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Because optical systems have a huge bandwidth and are capable of generating low-noise short pulses, they are
ideal for undersampling multiband signals that are located within a very broad frequency range. We propose a
new scheme for reconstructing multiband signals that occupy a small part of a given broad frequency range
under the constraint of a small number of sampling channels. The scheme, which we call multirate sampling
(MRS), entails gathering samples at several different rates whose sum is significantly lower than the Nyquist
sampling rate. The number of channels does not depend on any characteristics of a signal. In order to be imple-
mented with simplified hardware, the reconstruction method does not rely on the synchronization between
different sampling channels. Also, because the method does not solve a system of linear equations, it avoids one
source of lack of robustness of previously published undersampling schemes. Our simulations indicate that our
MRS scheme is robust both to different signal types and to relatively high noise levels. The scheme can be
implemented easily with optical sampling systems. © 2008 Optical Society of America

OCIS codes: 070.4790, 070.1170.

1. INTRODUCTION

A multiband signal is one whose energy in the frequency
domain is contained in the finite union of closed intervals.
A sparse signal is a signal that occupies only a small por-
tion of a given frequency region. In many applications of
radars and communications systems, it is desirable to re-
construct a multiband sparse signal from its samples.
When the signal bands are centered at frequencies that
are high compared to their widths, it is not cost effective
and often is not feasible to sample at the Nyquist rate
Fpyq; the rate that for a real signal is equal to twice the
maximum frequency of the given region in which the sig-
nal spectrum is located. It is therefore desirable to recon-
struct the signal by undersampling; that is to say, from
samples taken at rates significantly lower than the Ny-
quist rate. Sampling at any constant rate that is lower
than the Nyquist rate results in downconversion of all sig-
nal bands to a low-frequency region called a baseband.
This creates two problems in the reconstruction of the sig-
nal. The first is a loss of knowledge of the actual signal
frequencies. The second is the possibility of aliasing, i.e.,
of the spectrum at different frequencies being downcon-
verted to the same frequency in the baseband.

Optical systems are capable of very high performance
undersampling [1]. They can handle signals whose carrier
frequency can be very high, on the order of 40 GHz, and
signals with a dynamic range as high as 70 dB. The size,
weight, and power consumption of optical systems make
them ideal for undersampling. The simultaneous sam-
pling of a signal at different time offsets or at different
rates can be performed efficiently by using techniques
based on wavelength division multiplexing (WDM) that
are used in optical communication systems.

There is a vast body of literature on reconstructing sig-
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nals from undersampled data. Landau proved that, re-
gardless of the sampling scheme, it is impossible to recon-
struct a signal of spectral measure \ with samples taken
at an average rate less than \ [2]. This rate \ is commonly
referred to as the Landau rate. Much work has been done
to develop schemes that can reconstruct signals at sam-
pling rates close to the Landau rate. Most are a form of a
periodic nonuniform sampling (PNS) scheme [3-9]. Such
a scheme was introduced by Kohlenberg [3], who applied
it to a single-band signal whose carrier frequency is
known a priori. The PNS scheme was later extended to
reconstruct multiband signals with carrier frequencies
that are known a priori [4,8].

In a PNS scheme m low-rate cosets are chosen out of L
cosets of samples obtained from time uniformly distrib-
uted samples taken at a rate F', where F is greater than or
equal to the Nyquist rate F,,q [4]. Consequently, the sam-
pling rate of each sampling channel is L times lower than
F, and the overall sampling rate is L/m times lower than
F. The samples obtained from the sampling channels are
offset by an integral multiple of a constant time incre-
ment, 1/F. This sampling scheme may resolve aliasing. In
a PNS scheme the signal is reconstructed by solving a
system of linear equations [4]. PNS schemes can often
achieve perfect reconstructions from samples taken at a
rate that approaches the Landau rate under the assump-
tion that the carrier frequencies are known a priori. How-
ever, in order to attain a perfect reconstruction, the num-
ber of sampling channels must be sufficiently high such
that the equations have a unique solution [4].

When the carrier frequencies of the signals are not
known a priori, in a PNS scheme a perfect reconstruction
requires the sampling rate to exceed twice the Landau
rate [5,6]. In addition, in a PNS scheme the number of
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sampling channels must be sufficiently high [6]. Under
these two conditions, a solution to the set of equations in
a PNS scheme may be obtained assuming that the
sampled signal is sparse [6]. When a PNS scheme is ap-
plied to an N-band real signal (N bands in the interval
[0,Fpnyq/2)), at least 4N channels are required for a per-
fect reconstruction [5,6]. A method for obtaining a perfect
reconstruction has been demonstrated only with the num-
ber of channels equal to 8N [6]. Even when the require-
ment of perfect reconstruction is relaxed, the number of
channels required to obtain an acceptably small error in
the reconstructed signal may be prohibitively large. Fur-
thermore, the implementation of the schemes to attain
the minimum sampling rate relies heavily on the as-
sumed values of the widths of the sample bands and on
the number of bands of the signal [6]. In the case that the
bands of the signal have different widths, a PNS scheme
for obtaining the minimum sampling rate has not been
demonstrated.

Other important drawbacks of PNS schemes stem from
the fact that the systems of equations to be solved are
poorly conditioned [7]. Thus, the schemes are sensitive to
the bit number of analog-to-digital (A/D) conversion. They
are also sensitive to any noise present in a signal and to
the spectrum of the signal at any frequencies outside
strictly defined bands. Moreover, the use of undersam-
pling significantly increases the noise in each sampling
channel, since the noise in the entire sampled spectrum is
downconverted to low frequencies. Therefore, the dy-
namic range of the overall system is limited. The noise
may be reduced by increasing the sampling rate in each
channel. However, since the number of channels needed
for a perfect reconstruction is determined only by the
number of signal bands, the overall sampling rate dra-
matically increases. Another important drawback of a
PNS scheme is the requirement of a very low time jitter
between the samplings in the different channels.

