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Efficient method for launching in-gap solitons in
fiber Bragg gratings using a two-segment

apodization profile
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We theoretically demonstrate what is a new method for efficient launching of in-gap solitons in fiber Bragg
gratings. The method is based on generating a soliton outside the grating bandgap. Then, the soliton is adia-
batically coupled into the bandgap by using its particlelike behavior. We compare our method to a previously
published launching scheme that is based on generating the soliton directly within the grating bandgap.
When using low-intensity incident pulses, the transmission efficiency of our method is three times higher
than that of the previously published scheme. © 2008 Optical Society of America

OCIS codes: 190.5530, 050.2770.
Soliton propagation in one-dimensional periodic
structures has been studied extensively in recent
years [1–10]. These solitons, often referred to as
Bragg solitons, propagate owing to the balance be-
tween grating dispersion and nonlinearity. One of the
striking properties of Bragg solitons is their ability to
propagate even when their central frequency is lo-
cated within the forbidden band of the periodic struc-
ture. The first experimental observations of Bragg
soliton propagation in fiber Bragg gratings (FBGs)
were obtained for out-of-gap solitons [2,3]. Recently,
the propagation of in-gap solitons has also been dem-
onstrated experimentally [7].

One of the proposed applications for Bragg solitons
is pulse compression [4,8]. In a recent experiment, a
12-fold compression was demonstrated for out-of-gap
solitons [8]. One of the limitations of using out-of-gap
solitons for pulse compression is that multiple soli-
tons may be generated if the incident pulse power is
too high. This problem can be overcome if one uses a
compression scheme that is based on generating in-
gap solitons [10]. In the case of in-gap solitons, the
reflection from the bandgap may be used to maintain
a single-soliton transmission for high incoming pow-
ers [10].

The in-gap soliton excitation scheme used in [7]
and analyzed numerically in [9] is based on launch-
ing a high-intensity pulse with frequency compo-
nents that overlap the bandgap of an apodized grat-
ing. As the incident pulse enters the grating, its
maximum intensity is enhanced owing to the decel-
eration in its group velocity [10]. Near the end of the
apodized section, the high-intensity part of the pulse
shifts the bandgap away owing to nonlinearity and
excites an in-gap soliton. However, the leading low-
intensity part of the pulse is backreflected before a
soliton is formed. Therefore, the maximum pulse-
transmission efficiency of the grating is inherently
limited. A similar effect occurs when the soliton exits
the grating. Therefore, the pulse-transmission theo-
retically obtained in [9] was relatively low: in the

range of 20%–30% [9].
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In this work, we propose a new method for effi-
ciently launching in-gap solitons. The method is
based on generating a soliton with a cental frequency
outside the grating bandgap. The formed soliton then
penetrates the bandgap adiabatically. Since solitons
under adiabatic perturbations behave like particles
[11], there is no substantial loss in the soliton energy
as it penetrates the bandgap. The soliton excitation
was performed by using a two-segment apodization
profile. In the first segment, the pulse spectrum is lo-
cated outside the local grating bandgap. The pulse is
decelerated as it enters the grating and hence its in-
tensity is enhanced [10]. Since the frequency compo-
nents of the incident soliton lie mostly outside the
grating bandgap, the launching efficiency is very
high. In the second segment, the excited soliton adia-
batically penetrates the bandgap. The exit of the soli-
ton out of the bandgap is also performed adiabati-
cally to reduce backreflections from the grating end.
The adiabatic changes in the grating parameters at
both grating ends significantly improve the total
transmission through the grating, especially when
the intensity of the incident pulse is low.

We note that the second apodization segment can
be replaced by a small chirp that could be obtained by
creating a temperature gradient over parts of the
grating [12]. In [10], we have demonstrated that
chirped gratings can be used for in-gap soliton forma-
tion. The main difference between our two works is
that in our current scheme, only a single soliton is
generated, whereas in [10] multiple solitons were
formed. In [10], we used the interaction between the
solitons to enable the transmission of only the lead-
ing soliton. The disadvantage of using such a scheme
is that the generation of multiple solitons decreases
the efficiency of the soliton formation. In our current
work, we eliminate the generation of multiple soli-
tons by tuning the input pulse frequency close to the
grating bandgap.

