
all the intervals in which the Fourier transform of the
function is not equal to zero. When the support D is a
union of two nonoverlapping intervals, the phase-
retrieval problem has a unique solution if the width of
each of the two intervals is less than the width of the gap
between them.?

The uniqueness theorem in Ref. 23 ignores trivial
transformations of the reconstructed phase function
dp(k), i.e., £dp(k)+ak+ B, where a and B are constants.
Thus, a unique solution defines a family of solutions given
by the above transformations. The trivial transformations
may cause a spatial inversion of the reconstructed grating
profile, g(z) —q(-z)", a displacement in the position, g(z)
—q(z+a), and a constant change in the phase, q(z)
—q(z)exp(ip), of the grating profile.?* The last two trans-
formations do not affect the reconstruction of the grating,
and the first transformation can be overcome if the spa-
tial order of how the two gratings were written in the fi-
ber is known.

A. Reconstruction from the Complex Core-to-Core
Transmission Function of the Cascade Structure

We consider the first case where only the complex core-to-
core transmission function of the cascaded structure,
aot(k), is known. Following Egs. (3) and (9), we find that
the support of the Fourier transform of the function b(k)
is given by

D= [— (L]. +L2 +Lf),L1 +L2 _Lf] U [— (Ll +L2 —Lf),L]_
+ Lo+ Ly, (11)

where L, and L, are the lengths of the two cascaded grat-
ings and Ly is the distance between them, as shown in
Fig. 1. Therefore, the function b (k) fulfills the support
constraint required for uniquely extracting its phase® if

When the condition in expression (12) is fulfilled, the
phase of the core-to-cladding transmission function of the
total structure, bi,(%), can be retrieved from its ampli-
tude and used to reconstruct the grating structure. We
note that in this reconstruction problem, and in the fol-
lowing problems, any increment in the gap beyond the
lower bound that is required for a unique reconstruction
is not necessary and does not add any information to the
reconstruction problem.

B. Reconstruction from the Complex Core-to-Core
Transmission Functions of the Cascaded Structure and
the Axillary Grating

We consider the second case where both the complex core-
to-core transmission function of the cascaded structure,
aiot(k), and the core-to-core transmission function of the
auxiliary grating a(k) are known. The requirement in ex-
pression (12) ensures the uniqueness of the reconstruc-
tion of the cascaded structure from its core-to-core trans-
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mission function. However, when the core-to-core trans-
mission function of one of the auxiliary gratings is also
known, the uniqueness of the solution can be ensured for
a narrower spatial gap between the gratings than given
in expression (12). Equations (9) show that the function
agor(k) is composed of two elements, a;(k)ay(k)exp(~ikLy)
and bl(k)bg(k)*exp(—ika). According to Egs. (3), the sup-
ports of the Fourier transform of these two elements are
[—(L1+L2 +Lf) ,L1+L2—Lf] and [_(Ll +L2—Lf) 7L1 +L2+Lf],
respectively. The supports of the Fourier transform of the
two elements do not overlap if the following condition is
met:

Ly> (Ly +Ly). (13)

In this case, we can extract the functions a(k)ay(k) and
bl(k)b;(k) from the function a;(%). Since one of the func-
tions aq(k) and ay(k) is also known, the other function can
be computed from the product a;(k)as(k). Then, the pres-
ervation of power relation can be used for calculating the
amplitude functions |b;(k)| and |by(k)|. The functions
|b61(R)|, |bo(k)| and the product bl(k)b;(k) can be used to
uniquely determine the functions b;(k) and by(k) by
defining

b(k) = by(k) + by(k)exp(ikL), (14)

where L is an arbitrary constant that fulfills the separa-
tion condition £>L1+L2. The intensity and, hence, the

amplitude of the function B(k) can be calculated from the
known functions |b1(k)|,|bo(k)| and the product b, (k)by(k).
Since the function B(k) fulfills the separation condition, it
can be determined uniquely by its intensity. Since L ful-
fills the separation condition, the functions b;(k) and
bo(k) can be uniquely calculated from the extracted func-
tion b(k).

C. Reconstruction from the Core-to-Core Transmission
Intensity of the Cascaded Structure

We consider the third case where only the core-to-core
transmission intensity of the cascaded structure is
known. When the two gratings are weak (the minimum
transmissivity of the core-to-core mode along the grating
<20%), the Born approximation can be used, and the
grating can be reconstructed from only the amplitude of
the core-to-core transmission function. In this case, the
transmission function b (k) can be approximated by

biot(k) = by(k)exp[- ik(Le+ Ly]+ bl(k)exp[ik(Lf+ Ly],
(15)

and the support of the Fourier transform of the function
btot(k) is given by

D = [_Ll —L2 _Lf’Ll _LZ _Lf] U [Ll _LZ +Lf‘,L1
+ Lo+ L. (16)

Therefore, the function b.,(%k) can be uniquely determined
from its amplitude if
Lf> maX(Ll,LQ). (17)

Once the function b.y(%) is calculated, the grating can be
reconstructed by using Egs. (10), without the use of
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inverse-scattering algorithms. Since the function b.(k) is
uniquely calculated from the amplitude of the core-to-core
transmission function of the total structure, ay (%), only
the function |a.y(k)| is required for reconstructing the
grating. It can be shown that, in this case, additional in-
formation on the core-to-core transmission function of one
of the cascaded gratings does not reduce the separation
constraint given in expression (17).