In this paper we propose a different scheme for recon-
structing sparse multiband signals. The scheme, which
we call multirate sampling (MRS), entails gathering
samples at P different rates. The number P is small
(three in our simulations) and does not depend on any
characteristics of a signal. Our approach is not intended
to obtain the minimum sampling rate. Rather, it is in-
tended to reconstruct signals accurately with a very high
probability at an overall sampling rate that is signifi-
cantly lower than the Nyquist rate under the constraint of
a small number of channels.

The success of our MRS scheme relies on the assump-
tion that sampled signals are sparse. For a typical sparse
signal, most of the sampled spectrum is unaliased in at
least one of the P channels. This is in contrast to the situ-
ation that prevails with PNS schemes. In PNS schemes,
because all channels are sampled at the same frequency,
an alias in one channel is equivalent to an alias in all
channels.

In our MRS scheme, the sampling rate of each channel
is chosen to be approximately equal to the maximum sam-
pling rate allowed by cost and technology. Consequently,
in most applications, the sampling rate is significantly
higher than twice the maximum width of the signal bands
as usually assumed in PNS schemes.
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Sampling at higher rates has a fundamental advantage
if signals are contaminated by noise. The spectrum evalu-
ated at a baseband frequency f; in a channel sampling at
a rate F is the sum of the spectrum of the original signal
at all frequencies f,+mF that are located in the system
bandwidth, where m ranges over all integers. Thus, the
larger the value of F, the fewer the terms that contribute
to this sum. As a result, sampling at a higher rate in-
creases the signal-to-noise ratio (SNR) in the baseband
region.

To simplify the hardware needed for the sampling, our
reconstruction method was developed so as not to require
synchronization between different sampling channels.
Therefore, our method enables a significant reduction in
the complexity of the hardware. Moreover, unsynchro-
nized sampling relaxes the stringent requirement in PNS
schemes of a very small timing jitter in the sampling time
of the channels. We also do not need to solve a linear set of
equations. This eliminates one source of lack of robust-
ness of PNS schemes. Our simulations indicate that MRS
schemes are robust both to different signal types and to
relatively high noise. The ability of our MRS scheme to re-
construct parts of the signal spectrum that alias when
sampled at all P sampling rates can be enhanced by using
more complicated hardware that synchronizes all of the
sampling channels.

The paper is organized as follows. In Section 2 we
present some general mathematical background. In Sec-
tion 3 we describe the algorithm. In Section 4 we give
some considerations regarding our algorithm complexity.
In Section 5 we present the results of computer simula-
tions.

2. MATHEMATICAL BACKGROUND AND
NOTATION

A multiband signal is one whose energy in the frequency
domain is contained in a finite union of closed intervals
U],Ll[ai,bi]. A multiband signal x(¢) is said to be sparse in
the interval [Fp,,Fmax] if the Lebesgue measure of its
spectral support A(x):EI,Y:l(bn—an) satisfies N<Fp .«
-F min-

The signals we consider are sparse multiband with
spectral measure \. We use the following form of the
Fourier transform of a signal x(¢):

X(f) = f x(t)exp(= 27ift). 1)

If the signal x(¢) is real (as is every physical signal), then
its spectrum X satisfies X(f)=X(-f) where a+bi=a-bi
and ¢ and b are real numbers. Thus, a real multiband sig-
nal x(¢) has the Fourier transform X(f) which, when de-
composed into its support intervals, can be represented by

N
X() =2 [S.() +S.(-H1, @)
n=1

where S,,(f) # 0 only for f € [a,,b,] (where b,,>a, =0) and
la,,b,0N[a,,,b,,]=¢ for all n#m.

We assume that F,y, is known a priori. That is to say,
we assume that each b, for a real signal is at most some
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known value Fpy,/2. Sampling a signal x(¢) at a uniform
rate F' produces a sampled signal

Xi(t) = x(t + AY) D 5<t - ;) (3)

n=-o

where A? is a time offset between the clock of the sam-
pling system and a hypothetical clock that defines an ab-
solute time for the signal. Because we are assuming a
lack of synchronization between more than one sampling
channel, we assume that the time offsets A’ are unknown.
Reconstructing the amplitude of the signal spectrum with
our scheme does not require knowledge of the time off-
sets. Only in reconstructing the phase of the signal in the
frequency domain do we need in some cases to extract the
differences between time offsets.

The Fourier transform of a sampled signal x'(¢), X'(f), is
given by

0

X(f)=F >, X(f+nF)exp[2mi(f + nF)A]. (4)

n=-0"

The connection between the spectrum of a sparse signal
X(f) and the spectrum of its sampled signal X(f) is illus-
trated in Fig. 1.

One immediate consequence of Eq. (4) is that, up to a
phase factor that does not depend on the signal,
exp[27i(f+nFY)AY], X (f) is periodic of period F'. It is also
clear that, for a real signal x(¢), X'(—)=X(f). Thus, all of
the information about |X'(f)| is contained in the interval
[0,Fi/2]. Besides a linear chirp caused by the time offset
Al, all the information about the phase of X'(f) is also con-
tained in the interval [0,Fi/2]. We shall refer to this in-
terval [0,F?/2] as the ith baseband. The downconversion
of a frequency fe[0,Fyy/2] to this baseband is repre-
sented by the downconversion function D': [0,Fpnyq/2]
—[0,F"/2]:

