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Because optical systems have a huge bandwidth and are capable of generating low-noise short pulses, they are
ideal for undersampling multiband signals that are located within a very broad frequency range. We propose a
new scheme for reconstructing multiband signals that occupy a small part of a given broad frequency range
under the constraint of a small number of sampling channels. The scheme, which we call multirate sampling
(MRS), entails gathering samples at several different rates whose sum is significantly lower than the Nyquist
sampling rate. The number of channels does not depend on any characteristics of a signal. In order to be imple-
mented with simplified hardware, the reconstruction method does not rely on the synchronization between
different sampling channels. Also, because the method does not solve a system of linear equations, it avoids one
source of lack of robustness of previously published undersampling schemes. Our simulations indicate that our
MRS scheme is robust both to different signal types and to relatively high noise levels. The scheme can be
implemented easily with optical sampling systems. © 2008 Optical Society of America
OCIS codes: 070.4790, 070.1170.
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. INTRODUCTION
multiband signal is one whose energy in the frequency

omain is contained in the finite union of closed intervals.
sparse signal is a signal that occupies only a small por-

ion of a given frequency region. In many applications of
adars and communications systems, it is desirable to re-
onstruct a multiband sparse signal from its samples.
hen the signal bands are centered at frequencies that

re high compared to their widths, it is not cost effective
nd often is not feasible to sample at the Nyquist rate
nyq; the rate that for a real signal is equal to twice the
aximum frequency of the given region in which the sig-

al spectrum is located. It is therefore desirable to recon-
truct the signal by undersampling; that is to say, from
amples taken at rates significantly lower than the Ny-
uist rate. Sampling at any constant rate that is lower
han the Nyquist rate results in downconversion of all sig-
al bands to a low-frequency region called a baseband.
his creates two problems in the reconstruction of the sig-
al. The first is a loss of knowledge of the actual signal
requencies. The second is the possibility of aliasing, i.e.,
f the spectrum at different frequencies being downcon-
erted to the same frequency in the baseband.

Optical systems are capable of very high performance
ndersampling [1]. They can handle signals whose carrier
requency can be very high, on the order of 40 GHz, and
ignals with a dynamic range as high as 70 dB. The size,
eight, and power consumption of optical systems make

hem ideal for undersampling. The simultaneous sam-
ling of a signal at different time offsets or at different
ates can be performed efficiently by using techniques
ased on wavelength division multiplexing (WDM) that
re used in optical communication systems.
There is a vast body of literature on reconstructing sig-
1084-7529/08/092320-11/$15.00 © 2
als from undersampled data. Landau proved that, re-
ardless of the sampling scheme, it is impossible to recon-
truct a signal of spectral measure � with samples taken
t an average rate less than � [2]. This rate � is commonly
eferred to as the Landau rate. Much work has been done
o develop schemes that can reconstruct signals at sam-
ling rates close to the Landau rate. Most are a form of a
eriodic nonuniform sampling (PNS) scheme [3–9]. Such
scheme was introduced by Kohlenberg [3], who applied

t to a single-band signal whose carrier frequency is
nown a priori. The PNS scheme was later extended to
econstruct multiband signals with carrier frequencies
hat are known a priori [4,8].

In a PNS scheme m low-rate cosets are chosen out of L
osets of samples obtained from time uniformly distrib-
ted samples taken at a rate F, where F is greater than or
qual to the Nyquist rate Fnyq [4]. Consequently, the sam-
ling rate of each sampling channel is L times lower than
, and the overall sampling rate is L /m times lower than
. The samples obtained from the sampling channels are
ffset by an integral multiple of a constant time incre-
ent, 1/F. This sampling scheme may resolve aliasing. In
PNS scheme the signal is reconstructed by solving a

ystem of linear equations [4]. PNS schemes can often
chieve perfect reconstructions from samples taken at a
ate that approaches the Landau rate under the assump-
ion that the carrier frequencies are known a priori. How-
ver, in order to attain a perfect reconstruction, the num-
er of sampling channels must be sufficiently high such
hat the equations have a unique solution [4].