4. METHODS FOR EXTRACTING THE
CORE-TO-CLADDING TRANSMISSION
FUNCTION

In this section, we describe two methods for reconstruct-
ing the complex core-to-cladding transmission function of
a cascaded grating structure from its core-to-core trans-
mission function. The first method is based on a phase-
retrieval algorithm. The method requires knowledge of
the core-to-core transmission function of the total struc-
ture; however, the phase-retrieval method allows us to ob-
tain better results when the core-to-core transmission
function of the auxiliary grating is also known. The sec-
ond method is based on a direct deconvolution operation.
This method requires knowledge of the core-to-core trans-
mission functions of both the auxiliary grating and the to-
tal structure and can be used for the reconstruction prob-
lem of Subsection 3.B.

A. Phase-Retrieval Algorithm

Phase-retrieval algorithms may be classified into three
categories: optimization algorithms,25 stochastic algo-
rithms,?%?7 and iterative algori‘chms.zg’29 Optimization al-
gorithms are based on minimizing an error functional de-
fined according to the characteristics of the specific phase-
retrieval problem in study. In our problem the Fourier
transform of the spectrum should be zero for a given time
interval, and the error functional is defined as the energy
of the error integrated over the interval. The global mini-
mum of the error functional gives the solution to the
phase-retrieval problem. The main drawback of
optimization algorithms is that they may converge to lo-
cal minima of the error functional, which do not corre-
spond to the solution of the phase-retrieval problem.z5
Stochastic algorithms such as the genetic algorithm?® or
the simulated annealing algorithm?’ are more capable of
overcoming the problem of local minima. However, the
computational complexity of these algorithms is high,
and, therefore, the computational time needed for obtain-
ing the results may be very long.?%?” The third type of
phase-retrieval algorithms is based on an iterative
scheme, which imposes constraints in both time and fre-
quency domains. One well-known iterative algorithm is
the hybrid input—output (HIO) algorithm.?® The advan-
tage of the HIO algorithm is that it allows one to over-
come the problem of local minima more efficiently than
stochastic algorithms. The convergence properties of the
HIO algorithm are studied in Refs. 29 and 30.

In our work we use the HIO algorithm for all the cases
discussed in Section 3. We define the function B, (7) as
the Fourier transform of the core-to-cladding transmis-
sion function, by(k). Given the amplitude function
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|b4ot()], we require that the output function of the HIO al-
gorithm, denoted by B,.(7), fulfill the constraints

Bsol(T) = 07 for 7 ¢ D; (18)

|bsol(k)| = ‘btot(k)|, (19)

where b, (k) is the inverse Fourier transform of the func-
tion B, (7), and D is the support of the function By (7),
given in Eq. (11). According to the uniqueness theorem in
Ref. 23, the function B, (7), which fulfills the constraints
in Egs. (18) and (19), is equal to the desired solution,
Brot(7)-

We now describe the HIO algorithm used in our work.
We define B.'(7) and B‘,’L”t(r) as the input and the output
functions of the nth iteration of the HIO algorithm and
b™(k) and b%“(k) as their corresponding inverse Fourier
transforms. The HIO algorithm can be summarized by
the following iterative relation?®;

@”“=@%5#m%*

Bflut( 7, 7eD
Bl -8 (1), reD

where y is a constant feedback parameter. The starting
guess for the algorithm, B{(7), can be chosen arbitrarily.
Equations (20) show that if the algorithm converges in
the sense that lim, .|, ,(7)— B (7)|=0, then the output
of the algorithm would fulfill the condition lim,, .37 (7)
=0 for 7¢ D. Therefore, if the algorithm converges, the
output of the algorithm, B, (7), fulfills the constraints in
Eq. (18), and its solution is the solution to the phase-
retrieval problem. We define the error functional E as

nn+1 T) =

(20)

E= f |ﬁsol(7)|2d7' (21)
T7¢D

The error functional E is used as a practical criterion for
the convergence of the algorithm; the algorithm is said to
have converged when the error E is smaller than a de-
sired value.