D¥(f) = min[f mod F%, (F* — f)jmod F]. (5)
(@) X(ﬂ
-Jl -a; a, b s
(b) X’(ﬂ :
IV VINVIVR
F'72 Jo
© X0 ;
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Fig. 1. (Color online) Illustration of the spectrum of a sparse
one-band real signal (a) and the spectrum of its samples that are
obtained for the sampling rates F! (b) and F? (c). At f;, the signal
is unaliased at the sampling rate F! but is aliased at the sam-
pling rate F2.
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In the case of the band-limited signal X(f), for a given
frequency £, all but a finite number of terms in the infinite
sum on the right c-hand side of Eq. (4) vanish. If the num-
ber of nonvanishing terms is greater than one for a given
sampling rate F', then the signal is said to be aliased at f
when sampled at the rate F'. If at a frequency f only a
single term in the sum is not equal to zero, the signal X(f)
is said to be unaliased at a sampling rate F'. An illustra-
tion of aliasing can be seen in Fig. 1(c). In the case of
sparse signals, x(¢) is unaliased over a considerable part
of its spectral support. The success of an MRS scheme lies
in the fact that whereas a signal may be aliased at a fre-
quency f when sampled at a rate F¥, the same signal may
be unaliased at the same frequency f when sampled at a
different rate FV.

Each support interval [a,b] (b >a=0) of the multiband
signal will be referred to as an originating band. Accord-
ing to Eq. (4), sampling at the rate F* downconverts each
originating band [a,b] to a single band in the baseband
[/, B']. We shall refer to the interval [/, 8] as a downcon-
verted band.

It is apparent that when a single downconverted band
[}, 8] is given, it is in general not possible to identify its
corresponding originating band. However, it follows easily
from Eq. (4) that the corresponding originating band
must reside within the set of bands defined by

{( Lj [o + mF, B+ mF']) U ( Lj [- B+mF!, - d

+mF )} N [0,F /2], (6)

where m is an integer. The set in Eq. (6) can be repre-
sented as a finite number of disjointed closed intervals,
which we denote by [a;,bfl]. We shall refer to each of
these intervals as an upconverted band. For clarity, we
denote all downconverted intervals with Greek letters su-
perscripted by the sampling frequency and denote all up-
converted intervals with Latin letters.

In general, the number of possible originating bands is
reduced by sampling at more than one rate. For each
sampling rate rate F’, an originating band [a,b] must re-
side within the union of the upconverted bands: [a,b]
e Un[afl,bﬁl]. Since the union of upconverted bands is dif-
ferent for each sampling rate, sampling at several differ-
ent rates gives more restrictions over the originating
band [a,b]. When sampling at P rates, F',... FP, the
originating band must reside within ﬂf:l U n[a;,bfl].

3. RECONSTRUCTION METHOD

In this section we describe an algorithm to reconstruct
signals from an MRS scheme. First, we describe an algo-
rithm for reconstructing ideal multiband signals, as de-
fined above. Then we present modifications to enable a re-
construction of signals that may be contaminated by noise
outside strictly defined bands. While such signals are not
exactly multiband, we still consider them multiband sig-
nals provided that the noise amplitude is considerably
lower than the signal amplitude.

The reconstruction is performed sequentially. In the
first step, sets of intervals in the band [0,F,y,/2] that
could be the support of X(f) are identified. These are sets
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that, when downconverted at each sampling rate F, give
energy in intervals in the baseband where significant en-
ergy is observed. For each hypothetical support, the algo-
rithm determines the subsets of the support that are un-
aliased in each channel. According to Eq. (4), for the
correct support, the amplitude of each sampled signal
spectrum is proportional to the original signal spectrum
over the unaliased subset of the support. As a result, for
each pair of channels, the amplitudes of the two sampled
signal spectra are proportional to each other over the sub-
sets of the hypothetical support that are unaliased in both
channels. Thus, we define an objective function that
quantifies the consistency between the different channels
over mutually unaliased subsets of the support. The algo-
rithm chooses the hypothetical support that maximizes
the objective function. The amplitude is reconstructed
from the sampled data on the unaliased subsets of the

1 for all f € [0,F,/

0 otherwise.

For a piecewise continuous function, it is simple to show
that Z(/)=1 on closed intervals. We define the function
Z(f) as follows:

P
I0=117®, fel0,F./2l. (7

i=1
Thus, the function Z(f) equals (1) over the intersection
of all the upconverted bands of the P sampled signals. We
denote the intervals over which Z(f)=1 by Uy, ..., Ug. Ap-
pendix A gives sufficient conditions under which each
originating band coincides with one of the intervals
Ui,...,Ugk. Thus, it remains to determine which of the K

intervals coincide with the originating intervals.

For each £=1,2, ... ,K, we consider the indicator func-
tion
1 iffe U,
7 =
#h {0 otherwise. ®)
It follows immediately from Eq. (8) that
K
0 = >, Ti(f). 9)
k=1

To find which sets of U, [or Z,(f)] match the originating
bands, each indicator function Z,(f) is downconverted to
the baseband via the formula

() = I[O,Fi,Q](f)H( > L(f+nF) + T(—f+ nFi)) )

n=-—o

(10)

In Eq. (10) Zjg isz)(f) is the indicator function of the closed
interval [0,F"/2]:
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chosen hypothetical support. In the last step, the phase of
the spectrum of the originating signal is determined from
the unaliased subset of the chosen hypothetical support.

A. Noiseless Signals

In this subsection we assume that all signals are ideal
multiband signals. Although what follows applies to more
general signals, we assume that all signals have a piece-
wise continuous spectrum.

1. Reconstruction of the Spectrum Amplitude

For each sampled signal X'(f), we consider the indicator
function Z'(f) that indicates over which frequency inter-
vals the energy of the sampled signal X'(f) resides. To ig-
nore isolated points of discontinuity, we define the indica-
tor functions Z¢(f) as follows:

f+e
2] such that for all & > O,J |XE(F)2df >0

1 iffe[0,F/2] 0
Lo pire(f) = 0 otherwise. (1)
Here H(f) is the Heaviside step function
" 0 iffs0
h=14 if £>0. (12)

The Heaviside step function in Eq. (10) is used to ensure
that 7;(f) is an indicator function. In the case in which the
downconversions of an interval U, are aliased at some
frequency f within the baseband, the argument of the step
function is an integer greater than 1. However, I}'a(f) =1.If
for a frequency f in the baseband there is no signal in any
of its replicas, i.e., F(nF'+)=0 for all n, then H(f)=0. As a
consequence, Z5,(f)=0 also. Therefore, the function Z,,(f) is
equal to one over the downconversion of the interval U,
corresponding to the sampling rate F*.