When the carrier frequencies of the signals are not
nown a priori, in a PNS scheme a perfect reconstruction
equires the sampling rate to exceed twice the Landau
ate [5,6]. In addition, in a PNS scheme the number of
008 Optical Society of America
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ampling channels must be sufficiently high [6]. Under
hese two conditions, a solution to the set of equations in

PNS scheme may be obtained assuming that the
ampled signal is sparse [6]. When a PNS scheme is ap-
lied to an N-band real signal (N bands in the interval
0,Fnyq/2�), at least 4N channels are required for a per-
ect reconstruction [5,6]. A method for obtaining a perfect
econstruction has been demonstrated only with the num-
er of channels equal to 8N [6]. Even when the require-
ent of perfect reconstruction is relaxed, the number of

hannels required to obtain an acceptably small error in
he reconstructed signal may be prohibitively large. Fur-
hermore, the implementation of the schemes to attain
he minimum sampling rate relies heavily on the as-
umed values of the widths of the sample bands and on
he number of bands of the signal [6]. In the case that the
ands of the signal have different widths, a PNS scheme
or obtaining the minimum sampling rate has not been
emonstrated.
Other important drawbacks of PNS schemes stem from

he fact that the systems of equations to be solved are
oorly conditioned [7]. Thus, the schemes are sensitive to
he bit number of analog-to-digital (A/D) conversion. They
re also sensitive to any noise present in a signal and to
he spectrum of the signal at any frequencies outside
trictly defined bands. Moreover, the use of undersam-
ling significantly increases the noise in each sampling
hannel, since the noise in the entire sampled spectrum is
ownconverted to low frequencies. Therefore, the dy-
amic range of the overall system is limited. The noise
ay be reduced by increasing the sampling rate in each

hannel. However, since the number of channels needed
or a perfect reconstruction is determined only by the
umber of signal bands, the overall sampling rate dra-
atically increases. Another important drawback of a
NS scheme is the requirement of a very low time jitter
etween the samplings in the different channels.
In this paper we propose a different scheme for recon-

tructing sparse multiband signals. The scheme, which
e call multirate sampling (MRS), entails gathering

amples at P different rates. The number P is small
three in our simulations) and does not depend on any
haracteristics of a signal. Our approach is not intended
o obtain the minimum sampling rate. Rather, it is in-
ended to reconstruct signals accurately with a very high
robability at an overall sampling rate that is signifi-
antly lower than the Nyquist rate under the constraint of
small number of channels.
The success of our MRS scheme relies on the assump-

ion that sampled signals are sparse. For a typical sparse
ignal, most of the sampled spectrum is unaliased in at
east one of the P channels. This is in contrast to the situ-
tion that prevails with PNS schemes. In PNS schemes,
ecause all channels are sampled at the same frequency,
n alias in one channel is equivalent to an alias in all
hannels.

In our MRS scheme, the sampling rate of each channel
s chosen to be approximately equal to the maximum sam-
ling rate allowed by cost and technology. Consequently,
n most applications, the sampling rate is significantly
igher than twice the maximum width of the signal bands
s usually assumed in PNS schemes.
Sampling at higher rates has a fundamental advantage
f signals are contaminated by noise. The spectrum evalu-
ted at a baseband frequency fb in a channel sampling at
rate F is the sum of the spectrum of the original signal

t all frequencies fb+mF that are located in the system
andwidth, where m ranges over all integers. Thus, the
arger the value of F, the fewer the terms that contribute
o this sum. As a result, sampling at a higher rate in-
reases the signal-to-noise ratio (SNR) in the baseband
egion.

To simplify the hardware needed for the sampling, our
econstruction method was developed so as not to require
ynchronization between different sampling channels.
herefore, our method enables a significant reduction in

he complexity of the hardware. Moreover, unsynchro-
ized sampling relaxes the stringent requirement in PNS
chemes of a very small timing jitter in the sampling time
f the channels. We also do not need to solve a linear set of
quations. This eliminates one source of lack of robust-
ess of PNS schemes. Our simulations indicate that MRS
chemes are robust both to different signal types and to
elatively high noise. The ability of our MRS scheme to re-
onstruct parts of the signal spectrum that alias when
ampled at all P sampling rates can be enhanced by using
ore complicated hardware that synchronizes all of the

ampling channels.
The paper is organized as follows. In Section 2 we

resent some general mathematical background. In Sec-
ion 3 we describe the algorithm. In Section 4 we give
ome considerations regarding our algorithm complexity.
n Section 5 we present the results of computer simula-
ions.