The properties of the HIO algorithm are described in
Refs. 29 and 30. In those references, the authors distin-
guish between two parts of the solution of the algorithm:
the converging part and the emerging part. The converg-
ing part of the HIO algorithm allows the algorithm to con-
verge to functions that have a local minimum for the error
functional E, and the emerging part causes the algorithm
to emerge from a local minimum that is not the solution.
However, it is not known how many iterations are re-
quired for the convergence and what is the optimal value
of y. Therefore, the choice of the number of iterations and
of the value of y is made empirically.28

When the function |b.,(k)| is obtained from a measure-
ment, it contains noise, and, therefore, there may be no
solution to the phase-retrieval problem. In this case, we
define our solution as the function B, (7) that fulfills Eq.
(19) and minimizes the error functional E, defined in Eq.
(21). However, the HIO algorithm can converge only to a
state where the error functional E is zero.?’ Therefore, in
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the case of noisy data, the HIO algorithm may not con-
verge, and the solution may alternate between different
local minima of the error functional.? To overcome this
problem, a variation of the HIO algorithm was developed
in Ref. 29. This method, called the separated hybrid
input—output (SHIO) algorithm, separates the converging
part and the emerging part of the HIO algorithm. There-
fore, the SHIO algorithm allows convergence to a local
minimum state that is not the solution. Once a conver-
gence is obtained, the emerging part is used to locate a
new local minimum state. The local minimum state with
the lowest error functional is considered the solution of
the algorithm. The SHIO algorithm is summarized in
Appendix A.

The SHIO and HIO algorithms, described in this sub-
section, are used to solve the reconstruction problem con-
sidered in Subsection 3.A, where the core-to-core trans-
mission function of the cascaded structure a.(k) is
known. The number of iterations required by the SHIO
algorithm for converging to the solution of the phase-
retrieval problem depends on the function By (7). Fur-
thermore, the sensitivity of the solution to noise also de-
pends on the function that should be reconstructed. We
found that when the support D is composed of two discon-
nected intervals that have significantly different lengths
the algorithm is less sensitive to noise and its conver-
gence becomes faster. However, in the reconstruction
problem considered in Subsection 3.A, the support of the
function By(7) is generally composed of two equal inter-
vals with the same length, 2(L;+L,). In this case, the re-
construction using the SHIO algorithm may have a high
sensitivity to noise and may slowly converge.

The sensitivity to noise of the phase-retrieval algo-
rithms can be overcome in the reconstruction cases con-
sidered in Subsections 3.B and 3.C. In the case of Subsec-
tion 3.B, where the core-to-core transmission functions of
the auxiliary grating and total structure are known, the
SHIO and HIO algorithms are used to extract the phase

of the function B(k), defined in Eq. (14), instead of the
phase of the function by, (k). Since the support of the func-

tion l;(k) is composed of two intervals with lengths of 2L,
and 2L,, the sensitivity of the SHIO algorithm to noise
can be significantly reduced if the length of the auxiliary
grating is considerably shorter than the length of the in-
terrogated grating. In the case of Subsection 3.C, where
the gratings are weakly coupling and the Born approxi-
mation can be used, the support of the function B (7) is
also composed of two intervals with lengths of 2L, and
2L4. Therefore, in this case as well, the performance of
the SHIO algorithm can be enhanced by choosing a short
auxiliary grating.

B. Deconvolution Method

The deconvolution method is based on a direct calculation
of the transmission spectrum of the interrogated grating
from the core-to-core transmission spectra of the auxiliary
grating and of the total structure. Similarly to the case of
the phase-retrieval algorithm, we have found out that in
order to obtain stable results in the presence of noise the
auxiliary grating should be considerably shorter than the
interrogated grating.
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As shown below, the minimum gap between the grat-
ings, required by the deconvolution method, is equal to
the sum of the grating lengths L;+Ls, as obtained in ex-
pression (13). When the condition in expression (13) is ful-
filled, the functions ay(k),|b1(k)|?, and b;(k)b,(k) can be
calculated from the core-to-core transmission functions of
both the auxiliary grating and the total structure, a;(k)
and ay.(k), as explained in Section 3. In this subsection,
we will show how we can extract the function b;(k) from
the product bl(k)b;(k) by using the known intensity func-
tion |b1(k)[%.

The deconvolution method requires a discrete represen-
tation of the core-to-cladding transmission functions of
the two gratings b,(k) (=1, 2). When the functions b,(k)
are uniformly sampled with a sampling period of Ak
> qr/max{L,}, the Fourier transform of the functions b,(k)
can be calculated for |1 < /A by using

AR 2
B = > bolky)exp(— ik, ), (22)

m=—%

where k,,=mAk and m is an integer number. We note that
the restriction on the sampling period A%k ensures that
there is no error due to the aliasing effect in the
calculation.! In practice, the core-to-cladding transmis-
sion function can be obtained only over a finite band-
width, and, therefore, we approximate the functions B,(7)
by

AR N
Bulm)= - > blky)exp(-ik,,), (23)
Tm=-N

where 7,=nA7, A7=27/[(2N+1)Ak], and n=-N,...,N. We
use the inverse discrete Fourier transform on both sides
of expression (23) and obtain

Ny

bylky) = A7 D, Bi(r,)exp(ik,,), (24)
n=—N€

where N,=L,/Ar. We note that if the function B,(7) has an
abrupt discontinuity, caused by a discontinuity in the
grating profile, then the support region of the function
may become wider than [-L,,L,] owing to the Gibbs phe-
nomenon. In this case the lengths of the gratings L,
should be defined slightly longer than their actual
lengths.