We consider the power set of U, P{U}, i.e., the set of all
subsets of {Uy, ...,Ug}. We denote an element of P{U} by
Z/I={Uk1, ... ,UkQ} (0=@<K). A subset U € P{U} is deemed
to be a support-consistent combination if, for each sam-
pling rate F¥, the downconversion of its intervals matches
the downconverted bands of the corresponding sampled
signal. In terms of indicator functions, we define for each
U e P{U} the indicator functions

L= 2 LM, fel0,F/2]. (13)

Upel

The function Iz{(f) is an indicator function for the down-
conversion of the intervals of . Next, we define the objec-
tive function



2324 J. Opt. Soc. Am. A/Vol. 25, No. 9/September 2008

P A
E\)=>, T () - T(P)|df. (14)
=1

0

The support-consistent combinations are those U for
which E(U)=0.

Figure 2 illustrates our method for the signal shown in
Fig. 1. The support of the signal at positive frequencies,
shown in Fig. 1, consists of a single interval. Figures 2(a)
and 2(b) are graphs of 7'(f) and Z2(f), respectively. Figure
2(c) is a graph of Z(f). The function Z(f) is equal to one
over four intervals Uy, ...,U,. Each combination of these
four intervals must be checked for support consistency. In
the example illustrated in Fig. 2, we check whether the
subset U={U,y} € P{U} is support consistent. Figures 2(d)
and 2(e) show the indicator functions for the downconver-
sion of U, at rates F! and F?: Ibz(f) and I%,Z(f), respec-
tively. The dashed lines illustrate U,, —Uy; and their
downconversions. It is evident that the functions Z'(f) and
Z%,Z(f) are not equal. Hence, UY={U,} is not a support-
consistent combination.

Among all support-consistent combinations %/, it is nec-
essary to identify the one that exactly matches the origi-
nating bands. For this purpose, we introduce two addi-
tional objective functions. The support-consistent
combination ¢/ that optimizes these function is deemed to
be the correct one.

(@

A
] ;
U,
@ Z,(7)
BE RN f
F.2
© %, (1)
RN ,
F2 Fuy/2

Fig. 2. (Color online) Illustration demonstrating how support
consistency is checked. The input of the algorithm is the sampled
signals whose spectra X'(f) and X2(f) are shown Figs. 1(b) and
1(c), respectively; their respective indicator functions Z'(f) and
72(f) are shown in Figs. 2(a) and 2(b). Figure 2(c) shows the indi-
cator function Z(A)=Z'(H)Z*(A). In Figs. 2(d) and 2(e), we check
whether the subset U={U,} € P{U} is support consistent. Figures
2(d) and 2(e) show the indicator functions for the downconversion
of U, at rates F! and F2: I%] (f) and I%, (), respectively. The
dashed lines illustrate Uy, —Usy, and their downconversions. It is
evident that the functions Z'(f) and I%, (f) are not equal. Hence,
U={U,} is not a support-consistent combination.
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Among support-consistent combinations, amplitude-
consistent combinations are defined by the amplitudes of
the sampled signals at unaliased intervals. Let U
={Uj1,... ,Ujm} be a support-consistent combination. De-
note the union of all intervals in U;”,U; that are un-
aliased when downconverted at rate F* by %;,CU;",U; .
For the correct choice of U, at a frequency f that is un-
aliased when sampled at rates F't and Fiz (fe Ei}ﬂEf}),
the functions |X*1(A)|/F™1 and |X*2(f)|/F’2 must be equal. Ac-

cordingly, we define a second objective function:

Exth= > (IX'1(A)|/F - |XP2(F)|/Fi2)%df. (15)
i1#iy J shnsh

For the correct U, the objective function E5(1{) must equal
zero. A support-consistent combination U/ for which
E,(U)=0 is said to be amplitude consistent.

Unfortunately, there may be more than one amplitude-
consistent combination. This is the case, for example,
when for all i; and iy, 3}} N3} is empty. In such cases, the
objective function E4(lf) cannot be sufficient to identify
the correct U. Thus, we introduce a third objective func-
tion E3(U). This function favors options in which the inte-
grals in Eq. (15) are calculated over large sets. The third
objective function is defined by

EsU) = 2 NENED), (16)
i1#iy

where \(3(}N32) is the Lebesgue measure of 31N
The amplitude-consistent combination that maximizes
E5(U) is deemed to be the correct one. In the rare case
that E3(U/) is maximized by more than one amplitude-
consistent combination, the outcome of the algorithm is
not determined.

After the optimal Z/{={Uj1, e, Ujm} is chosen, the ampli-
tude of the signal is reconstructed from the samples. We
define the function r(f) as the number of sampled signals
that are unaliased at the frequency f: r(f):Ef: 1Zsi (),
where IEZ} (f) is the indicator function of the interval %,
defined similarly to Eq. (11). For each f within the de-
tected originating bands, i.e., f e Ufﬂan, if 7(f) >0, we re-
construct the corresponding amplitude of the spectrum at
f from the sampled signals by

1 2 XOIzs ()
Xulf) = %2{ — (17)

In words, for each frequency f that is unaliased in at least
one channel, the signal amplitude is averaged over all the
channels that are not aliased at f. For all other frequen-
cies, notably those that alias in all sampling channels,
X,(f) is set to equal zero.