. MATHEMATICAL BACKGROUND AND
OTATION
multiband signal is one whose energy in the frequency

omain is contained in a finite union of closed intervals

n=1
N �ai ,bi�. A multiband signal x�t� is said to be sparse in

he interval �Fmin,Fmax� if the Lebesgue measure of its
pectral support ��x�=�n=1

N �bn−an� satisfies ��Fmax
Fmin.
The signals we consider are sparse multiband with

pectral measure �. We use the following form of the
ourier transform of a signal x�t�:

X�f� =�
−�

�

x�t�exp�− 2�ift�. �1�

f the signal x�t� is real (as is every physical signal), then
ts spectrum X satisfies X�f�= X̄�−f� where a+bi=a−bi
nd a and b are real numbers. Thus, a real multiband sig-
al x�t� has the Fourier transform X�f� which, when de-
omposed into its support intervals, can be represented by

X�f� = �
n=1

N

�Sn�f� + S̄n�− f��, �2�

here Sn�f��0 only for f� �an ,bn� (where bn�an�0) and
an ,bn�� �am ,bm�=� for all n�m.

We assume that Fnyq is known a priori. That is to say,
e assume that each b for a real signal is at most some
n
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nown value Fnyq/2. Sampling a signal x�t� at a uniform
ate Fi produces a sampled signal

xi�t� = x�t + �i� �
n=−�

�

	�t −
n

Fi� , �3�

here �i is a time offset between the clock of the sam-
ling system and a hypothetical clock that defines an ab-
olute time for the signal. Because we are assuming a
ack of synchronization between more than one sampling
hannel, we assume that the time offsets �i are unknown.
econstructing the amplitude of the signal spectrum with
ur scheme does not require knowledge of the time off-
ets. Only in reconstructing the phase of the signal in the
requency domain do we need in some cases to extract the
ifferences between time offsets.
The Fourier transform of a sampled signal xi�t�, Xi�f�, is

iven by

Xi�f� = Fi �
n=−�

�

X�f + nFi�exp�2�i�f + nFi��i�. �4�

he connection between the spectrum of a sparse signal
�f� and the spectrum of its sampled signal Xi�f� is illus-

rated in Fig. 1.
One immediate consequence of Eq. (4) is that, up to a

hase factor that does not depend on the signal,
xp�2�i�f+nFi��i�, Xi�f� is periodic of period Fi. It is also
lear that, for a real signal x�t�, Xi�−f�=Xi�f�. Thus, all of
he information about 	Xi�f�	 is contained in the interval
0,Fi /2�. Besides a linear chirp caused by the time offset
i, all the information about the phase of Xi�f� is also con-

ained in the interval �0,Fi /2�. We shall refer to this in-
erval �0,Fi /2� as the ith baseband. The downconversion
f a frequency f� �0,Fnyq/2� to this baseband is repre-
ented by the downconversion function Di : �0,Fnyq/2�

�0,Fi /2�:

Di�f� = min�f mod Fi,�Fi − f�mod Fi�. �5�

ig. 1. (Color online) Illustration of the spectrum of a sparse
ne-band real signal (a) and the spectrum of its samples that are
btained for the sampling rates F1 (b) and F2 (c). At f0, the signal
s unaliased at the sampling rate F1 but is aliased at the sam-
ling rate F2.
In the case of the band-limited signal X�f�, for a given
requency f, all but a finite number of terms in the infinite
um on the right c-hand side of Eq. (4) vanish. If the num-
er of nonvanishing terms is greater than one for a given
ampling rate Fi, then the signal is said to be aliased at f
hen sampled at the rate Fi. If at a frequency f only a

ingle term in the sum is not equal to zero, the signal X�f�
s said to be unaliased at a sampling rate Fi. An illustra-
ion of aliasing can be seen in Fig. 1(c). In the case of
parse signals, x�t� is unaliased over a considerable part
f its spectral support. The success of an MRS scheme lies
n the fact that whereas a signal may be aliased at a fre-
uency f when sampled at a rate Fi, the same signal may
e unaliased at the same frequency f when sampled at a
ifferent rate Fj.
Each support interval �a ,b� �b�a�0� of the multiband

ignal will be referred to as an originating band. Accord-
ng to Eq. (4), sampling at the rate Fi downconverts each
riginating band �a ,b� to a single band in the baseband

i ,�i�. We shall refer to the interval �
i ,�i� as a downcon-
erted band.