The z transform of the functions B,(7,) is defined as

Ny
biz)= X Bz (25)

n=-N,

Since the function b,(z) is a polynomial function of the
variable z, it can be represented by the product

2N,

be(z) = Bl )z N ] (2 - &), (26)
j=1

where {#} are the complex roots of the functions b(z) (£

=1, 2). Using the functions |by(k,)? |bs(k,,)|?, and

bl(km)b;(km), we calculate the z-transformed functions

b1(2)b1(1/27), by(2)by(1/2"), and by(2)by(1/z"), which can

be represented by31
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2N,

aamak>—wlmnﬂlu HET -8,

2N,

ba(2)by(1/2") = Bo(ry) 1] (2 - )™ =15},
Jj=1

Ny Ny

@MM>ﬁmw&mmH@§Mhﬂ{@>

i=1
(27)

The zeros of the function bl(z)bl(l/z ') are obtained in a
conjugate rec1procal pair: {&,1/{¢}"}. When only the
function b (z)b (l/z ) is known, there is no indication of
whether {J or 1/{& 1" is the zero of the function b;(z). In
this case, there are 2N different functions b(z) corre-
sponding to the same intensity function |b;(&,,)|?. In order
for us to obtain a unique solution, the functions b,(z) and
by(z) should not share a common zero. In this case, the
comparison of the zeros of the function bl(z)bQ(l/z ) and
the function bl(z)bl(l/z ) gives the zeros of the function

b1(z). Therefore, the functions |b;(k,,)|?,|b2(%,,)|%, and
bl(km)b;(km) determine uniquely both functions b,(%,,)
and by(k,,).

The calculation of the zeros of the functions
bl(z)bi(l/z*) and bl(z)b;(llz*) requires finding the zeros
of polynomial functions of the order of 2N; and N;+N,,
respectively. Such a calculation is a numerical operation
with a very high complexity that strongly increases with
the number of roots of the function. The calculation of the
zeros of the function bl(z)b::l:(llz*) can be simplified by
choosing an auxiliary grating with a short length and a
small number of sampled points, N;. However, such a re-
striction cannot be made on the length of the interrogated
grating. Therefore, we used a different method to find the
zeros of the function bl(z) without calculating the roots of
the function bl(z)b2(1/z ). Given a pair of zeros {J and
1/{&, 1} we define the following functions:

- b1(kn)b (ki)
JEmi= exp(— ikmrn)—gjl’
by(k )by (k)
gjlky,) = — (28)

1 -exp(- ik, m,){&}

Only in one of the functions defined in Egs. (28) is the
added pole in the denominator canceled out by a zero in
the numerators. Since the numerators of the functions
fi(ky) and gj(k,,) do not contain poles, the Fourier trans-
form of only one of the functions f;(k,,) and g;(k,,) should
have a finite support of N{+ Ny points for a specific value
of j. Therefore, the zeros of the function b(z) can be de-
termined by checking the support region of the functions
fi(k,,) and gj(k,,). After all the zeros of the function b4(2)
are determined, we can calculate the discrete-time func-
tion b4(%,,) and use it to obtain the function by(%,,) from
the known product b;(k)by(%).
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When the data are accurate, the Fourier transform of
one of the functions f;(k,,) and g;(k,,) should have a finite
support of N;+ Ny points. When the core-to-core transmis-
sion function contains errors due to numerical inaccura-
cies and/or due to noise added in experiments, the zeros of
the function b;(z) may not coincide with the zeros of the
function bl(z)b;(l/z*). In this case, the Fourier transform
of both functions fj(k,,) and gj(k,,), defined in Egs. (28),
may have an infinite support, and we determine the zeros
of the function b,(z) according to the function with the
Fourier transform that has the smallest energy outside
its theoretical support. An alternative method to find the
zeros of the function b1(2) is to calculate the 2N combina-
tions of the function b(z) from the function bl(z)b;(l/z*).
Then, the function b4(k,,) is calculated for each combina-
tion. In the case of error-free data, the Fourier transform
of the function b4(%,,) should have a support of Ny points.
When the data contain errors, the optimal solution is cho-
sen according to the function b4(%,,) with a Fourier trans-
form that has the smallest energy outside of its theoreti-
cal support. Since the length of the auxiliary grating can
be chosen to be significantly shorter than the length of the
interrogated grating, the number of possible combina-
tions, 2V1, may be chosen to be small.