2. Reconstruction of the Spectrum Phase

The spectrum of a signal can be expressed as X(f)
=|X(f)|exp{j arg[X(f)]}. In the previous section we de-
scribed how to reconstruct the amplitude [X(f)| from the
signal’s sampled data. In this section we describe a
method of reconstructing the phase arg[X(f)]. If the time
offsets A’ of Eq. (4), were known a priori, reconstructing
the phase would be trivial. The reconstruction in this case
could be performed by using a variant of Eq. (17) with
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|Xin(f)| replaced with Xin(f)exp(-2mfAlr). This would yield
a full reconstruction of the signal (phase and amplitude).
However, because of the lack of synchronization between
the channels, the time offsets A’ are not known a priori.
Consequently, it is more difficult to reconstruct the phase.
After identifying the signal bands, we can calculate the
differences A‘1—A”2 between two different time offsets.
This is sufficient to enable the reconstruction of the phase
of the signal spectrum up to a single linear phase factor.

The difference between two time offsets A’1 and A2 can
be calculated directly in the case that Ef} N Ef} contains at
least one finite interval. In this interval the phase of
X(f)/X"2(f) satisfies the following equation:

arg[ X'1(N/X2(f)] = 27f(Al — A2) + 277k,

for some integer k. (18)

The left-hard side of Eq. (18) is determined by the
sampled data. By performing a linear fit, we calculate the
difference between the two offsets A1 and A’2. We do this
for all pairs of offsets for which E n E‘ﬁ contains at least
one finite interval.

There may exist cases in which there are i; and i, such
that Ef}ﬂEf} does not contain one finite interval but for
which A1-A2 can still be calculated. For example, in the
case of three offsets A1, A2, and A3, if one can calculate
(Ai1—A2) and (A2—A#), then (Ai1—A®3) can also be calcu-
lated by simple algebra. If there exist i, ...1,,, such that
foreachn<k<=m-1, Eé’f n 22’7*1 contains at least one finite
interval, then we say that i,, and i,, are phase connected
and denote this by i,, ~i,,. If i ~j, then the difference be-
tween the two offsets A/~ A’ can be calculated. In the case
where Ez{ does not contain any finite intervals, we define
Ai~Al Tt is clear that ~ is an equivalence relation [10]
and thus partitions the A’ into equivalence classes.

For each A% and A% in the same class, one can calculate
their difference. One can obtain a full reconstruction of
the phase if there exists one class C such that each origi-
nating frequency is unaliased in at least one channel be-
longing to C; i.e., there exist a class C= Ain ...,Alm such

that UJ. nEu—Uk 1Uj,, where U={U; , ... }

’JQ

B. Physical Signals

To sample realistic signals (i.e., not strictly multiband
and in the presence of noise), the algorithm needs to be
adjusted. In this subsection we describe adjustments to
our algorithm to overcome the noise. The algorithm re-
quires five new parameters. In Section 5, we give ex-
amples of reconstructing signals contaminated by strong
noise. In those examples, the success of the reconstruction
does not depend on the exact choice of the five param-
eters.

In the presence of noise, the definition of the support of
the sampled signals must be adjusted. First, a small £ is
chosen. Then, a small positive threshold value T is cho-
sen. The indicator function Z¢(f) is then redefined as fol-
lows:
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1 (¢
1 if f e [0, Fnyq/Z] and — X (fHdf >T

(= 260
0 otherwise.

(19)

The choice of the threshold 7' depends on the average
noise level.

When reconstructing physical signals, it is not reason-
able to expect E;(U) to equal 0 for any combination /. An
initial adjustment is to require that E;({/)<b for some
positive b. The shortcoming of this condition is that the
threshold b does not depend on the signal. To make the
threshold depend on the signal in a simple way, we intro-
duce the following condition:

E () < a min[E, )] +b, (20)
u

where a=1 is a chosen parameter. The parameters a and
b control the trade-off between the chance of success and
the run time. If @ and b are too small, the correct subset U/
may not be included in the set of support-constitent com-
binations. On the other hand, if @ and b are too large,
then the number of support-consistent combinations may
be large. This results in a slow run time.

Finally, we make two modifications to the objective
function E3(U). We replace the length of the mutually un-
aliased intervals with a weighted energy of the sampled
signals in these intervals. The objective function E3(l/) is

replaced with E3:

) Fuyd2 | X01(f) | 2
Esu=2 7 | Wusnfw0df, (1)

i1#ig J 0
where W; ; (f,U) is a weight function. The weight function

i1,dy
favors combinations in which the sampled signals are

similar in mutually unaliased internals and is defined in
the following.

We first note that for each of two channels i and i,, the
intersection of their nonaliased supports (3}}N3[2) is a
union of a finite number of disjoint intervals
Viviz V2 We define

i V™ ~ X Vel f

b oo ' . . 22
i) = T+ I )

Finally, we define the weight function:
Wiy i) = 2 expl= pu i, U1 Tyinia ), (23)
k

where p is a chosen positive constant and IVz is(f) is the
indicator function of the interval Vi“2, The parameter pis
chosen according to an assumed SNR When the SNR is
lower, in order to accept higher errors, p is chosen to be
smaller. In the case of a nmseless signal and an
amplitude-consistent ¢/, each ,ul i, vanishes. Therefore, in
this case, each element in the sum on the right-hand side
of Eq. (21) gives the energy of the signal over E N 2‘2 In
all other cases, the energy in each 1nterva1 Vl1 o is
weighted according to the relative error between X(f)
and X"2(f) over V};}'iz.
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Since in the case of noisy signals neither E;(i) nor
E5(U) vanishes for the combination that corresponds to
the originating bands, both E{(l{) and E4(/) should be
considered in the final step of choosing the best combina-
tions. Accordingly, we define the following objective func-
tion E(U):

B, EyU) Ey)
- +
minE,U)}  mindEsU)}  min, (B4 ()}
(24)

E(U) = -

for all U such that min{E;(l)}, and min{E,(U)},
min {E3(U)}# 0. Among all such combinations that also
satisfy Eq. (20), the one that gives the maximum value of
E,(U) is deemed to be correct. In cases in which either
min; {E(U)}, min {E5(U)}, or min; {E5(U)} equals zero for a

certain combination ¢/, the maximum of E 3(U) is chosen as
the solution.