We compare our launching scheme to the one ana-
lyzed in [9]. In the comparison, we use input pulses

that are similar to the ones used in [9]. In addition,
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we use a grating with the same length and the same
maximum strength of the coupling coefficient. The
comparison shows that when the minimal launching
powers are used, the soliton in our scheme is gener-
ated with approximately twice the efficiency of the
scheme in [9]. The difference between the methods is
even more considerable at the grating output; there,
the pulse-transmission efficiency of our method is
over three times higher. We note that the efficiency of
the scheme analyzed in [9] can be significantly im-
proved if the input pulse power is increased. The ef-
ficiency of both schemes can also be further improved
by optimizing the shape of the first apodization seg-
ment of the grating to reduce reflections at frequen-
cies proximal to the grating bandgap.

The propagation of light in nonlinear FBGs can be
described by the following coupled-mode equations
[10]:
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where E± is the envelope of the forward �+� and the
backward �−� electric waves, Vg is the group velocity
in the absence of the grating, ��z� is the grating am-
plitude, and � is the nonlinear coefficient. In our
simulations, we used the split-step method described
in [13] to solve Eq. (1) numerically. The fiber param-
eters were chosen as in [9]: Vg=2�108 m/s and �
=6.4 km−1 W−1.

The apodization at the grating entrance is shown
in Fig. 1. The apodization is composed of two seg-
ments with lengths of L1 and L2=1.5 cm. The first
apodization section is used to launch a soliton whose
central frequency is outside the bandgap. The second
apodization section is used to adiabatically couple the
soliton into the grating bandgap. The apodization at
grating end is a mirror image of the apodization at its
beginning and is used to efficiently decouple the soli-
ton out of the grating. The total grating has a length
of L=10 cm, where the uniform section of the grating
has a length of L−2�L1+L2�=7 cm and a coupling
strength of �0=2000 m−1. The apodization profile at
the input of the grating is described by the following
equation:
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Fig. 1. (Color online) Coupling coefficient of the grating
apodization. The inset shows a zoom around the second

apodization segment.
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where the parameter � fulfills ��1. We assume an
incident pulse with a hyperbolic-secant profile, a full
width at half-maximum (FWHM) duration of T0
=680 ps, and a temporal frequency of 	 /Vg
=1990 m−1 [10]. The detuning is chosen to maximize
the intensity enhancement of the pulse due to the
slow-light effect as discussed in [10]. To efficiently
launch an in-gap soliton, we use the parameter �
=0.9945 in Eq. (2). After penetrating the bandgap, at
z=L1+L2, the central frequency of the incident pulse
is located within the local grating bandgap, defined
in the linear regime, i.e., for �=0 [10]. The detuning
of the pulse from the edge of the local bandgap of the
uniform region is equal to 10 m−1. For this value, 90%
of the pulse energy overlaps with the local grating
bandgap.

For the pulse duration and the grating parameters
given above, the minimum peak power that is re-
quired for launching an in-gap soliton is approxi-
mately 270 W. Figure 2 shows the propagation of a
pulse with such a peak power through the grating.
The figure shows that a soliton is formed at z=L1 and
is decelerated as it penetrates the grating bandgap at
L1�z�L1+L2. The soliton in the uniform section of
the grating has a peak power of 4 kW and a velocity
of 0.018Vg. The total energy of the soliton at z
=L1+L2 is approximately equal to 71% of the energy
of the incident pulse, whereas the remaining 29% are
backreflected as shown in the figure. After exiting the
grating, the soliton energy diminishes to 63% of the
initial pulse energy. The transmitted pulse at the
grating output has a FWHM duration of 320 ps and a
maximum power of 303 W.