It is apparent that when a single downconverted band

i ,�i� is given, it is in general not possible to identify its
orresponding originating band. However, it follows easily
rom Eq. (4) that the corresponding originating band
ust reside within the set of bands defined by


� �
m=−�

�

�
i + mFi,�i + mFi�� � � �
m=−�

�

�− �i + mFi,− 
i

+ mFi��� � �0,Fnyq/2�, �6�

here m is an integer. The set in Eq. (6) can be repre-
ented as a finite number of disjointed closed intervals,
hich we denote by �an

i ,bn
i �. We shall refer to each of

hese intervals as an upconverted band. For clarity, we
enote all downconverted intervals with Greek letters su-
erscripted by the sampling frequency and denote all up-
onverted intervals with Latin letters.

In general, the number of possible originating bands is
educed by sampling at more than one rate. For each
ampling rate rate Fi, an originating band �a ,b� must re-
ide within the union of the upconverted bands: �a ,b�
�n�an

i ,bn
i �. Since the union of upconverted bands is dif-

erent for each sampling rate, sampling at several differ-
nt rates gives more restrictions over the originating
and �a ,b�. When sampling at P rates, F1 , . . . ,Fp, the
riginating band must reside within �i=1

P �n�an
i ,bn

i �.

. RECONSTRUCTION METHOD
n this section we describe an algorithm to reconstruct
ignals from an MRS scheme. First, we describe an algo-
ithm for reconstructing ideal multiband signals, as de-
ned above. Then we present modifications to enable a re-
onstruction of signals that may be contaminated by noise
utside strictly defined bands. While such signals are not
xactly multiband, we still consider them multiband sig-
als provided that the noise amplitude is considerably

ower than the signal amplitude.
The reconstruction is performed sequentially. In the

rst step, sets of intervals in the band �0,Fnyq/2� that
ould be the support of X�f� are identified. These are sets
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hat, when downconverted at each sampling rate Fi, give
nergy in intervals in the baseband where significant en-
rgy is observed. For each hypothetical support, the algo-
ithm determines the subsets of the support that are un-
liased in each channel. According to Eq. (4), for the
orrect support, the amplitude of each sampled signal
pectrum is proportional to the original signal spectrum
ver the unaliased subset of the support. As a result, for
ach pair of channels, the amplitudes of the two sampled
ignal spectra are proportional to each other over the sub-
ets of the hypothetical support that are unaliased in both
hannels. Thus, we define an objective function that
uantifies the consistency between the different channels
ver mutually unaliased subsets of the support. The algo-
ithm chooses the hypothetical support that maximizes
he objective function. The amplitude is reconstructed
rom the sampled data on the unaliased subsets of the
H
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hosen hypothetical support. In the last step, the phase of
he spectrum of the originating signal is determined from
he unaliased subset of the chosen hypothetical support.

. Noiseless Signals
n this subsection we assume that all signals are ideal
ultiband signals. Although what follows applies to more

eneral signals, we assume that all signals have a piece-
ise continuous spectrum.

. Reconstruction of the Spectrum Amplitude
or each sampled signal Xi�f�, we consider the indicator

unction Ii�f� that indicates over which frequency inter-
als the energy of the sampled signal Xi�f� resides. To ig-
ore isolated points of discontinuity, we define the indica-
or functions Ii�f� as follows:
Ii�f� = �1 for all f � �0,Fnyq/2� such that for all � � 0,�
f−�

f+�

	Xi�f��	2df� � 0

0 otherwise.



or a piecewise continuous function, it is simple to show
hat Ii�f�=1 on closed intervals. We define the function
�f� as follows:

I�f� = �
i=1

P

Ii�f�, f � �0,Fnyq/2�. �7�

Thus, the function I�f� equals (1) over the intersection
f all the upconverted bands of the P sampled signals. We
enote the intervals over which I�f�=1 by U1 , . . . ,UK. Ap-
endix A gives sufficient conditions under which each
riginating band coincides with one of the intervals
1, . . . ,UK. Thus, it remains to determine which of the K

ntervals coincide with the originating intervals.
For each k=1,2, . . . ,K, we consider the indicator func-

ion

Ik�f� = �1 if f � Uk

0 otherwise.� �8�

t follows immediately from Eq. (8) that

I�f� = �
k=1

K

Ik�f�. �9�

o find which sets of Uk [or Ik�f�] match the originating
ands, each indicator function Ik�f� is downconverted to
he baseband via the formula

Ik
i �f� = I�0,Fi/2��f�H� �

n=−�

n=�

Ik�f + nFi� + Ik�− f + nFi�� .