To reconstruct the phase, the only change made is in
how the difference between the offsets is calculated.
Equation (18) holds for all the disjoint intervals V};}’iQ
e 31N, Accordingly, we perform the linear fit for each
intervals and obtain a certain value for Al1-A’2. Each
value is weighted by the length of its respective Vﬁal’iz.
These weighted values are averaged. The result is an es-
timate for A’1—A’2. This averaging procedure may in-
crease the accuracy in the estimate of Al1—Alz,

4. COMPLEXITY CONSIDERATIONS

In this section we discuss the considerations made to re-
duce the computational complexity of our algorithm.
Choosing a subset U € P{U} involves calculating three ob-
jective functions. We explain why eliminating possibilities
through the use of E;(U/) alone can significantly reduce
the run time.

In the first step of the algorithm, we find support-
consistent combinations by calculating the objective func-
tion E(U) for elements in P{U}. Assuming the largest el-
ement in P{U} contains K intervals, and that the signal is
composed of up to N bands in [0,F,,,/2], the number of
elements in P{U} that one needs to check is equal to

55 -

n=1 n

In the case where N=K, the complexity is approximately
O(2N). When N/K <1, the last term in Eq. (25), the num-
ber of options to be checked is approximately equal to
O(KN/N).

The complexity of checking a single option out of P{U}
for support consistency [Eq. (14)] is O(1), and it does not
depend on the number of points used to discretize the
spectrum. In contrast, the complexity of checking such an
option for amplitude consistency [Eqgs. (15) and (16)] is of
the order of the number of points used to represent the
spectrum. This is a major reason for using the support-
consistency criterion to narrow down the number of op-
tions needed to be checked for amplitude consistency. The
amplitude consistency is calculated only for support-

Rosenthal et al.

consistent options, which are in general much fewer than
what is prescribed by Eq. (25).

5. NUMERICAL RESULTS

This section describes results of our numerical simula-
tions. The simulations were carried out in the two cases
considered in the previous sections: (i) ideal multiband
signals and (ii) noisy signals. In all our examples, the
number of channels P was set equal to three, P=3.

In all our simulations, the number of the bands in
[0,Fnyq/2] equals N, where N<4. Unless stated other-
wise, the band number refers to the number of bands in
the nonnegative frequency region [0,F,y,/2]. Using the
notations in Eq. (2), each signal in each band is given by

g A, cos[7(f - f,)/B,] if 2[f - f,I/B, <1
nh= 0 otherwise,

(26)

where B, is the spectral width of the nth band, f, is its
central frequency, and A,, is the maximum amplitude. The
total spectral measure of the signal support equals 3,
=222’le”, and the minimal sampling rate is equal to 23,
[6], twice the Landau rate. In each simulation, all the
bands had the same width, i.e., B,=3,/(2N). The ampli-
tudes A, were chosen independently from a uniform dis-
tribution on [1, 1.2]. The central frequencies f,, were also
chosen independently from a uniform distribution on the
region [0, Fy,y,/2]. We eliminated cases in which there was
an overlap between any two different bands. The time off-
sets A’ were chosen independently from a uniform distri-
bution on [0,1/B,].

In each of the simulations, we set B=800 MHz and 40
<F,yq<76 GHz. This choice of parameters is consistent
with previous optical sampling experiments [1]. The sam-
pling rates were chosen as F'=3.8F,, F?=4F,, and F°®
=4.2F,, where the value F, varied between simulations.
These sampling rates were chosen such that, for each pair
of sampling rates (F¢,FV), the functions Z:(f), Z(f) do not
have a common multiple smaller than F\,,. This condition
is satisfied for all Fo>F,/76.

To obtain an exact reconstruction, the resolution in
which the spectrum is represented Af should be such that
the discretization of the originating baseband downcon-
verts exactly to the discretization grid in each baseband.
This condition is satisfied when F'//Af (i=1,2,3) is an in-
teger. In our examples, we used a spectral resolution Af
=0.8 MHz for all the channels.

The use of the same spectral resolution for all channels
is not only convenient for implementation of our algo-
rithm, but it is also compatible with the operation of the
sampling system used in our experiments [1]. In the
implementation of the sampling system, an optical sys-
tem performs the downconversion of the signal by multi-
plying it by a train of short optical pulses. In each channel
a different repetition rate of the optical pulse train is
used. The sampled signal in each channel is then con-
verted into an electronic signal and passed through a low-
pass filter that rejects all frequencies outside the base-
band. The P-filtered sampled signals have a limited
bandwidth. These signals are sampled once more, this
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Fig. 3. Success percentage for the first set of simulations with Fy=1 GHz as a function of the Nyquist rate. In Fig. 3(a), the percentage
of a correct band detection is shown by the squares. The full reconstruction percentage is shown by circles. The open circles and squares
represent the results obtained when the assumed maximum number of positive bands equals three. The dark circles and squares rep-
resent the cases in which the maximum assumed positive band number equals four. The full reconstruction percentages were the same
for both choices of the maximum number of bands, and thus the open and dark circles are Indistinghishable in this figure. Figure 3(b)
shows the band-detection percentage (solid curve) and reconstruction percentages (dashed curve) in the case that both the maximum

number of originating and assumed positive bands equals four.

time at a constant rate, using P electronic A/D converters.
The use of the optical system allows the use of electronic
A/D converters whose bandwidth is significantly lower
than the bandwidth of the multiband signal [1]. Because
the signals at the basebands are sampled with the same
time resolution and have the same number of samples,
their spectra, which are obtained using the fast Fourier
transform, have the same spectral resolution.