The extracted function b{(z) is used to calculate the
function by(z) from the known function by(z)by(1/2").
When the data are noisy, the extracted zeros of the func-
tion b(z) do not exactly coincide with the zeros of the
function, bl(z)b;(l/z*), and, therefore, the calculation of
the function by(z) becomes inaccurate. The error in the
calculation of the function b4(z) increases when the num-
ber of noncoinciding zeros increases. Therefore, in order
to minimize the error, the number of zeros of the function
b1(z) should be as small as possible. This requirement is
fulfilled by choosing the length of the auxiliary grating to
be short enough, so it would contain only few sampled
points. When the function b4(z) has zeros located near the
unit circle, the error in calculating the function by(%,,) sig-
nificantly increases in frequencies where the function
b1(k,,) is close to zero. Therefore, we also need to choose
an auxiliary grating with a transmission function b(%,,)
that does not become too small across the measured band-
width.

5. NUMERICAL EXAMPLES

In this section, we demonstrate our technique for recon-
structing LPGs from their core-to-core transmission
spectra for the three reconstruction cases described in
Section 3. In the first example, we demonstrate the recon-
struction of a cascaded structure from its complex core-to-
core transmission function as described in Subsection 3.A.
In the following two examples, we demonstrate the recon-
struction of a cascaded structure from the core-to-core
transmission functions of both the cascaded structure and
the auxiliary grating, as described in Subsection 3.B. In
the last example we demonstrate the reconstruction of a
cascaded structure from its intensity core-to-core trans-
mission function as described in Subsection 3.C. The re-
construction using the phase-retrieval method is
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Fig. 2. (a) Core-to-core transmission function amplitudes of the
uniform grating, (b) Gaussian grating, (c¢) and the total structure
given in Eq. (29). The transmission spectra were calculated with
a wavenumber resolution of Ak=4 m~! and a bandwidth of
4000 m™! by using the transfer-matrix method given in Ref. 19.

demonstrated in all the examples. The reconstruction us-
ing the deconvolution method is demonstrated for the sec-
ond and the third examples.

When the phase-retrieval method was used, we first
applied the HIO algorithm for a 1000 iterations to obtain
a good initial input for the SHIO algorithm. The iteration
of the HIO algorithm with the lowest error functional E
was used as the input to the SHIO algorithm, which was
used for 30 iterations. The use of the HIO algorithm be-
fore the use of the SHIO algorithm allowed a faster con-
vergence of the SHIO algorithm.29 We chose the feedback
parameter to be y=0.5 in both HIO and SHIO algorithms.
In all the examples, a Hanning window was used to re-
duce errors in the reconstructed profile due to the Gibbs
effect.?! In the case of the HIO and SHIO algorithms, we
multiplied the input function of the algorithm by a Han-
ning window. In the case of the deconvolution method, we
first calculated the core-to-cladding transmission function
of the interrogated grating b4(k) and afterward multiplied
it by the Hanning window. The Hanning window has also
reduced the reconstruction error by diminishing the noise
components in the high frequencies of the transmission
spectrum, which were amplified by the extraction method.
We chose the bandwidth of the transmission spectrum,
used in the calculations, by requiring that the amplitude
of the core-to-core transmission spectrum of the total
structure approach 1 at the edges of the bandwidth.

In the first example, we demonstrate the reconstruc-
tion method described in Subsection 3.A. The method
gave an accurate result for each grating structure we ana-
lyzed as long as the gap length between the two gratings
fulfilled the condition described in expression (12). In the
example, we reconstructed a structure of a uniform grat-
ing and a Gaussian grating with the same length from the
complex core-to-core transmission spectrum of the total
structure. The coupling coefficient of the structure is
given by
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30 m™, 0<2z<0.05
92 =1 45 expl- 4000(z - 0.275)2] m~!, 0.25 <2< 0.3

(29)

The uniform grating had approximately 100% maximum
coupling between the two modes, and the Gaussian grat-
ing had about 80% maximum coupling between the two
modes. The complex core-to-core transmission spectrum
was calculated with a wavenumber resolution of Ak
=4 m~! and a wavenumber bandwidth of 4000 m~!. The
calculation was performed by using the transfer-matrix
method, described in Ref. 19, to solve Eqgs. (1). Figure 2
shows the amplitudes of the core-to-core transmission
function of the uniform grating (la;(%)|), the Gaussian
grating (las(k)]), and the total cascaded structure
(Jatot(R)]). The grating was reconstructed from the com-
plex function a;w(k), whose amplitude is shown in Fig.