We compared our launching method to that used in
[9]. In that work, the grating had only a single-
segment apodization with a half-period cosine profile
[9], which can be described by Eq. (2) with �=1. Be-
side using �=1 in Eq. (2), we used the same grating
and pulse parameters that were used in the example

Fig. 2. (Color online) Formation and propagation of an in-
gap soliton obtained using the launching method described

in this Letter. The scale in the z axis is logarithmic.
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given in Fig. 2. To launch a soliton, we had to in-
crease the peak power of the pulse to 300 W. Figure 3
shows the propagation of the pulse inside the grat-
ing. The differences between the two excitation
schemes can be understood by comparing between
Figs. 2 and 3. In Fig. 3, the reflection at the begin-
ning of the grating is much more significant than in
Fig. 2. The total energy of the soliton inside the grat-
ing is equal to approximately 35% of the energy of the
incident pulse. The peak power of the formed soliton
is equal to 1.37 kW, and its velocity is equal to
0.052Vg. As the pulse exits the grating, its energy is
diminished to only 20% of the incident pulse energy.
Hence, at the output of the grating, the transmission
efficiency of our scheme is over three times higher
than the result obtained by using the scheme in [9].
The transmitted pulse in Fig. 3 also has a long dura-
tion with a temporal FWHM of 1.18 ns and a rela-
tively low peak power of 36 W.

In both the excitation schemes described in Figs. 2
and 3, the total pulse-transmission efficiency can be
increased by changing the apodization profile of the
first grating segment �0�z�L1�. In [10], a quarter-
period sine apodization profile was used (Fig. 1,
dashed curve). The reflection of the incident pulse for
such a profile is lower than that obtained for a half-
period cosine profile. Therefore, by using a quarter-
period sine profile, the launching efficiency can be
improved for both launching schemes. Assuming that
the nonlinearity can be neglected, the dependence of
the reflection on the grating profile can be qualita-
tively understood by analyzing the result in Eq. (18)
in [14]. This equation indicates that in our apodiza-
tion profiles, the maximum contribution to the reflec-
tivity is obtained at the end of the apodization sec-
tion, where the group velocity is minimal. To reduce
the reflection from this region, the grating strength
should be changed at the end of the apodization sec-
tion as slowly as possible. As can be seen in Fig. 1, in
a quarter-period sine profile, the grating amplitude
changes more slowly at the end of the apodization
than in a half-period cosine apodization profile with

Fig. 3. (Color online) Formation and propagation of an in-
gap soliton obtained using the launching method described

in [9]. The scale in the z axis is logarithmic.
the same length. Thus, the linear reflection of a
quarter-period sine profile is smaller for frequencies
proximal to the grating bandgap.

Using a quarter-period sine apodization profile in-
stead of a half-cosine profile reduces the minimum
peak power required for soliton formation to 250 W
for �=0.9945 and to 270 W for �=1. When the mini-
mum input peak power is used, the transmission ef-
ficiencies that are obtained are higher than obtained
in Figs. 2 and 3 and are equal to 70% and 23% for
�=0.9945 and �=1, respectively. The transmission
can be further improved by optimizing the apodiza-
tion profile.

To reproduce our result in an experiment, it is re-
quired that the grating be written with high accu-
racy. In our numerical simulations we examined the
soliton propagation when white Gaussian noise was
added to the coupling coefficient. We found that when
the noise did not change the effective slope in L1�z
�L1+L2 (calculated by using linear regression) by
more than 10%, the propagation characteristics were
not significantly altered.

In conclusion, we have demonstrated a novel
method for efficient launching of in-gap solitons. The
method is based on exciting a Bragg soliton outside
the grating bandgap. Then, by using the tendency of
solitons to adjust to adiabatic perturbations in the
grating parameters, the Bragg soliton is coupled
adiabatically into the bandgap. When the minimal
launching powers are used, the pulse-transmission
efficiency is three time higher in our method than in
the method described in [7,9].
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