In the first set of simulations we increased the signal
bandwidth without changing the sampling rates. We used
two performance criteria: correct detection of the originat-
ing bands and exact reconstruction of the signal. As to the
first criterion, we required only that the spectral support
of the signal be detected without an error. As to the sec-
ond criterion, we required that the signal spectrum
(phase and amplitude) be fully and exactly reconstructed
without any error. Because the second criterion concerns
exact reconstructions, in the case that the algorithm
failed to reconstruct the signal at even a single frequency,
it was considered to have failed the second criterion.

We chose Fy=1 GHz. This corresponds to a total sam-
pling rate Fi;=F'+F2+F2, which equals 15 times the
Landau rate (7.5 the minimum possible rate). The statis-
tics were obtained by averaging over 1000 runs. Figures
3(a) and 3(b) show the results for signals with three and
four positive bands, respectively, as a function of the
Nyquist rate. In Fig. 3(a), the percentage of correct band
detections is shown by the squares, whereas the full re-
construction percentage is shown by circles. The open
circles and squares represent the results obtained when
the maximum number of bands assumed by the algorithm
was three, and the dark circles and squares represent the
cases in which the maximum assumed band number was
equal to four. The full reconstruction percentages were
the same for both choices of the maximum number of
bands, and thus the open and dark circles are indistin-
guishable in Fig. 3. Figure 3(b) shows the band-detection

percentage (solid curve) and reconstruction percentages
(dashed curve) in the case where both the maximum num-
ber of originating and assumed bands is four. The figures
show that both the success percentages were high and
were not significantly dependent on the Nyquist rate of
the signal or on the number of assumed bands.

Figure 4 shows the average run time as a function of
the Nyquist rate. The results in the case of four input
bands in which the assumed maximum number of bands
is four is shown by the solid curve. The results in the case
of three input bands is shown by the dotted curve in the
case of three assumed bands and with the dashed curve in
the case of four assumed bands. The results show that

Run time (sec)

40 50 60 70
F - (GHz)

Fig. 4. Run time for the second set of simulations as a function
of the Nyquist rate. The results in the case of four input positive
bands with an assumed number of positive bands equal to four is
shown by the solid curve. The results in the case of three input
positive bands are shown with the dotted curve in the case of
three assumed positive bands and with the dashed curve in the
case of four assumed positive bands.
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Fig. 5. Success percentage for the first set of simulations as a function of the sum of the sampling rates divided by the Landau rate. As
in Fig. 3, in Fig. 5(a), the percentage of a correct band detection is shown by the squares. The full reconstruction percentage is shown by
circles. The open circles and squares represent the results obtained when the assumed maximum number of positive bands equals three.
The dark circles and squares represent the cases in which the maximum assumed positive band number equals four. Figure 5(b) shows
the band-detection percentage (solid curve) and reconstruction percentages (dashed curve) in the case where both the maximum number

of originating and assumed positive bands equals four.

while an increase in the Nyquist rate does not signifi-
cantly affect the reconstruction statistics, it results in an
increase in the run time.

In the second set of simulations, we measured the per-
formance of our algorithm as a function of F,. The
Nyquist rate used in the simulation was Fy, =40 GHz.
For each choice of F,, the statistics were obtained by av-
eraging over 500 runs. The results did not change signifi-
cantly when the averaging was performed over 1000 runs.
The simulation was run for the same number of originat-
ing bands and assumed bands as in the first set of simu-
lations. Figures 5(a) and 5(b) show the success percent-
ages for signals with three and four bands, respectively,
and Fig. 6 shows the average run time. The two success
percentages and the run time are shown as a function of
the total sampling rate F, divided by the Landau rate
F1andau=800 MHz. The symbols used in Figs. 5(a) and
5(b) and Fig. 6 correspond to those used in Figs. 3(a) and
3(b) and Fig. 4, respectively.

The results shown in Figs. 5(a) and 5(b) demonstrate
that, in all the cases that we checked, the average per-
centage of successful band detections was over 99.5% for
sampling frequencies above 8 times the Landau rate. The
reconstruction percentages were lower than these band-
detection percentages and were also much more affected
by the sampling rate and by the number of originating
bands. As expected, the run time increases dramatically
with a reduction in the sampling rate and also increases
with the assumed maximum number of bands. We ran
similar simulations with different numbers of originating
bands and different numbers of assumed bands. The
trends were similar.

In the final set of simulations, the signals are noisy. We
added to the originating signal white Gaussian noise in
the band [-Fy,/2,Fyy,/2], where F,,,=40 GHz. We de-
note by o the standard deviation of the Gaussian noise in

the presampled signal. Upon sampling the signal at rate
F', the standard deviation of the noise increases to o*

=0\[Fpyo/F*] owing to aliasing of the noise, where [x]

n
equals tyﬁe smallest integer greater than or equal to x.