40+

0 ; T : . "
0.1 0.0 0.1 0.2 0.3 0.4
z (m)

Fig. 3. Reconstruction of a cascaded structure of uniform and
Gaussian gratings, given in Eq. (29), from the complex core-to-
core transmission spectrum of the structure, shown in Fig. 2(c).
The reconstruction was performed by using the phase-retrieval
method (solid curves) and is compared with the exact grating
profile (dashed curves).
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Fig. 4. (a) Core-to-core transmission function amplitudes of the
short (auxiliary) grating, (b) the long (interrogated) grating, (c)
and the total structure given in Eq. (30). The transmission spec-
tra were calculated with a wavenumber resolution of Ak=3 m~!
and a bandwidth of 600 m~! by using the transfer-matrix method
given in Ref. 19.
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Fig. 5. Reconstruction of the long (interrogated) uniform grat-
ing in the structure described in Eq. (30) from the complex core-
to-core transmission spectra shown in Figs. 4(a) and 4(c). The re-
construction was performed by using the phase-retrieval method
(solid curve) and the deconvolution method (dashed curve). The
reconstruction is compared with the exact grating profile (dotted
curve).

2(c), by using the phase-retrieval method. The reconstruc-
tion is unique, since the gap between the gratings fulfills
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the condition in expression (12). Figure 3 shows the recon-
structed grating profiles (solid curves) compared with the
exact grating profiles (dashed curves). The figure shows
that an excellent reconstruction of the two gratings was
obtained. We note that the choice of the grating profiles
was arbitrary and that our method was not limited by the
particular grating structure. However, when noise was
added to the transmission spectrum, the reconstruction
became unstable.

In the second example, we demonstrate the reconstruc-
tion method described in Subsection 3.B. We did not ob-
serve a dependence of the reconstruction quality on the
specific grating profiles that were chosen as long as the
length of the auxiliary grating was significantly shorter
than the length of the interrogated grating. In the ex-
ample, we have analyzed a structure of an interrogated
uniform grating with a coupling efficiency of about 100%
and a length of 20 cm and a short auxiliary Gaussian
grating with a coupling efficiency of about 39% and a
length of 2 cm. The coupling coefficient of the total struc-
ture is given by

7.85m™!, 0<z<02m,
q(z) =310 exp[- 5 X 104z - 0.45)2 ] m™, 0.44 m <z < 0.46 m. (30)
0 elsewhere

The gap between the gratings fulfills the condition in ex-
pression (13), and, therefore, the reconstruction of the in-
terrogated grating structure is unique. The complex core-
to-core transmission functions of the short grating and
the total structure were calculated with a wavenumber
resolution of Ak=3 m~! and a wavenumber bandwidth of
600 m~! by using the same method as in the first ex-
ample. Figure 4 shows the core-to-core transmission-
function amplitudes of the auxiliary grating (|la;(k)|), the
interrogated grating (las(k)|), and the total structure
(Jatot(R)]). The input data for the reconstruction were the
complex core-to-core transmission spectra of the auxiliary
grating and total grating structure, whose amplitudes are
shown in Figs. 4(a) and 4(c). We used the phase-retrieval
method and the deconvolution method to reconstruct the
interrogated grating profile. Figure 5 shows the recon-
struction of the interrogated grating by using the phase-
retrieval method (solid curve) and the deconvolution
method (dashed curve); the reconstruction results are
compared with the accurate coupling coefficient (dotted
curve). The figure shows that both methods were able to
accurately reconstruct the interrogated grating structure.
We note that since the length of the auxiliary grating is
short, it contains only about three points, and therefore
we did not include its reconstruction in the figure.

In the third example, we added noise to the transmis-
sion functions that were used in the previous example
and reconstructed the grating as in the previous example.
We added to each calculated point in the core-to-core
transmission spectra of the auxiliary and the total grat-
ing structure a random variable, which represented the
noise in the experiment. The random variables were inde-

pendent and had a Gaussian distribution with a zero
mean and a standard deviation of 5x1073. Figure 6
shows the reconstruction of the interrogated grating by
using the phase-retrieval method (solid curve) and the de-
convolution method (dashed curve). The reconstruction
results are compared with the accurate coupling coeffi-
cient (dotted curve). The figure shows that a good recon-
struction is obtained by both methods. The stability of our
method against noise is a result of the use of a short aux-
iliary grating.

0 T :' J
0 10 20 30
z(cm)

Fig. 6. Reconstruction of the long (interrogated) uniform grat-
ing in the structure given in Eq. (30) from the noisy complex core-
to-core transmission spectra of the auxiliary grating and the to-
tal structure. The noise was represented by independent random
variables that were added to the transmission spectra of the
grating. The random variables had a Gaussian distribution with
a zero mean and a standard deviation of 5 10~3. The reconstruc-
tion was performed by using the phase-retrieval method (solid
curve) and the deconvolution method (dashed curve). The recon-
struction is compared with the exact grating profile (dotted
curve).
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Fig. 7. Core-to-core transmission intensity of two weak gratings
with the refractive index structure given in Eq. (31). The core-to-
core transmission intensity spectrum was calculated by the IFO-
gratings software. The figure shows couplings to four different
cladding modes, LP,_¢s.

In the last example, we demonstrate the reconstruction
method described in Subsection 3.C. We did not observe a
dependence of the reconstruction quality on the specific

1.2 X 1072,
nl(Z) =

2.25 X 1074 exp[- (z — 0.325)/1.6 X 107°], 0.32 m <z < 0.33 m

The intensity of the core-to-core transmission function of
the structure was calculated with a resolution of 0.3 nm
and a bandwidth of 300 nm. Figure 7 shows the calcu-
lated intensity of the core-to-core transmission function.
The figure shows a coupling to four different cladding
modes, LPys_o5. We used only the spectrum formed by
coupling to the LPy5 cladding mode to reconstruct the
grating. Therefore, we used only the transmission func-
tion at the wavelength region 1520-1620 nm, as marked
in Fig. 7. We added to each calculated point in the inten-
sity function |a,(%)|> a random variable, which repre-
sented the noise added in an experiment. The random
variables were independent and had a Gaussian distribu-
tion with a zero mean and a standard deviation of 1073
The core-to-core transmission function was represented
as a function of the wavenumber detuning k£ by using the
following relation: k=a{An g(N)/N=AndN\.)/\.], where
Angg is the difference in the effective indices of the core
mode and cladding mode, \ is the wavelength, and \,
=nei(A\)A is the central wavelength of the grating. We
used the SHIO algorithm to reconstruct the phase of the
function by, (k) from its amplitude. The grating profile
was reconstructed from the core-to-cladding transmission
function b,(k) by using Eqs. (10). The spatial resolution
of the reconstructed profile was about 4 mm. Figure 8
shows the reconstruction of the grating from the noisy
transmission intensity (solid curve). The result is com-
pared with a reconstruction from the accurate transmis-
sion intensity, which was not contaminated by noise
(dashed curve). The figure shows that a very good recon-
struction of the grating was obtained. The main source for
the small errors in the reconstruction is the approxima-
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grating profiles that were chosen as long as the auxiliary
grating was significantly shorter than the interrogated
grating and the coupling efficiency of both gratings was
lower than about 20%. In our example we have recon-
structed a cascaded structure of weak Gaussian and uni-
form gratings from only the amplitude of the core-to-core
transmission spectrum of the structure. Since the cou-
pling between the core and the cladding modes of the two
gratings is weak, only the core-to-core transmission am-
plitude of the total structure is needed, as explained in
Subsections 3.C and Section 4. The length of the uniform
grating was 15 times longer than the length of the Gauss-
ian grating. The intensity of the core-to-core transmission
spectrum was calculated by using the IFO-gratings soft-
ware written by Optiwave Corporation. The IFO-gratings
software simulates the coupling to all the different clad-
ding modes of the grating. The refractive indices of the
core and cladding were 1.458 and 1.45, respectively. The
radii of the core and cladding were 2.625 and 62.5 um.
The grating period was A=500 um, and the refractive in-
dex amplitude was equal to

0<z<0.15m
(31)

[
tions made in expressions (10) and (15).

The spatial resolution of the reconstruction is given by
Az= |Aneff()\min)/)\min_Aneﬁ(xmax)/)\maxl_la where )\max and
Amin are the maximum and minimum wavelengths of the
spectral measurement, respectively. In our example, the
coupling to more than a single cladding mode limits the
spectral bandwidth used to reconstruct the grating and,
thus, also limits the spatial resolution of the grating re-
construction. In our last example, we obtained a recon-

0 . y . .
0.0 0.1 0.2 0.3 0.4
z (m)

Fig. 8. Reconstruction of the long (interrogated) uniform grat-
ing from the core-to-core transmission intensity shown in Fig. 7
at the frequency region of 1520-1620 nm. The reconstruction was
obtained from the noisy (solid curve) and accurate (dashed curve)
transmission intensities by using the phase-retrieval method.
The noisy transmission spectrum was obtained by adding to each
calculated point in the transmission intensity an independent
random variable that had a Gaussian distribution with a zero
mean and a standard deviation of 1 X 102, The reconstruction of
the gratings from the core-to-core transmission intensity spec-
trum was possible, since the two reconstructed gratings were
weak and therefore the Born approximation could be used.
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struction resolution of 4 mm for a grating with a period of
0.5 mm. We note that the reconstruction resolution is only
eight times larger than the grating periodicity. In com-
parison, the FBG that was interrogated in Ref. 17 was
measured with a spatial resolution that was equal to
about 140 times the grating period. When the LPG is used
as a distributed sensor, the resolution may be improved
by choosing a fiber with a high An.s whose cladding
modes have large effective-refractive-index differences be-
tween them. The resolution can also be improved by opti-
mizing the choice of the grating periodicity.