In this set of simulations, we reconstructed signals
with different noise levels added. We chose ¢é&=6 MHz. The
threshold was chosen to be T'=2 max;(¢”). Accordingly, the
parameter p in Eq. (23) was chosen to be p=max;(¢?). The
other parameters used in the simulation were a=2 and
b=16 MHz. Because the signals were not ideal, an exact
reconstruction was not possible and the definitions of an
accurate band detection and accurate reconstruction
needed to be changed. A band detection was deemed accu-

20 <
3]
Py
E 2
g :
2 g
0.2 T i T T T I T I ]
6 8 10 12 14
Ftot/ FLandau

Fig. 6. Run time for the first set of simulations as a function of
the sum of the sampling rates divided by the Landau rate in the
cases of signals with four and three positive bands. The results in
the case of four input positive bands with an assumed number of
positive bands equal to four is shown by the solid curve. The re-
sults in the case of three input positive bands is shown by the
dotted curve in the case of three assumed positive bands and by
the dashed curve in the case of four assumed positive bands.
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Fig. 7. Success percentage for the third set of simulations with
Fy=1 GHz and F,,;;=20 GHz as a function of standard deviation
o of the added noise. The figure shows the band-detection per-
centage (solid curve) and reconstruction percentages (dashed
curve) in the case where both the maximum number of originat-
ing and assumed positive bands equals four.

rate if the originating bands approximately matched the
reconstructed bands. A signal reconstruction was deemed
accurate if the signal’s originating bands were detected
accurately and if each reconstructed band X;,(f) satisfied

f |X,(H) - X(f)| < max(c)B,),. (27)
B i

m

Here X(f) is the noiseless signal, and the integration is
performed over only the detected band. In a correct recon-
struction, it is expected that the average reconstruction
error is lower than the standard deviation of the noise in
the noisiest channel, i.e., the channel at the lowest sam-
pling rate. We chose the same sampling rates as those
chosen in the second set of simulations. For these rates,
max;(0%)=3.30.

The detection percentages and reconstruction percent-
ages are shown in Fig. 7. The figure clearly shows that
high percentages are obtained even in the case of a low
SNR. We repeated this last set of simulations using
Gaussian signals instead of the signals of Eq. (26). We
found that the results are not sensitive to the specific
choice of signal type.

6. CONCLUSION

Typical undersampling schemes are PNS schemes. In
such schemes samples are taken from several channels at
the same low rate. These schemes have many drawbacks.
In this paper we propose a new scheme for reconstructing
multiband signals under the constraint of a small number
of sampling channels. We have developed an MRS
scheme: a scheme in which each channel samples at a dif-
ferent rate. We have demonstrated that sampling with
our MRS scheme can overcome many of the difficulties in-
herent in PNS schemes and can effectively reconstruct
signals from undersampled data. For a typical sparse
multiband signal, our MRS scheme has the advantage
over PNS schemes because in almost all cases, the signal
spectrum is unaliased in at least one of the channels. This
is in contrast to PNS schemes. With PNS schemes an
alias in one channel is equivalent to an alias in all chan-
nels.

Our MRS scheme uses a smaller number of sampling
channels than do PNS schemes. We also choose to sample
at a sampling rate higher than that used in PNS schemes
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to attain the theoretical minimum overall sampling rate
required for a perfect reconstruction. The use of higher
rates has an inherent advantage in that it increases the
sampled SNR. Our MRS scheme also does not require the
solving of poorly conditioned linear equations that PNS
schemes must solve. This eliminates one source of lack of
robustness of PNS schemes. Our simulations indicate
that MRS schemes, using a small number of sampling
channels (three in our simulations) are robust both to dif-
ferent signal types and to relatively noisy signals.

Our reconstruction scheme does not require the syn-
chronization of different sampling channels. This signifi-
cantly reduces the complexity of the sampling hardware.
Moreover, asynchronous sampling does not require very
low jitter between the sampling times at different chan-
nels as is required in PNS schemes. Our reconstruction
scheme resolves aliasing in almost all cases but not all. In
rare cases, reconstruction of the originating signal fails
owing to aliasing. One of the methods to resolve aliasing
is to synchronize the sampling in all the channels. With
such synchronization, aliasing can be resolved by invert-
ing a matrix as is similarly done in PNS schemes. How-
ever, such an approach requires both much more complex
hardware and a larger number of sampling channels that
sample with a very low jitter. Moreover, in the case of sig-
nals that are aliased simultaneously in all channels, the
noise in the reconstructed signal is expected to be much
stronger than the noise in the original signal.

Future work should focus on testing our algorithm’s
ability to reconstruct experimental data. Optical systems
for performing experiments are currently in existence.

APPENDIX A

In Subsection 3.A.1 we have denoted the intervals over
which the indicator function Z(f)=1 by Uy, ...,Ug. In this
appendix we give the sufficient and necessary conditions
under which the spectral support of a signal coincides
with a subset U of {Uy, ...,Ug} and under which the func-
tion E(U) [Eq. (14)] is equal to zero. Although it applies
for more general cases, we assume that the function X(f)
is piecewise continuous.

The conditions are as follows:

1. For each frequency f, that fulfills [/ 0+‘°|X(j")|2alf >0 for
all >0, we obtain that ff"”\X’(f)|2df>O for all >0 and
1=<i<P.

2. For each originating band with support [a,b], there
exists an interval [a—e,a+¢], (¢#0), whose downcon-
verted band does not overlap any other downconverted
band in at least one of the sampled signals. Similarly, for
each originating band with support [a,b], there exists an
interval [b—¢,b+¢], whose downconverted band does not
overlap any other downconverted band in at least one of
the sampled signals.

Condition 1 ensures that originating bands are con-
tained within UX U;. Condition 2 guarantees that the
originating bands coincide exactly with a subset of P{U}.
It is obvious that when the conditions are satisfied,
EI(Z/I)=0

The first condition excludes cases in which the down-
converted bands cancel each other’s energy over a certain
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interval due to destructive interference. When the condi-
tion is fulfilled, for each frequency f, within the originat-
ing bands, we obtain Z(f;) = 1. Thus, each originating band
[a,b] is contained within one of the intervals that make
up the support of Z(f). Mathematically, for each [a,b],
there exist U, such that [a,b]C U,,.

The second condition assures us that for each originat-
ing band [a,b], the intervals [a—¢,a] and [b,b+¢] are not
contained within any of the U, for all values of ¢. Conse-
quentially, if [a,b]C U, then [a,b]=U,. When the two
conditions are fulfilled, we obtain that there exists a set of
intervals U, which matches the originating bands, and for
which E{(U)=0
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