6. SUMMARY

In this paper we have shown theoretically that the struc-
ture of LPGs can be reconstructed from their complex
core-to-core transmission spectra. To obtain a unique re-
construction, an additional auxiliary grating should be
written in cascade to the interrogated grating such that
the spatial gap between the gratings is sufficiently large.
We consider the reconstruction in three cases, in which
different input data are used. For each case, a different
minimum gap is required to ensure a unique reconstruc-
tion. We found that in the second and the third cases the
reconstruction is not sensitive to noise when the length of
the auxiliary grating is significantly shorter than the
length of the interrogated grating. Two methods for ex-
tracting the core-to-cladding transmission spectra from
the measured core-to-core transmission spectra are dem-
onstrated. The first is based on a phase-retrieval algo-
rithm, and the second is based on a deconvolution algo-
rithm. Our results are summarized in Table 1.

Our work enables the reconstruction of LPGs using
only the core-to-core transmission spectrum. Such a
method can enable reconstructing, for the first time, the
structure of LPGs from their measured spectra, as per-
formed for FBGs. The reconstruction technique for LPGs
may be useful for improving the writing process of LPGs
and for developing novel distributed sensors. The resolu-
tion of the reconstruction is determined by the maximum
bandwidth where there is coupling to only a single clad-
ding mode. In our example we obtained a spatial recon-
struction resolution of 4 mm for a grating with a period of
0.5 mm. The resolution may be enhanced by using fibers
with a high effective-refractive-index difference between
the core and the cladding modes and with a high spectral
spacing between the cladding modes. However, a resolu-
tion better than the grating periodicity cannot be ob-
tained owing to the use of coupled-mode theory.

APPENDIX A

In this appendix we briefly describe the SHIO algorithm.
The SHIO algorithm is composed of two parts: The first
part converges to a local minimum solution, and the sec-
ond part enables emerging from the local minimum solu-
tion. In Ref. 29 the algorithm was developed for the
phase-retrieval problem of two-dimensional real signals.
Although the signal in our case is a complex one-
dimensional signal, it can be easily shown that the deri-
vation of the algorithm in Ref. 29 remains valid.
We define the functions ,Bfln’D (7) and B‘,’L”t’D (7) as
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B{in,nut}(T)’ reD

{in,out},D - n Al
B (1) {0’ reD (A1)

and the functions Bm ND(7) and ,8‘"” ND(7) as

ﬂgn,out},ND(T) — ﬁgn,out}(T) _ ﬂglm,out},D(T)’ (A2)

where the functions ,Bilm"’”t} are the input and output func-
tions of the nth iteration of the algorithm, as defined in
Subsection 4.A. The inverse Fourier transforms of the
functions ,B{m outhD(n) and ,8{‘" outhD(o) are given by
bim uthD by and bi‘" outhND () respectively. The converging
part of the SHIO algorithm is described by the following
relations:

in

)
|btot(k)|

bout k
n (k)= |b"‘(k)|

bm (k) meD(k)+boutD(k)+ly
" bR

XIm{by“ (k)b P (k) V00 (k). (A3)
The convergence parameter is defined by

S Im{Bg e, (65N () T2 ||

c, == 2. (Ad)
> b5 ) P2 B3NP () 2

It is shown in Ref. 29 that, when the algorithm converges,
|bir (k)b (k)| and C, approach zero, and, therefore, at
the convergence of Eq. (A3), we obtain

Im{b; (k)b ()]} = 0. (A5)

Practically, the iterations are stopped when the param-
eter C,, is less than a predetermined level &, where §<1.
We used in our simulations 6=107%, as in Ref. 29.

According to Eq. (A5), the difference between the
phases of the functions 52“/(k) and bo"tND (k) is either zero
or 7 for each value of £ in which the functions b°“/(k) and
bt ND(E) are not equal to zero. We note that when
b"”t ND(p) is identically equal to zero, the function b"”t(k)
is the solution of the phase-retrieval problem, defined in
Eqgs. (18) and (19). In addition, it is shown in Ref. 30 that
when b‘,’l”t’N D(E) is not identically equal to zero there exists
at least one value of &, where the phases of the functions
b2 (k) and b‘,’L”t’ND (k) are equal. We denote by {&,} the
group of all the wavenumbers for which the function
b°“!(k,) has the same phase as the function 5°““"P(k,)
and define a function r(%,) as

|6} (k)|

r = .
|b?Lut,ND(kn)|

(A6)

n

The smallest and second-smallest values of r(k,) are de-
noted by r; and ry. Using the above definitions, we can de-
scribe the emerging part of the SHIO algorithm by the fol-
lowing equation:

bi’l,n-}'l(k) bm(k) _ (r )boutND(k) (A7)
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The SHIO algorithm is then performed using the fol-

lowing steps:

1. Apply Egs. (A3) until C,,<é.
2. Apply Eq. (A7) once.
3. Return to step 1.
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