�10�

n Eq. (10) I�0,Fi/2��f� is the indicator function of the closed
nterval �0,Fi /2�:
I�0,Fi/2��f� = �1 if f � �0,Fi/2�

0 otherwise. � �11�

ere H�f� is the Heaviside step function

H�f� = �0 if f 
 0

1 if f � 0.� �12�

he Heaviside step function in Eq. (10) is used to ensure
hat Ik

i �f� is an indicator function. In the case in which the
ownconversions of an interval Uk are aliased at some
requency f within the baseband, the argument of the step
unction is an integer greater than 1. However, Ik

i �f�=1. If
or a frequency f in the baseband there is no signal in any
f its replicas, i.e., F�nFi± f�=0 for all n, then H�f�=0. As a
onsequence, Ik

i �f�=0 also. Therefore, the function Ik
i �f� is

qual to one over the downconversion of the interval Uk
orresponding to the sampling rate Fi.

We consider the power set of U, P
U�, i.e., the set of all
ubsets of 
U1 , . . . ,UK�. We denote an element of P
U� by
= 
Uk1

, . . . ,UkQ
� �0
Q
K�. A subset U�P
U� is deemed

o be a support-consistent combination if, for each sam-
ling rate Fi, the downconversion of its intervals matches
he downconverted bands of the corresponding sampled
ignal. In terms of indicator functions, we define for each
�P
U� the indicator functions

IU
i �f� = �

Uk�U
Ik

i �f�, f � �0,Fi/2�. �13�

he function IU
i �f� is an indicator function for the down-

onversion of the intervals of U. Next, we define the objec-
ive function
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E1�U� = �
i=1

P �
0

Fi/2

	IU
i �f� − Ii�f�	df. �14�

he support-consistent combinations are those U for
hich E1�U�=0.
Figure 2 illustrates our method for the signal shown in

ig. 1. The support of the signal at positive frequencies,
hown in Fig. 1, consists of a single interval. Figures 2(a)
nd 2(b) are graphs of I1�f� and I2�f�, respectively. Figure
(c) is a graph of I�f�. The function I�f� is equal to one
ver four intervals U1 , . . . ,U4. Each combination of these
our intervals must be checked for support consistency. In
he example illustrated in Fig. 2, we check whether the
ubset U= 
U2��P
U� is support consistent. Figures 2(d)
nd 2(e) show the indicator functions for the downconver-
ion of U2 at rates F1 and F2: IU2

1 �f� and IU2

2 �f�, respec-
ively. The dashed lines illustrate U2, −U2 and their
ownconversions. It is evident that the functions I1�f� and

U2

1 �f� are not equal. Hence, U= 
U2� is not a support-
onsistent combination.

Among all support-consistent combinations U, it is nec-
ssary to identify the one that exactly matches the origi-
ating bands. For this purpose, we introduce two addi-
ional objective functions. The support-consistent
ombination U that optimizes these function is deemed to
e the correct one.

ig. 2. (Color online) Illustration demonstrating how support
onsistency is checked. The input of the algorithm is the sampled
ignals whose spectra X1�f� and X2�f� are shown Figs. 1(b) and
(c), respectively; their respective indicator functions I1�f� and
2�f� are shown in Figs. 2(a) and 2(b). Figure 2(c) shows the indi-
ator function I�f�=I1�f�I2�f�. In Figs. 2(d) and 2(e), we check
hether the subset U= 
U2��P
U� is support consistent. Figures
(d) and 2(e) show the indicator functions for the downconversion
f U2 at rates F1 and F2 : IU2

1 �f� and IU2
2 �f�, respectively. The

ashed lines illustrate U2, −U2, and their downconversions. It is
vident that the functions I1�f� and IU2

1 �f� are not equal. Hence,
= 
U � is not a support-consistent combination.
2
Among support-consistent combinations, amplitude-
onsistent combinations are defined by the amplitudes of
he sampled signals at unaliased intervals. Let U

Uj1

, . . . ,Ujm
� be a support-consistent combination. De-

ote the union of all intervals in �n=1
m Ujn

that are un-
liased when downconverted at rate Fi by �U

i ��n=1
m Ujn

.
or the correct choice of U, at a frequency f that is un-
liased when sampled at rates Fi1 and Fi2 �f��U

i1��U
i2�,

he functions 	Xi1�f�	 /Fi1 and 	Xi2�f�	 /Fi2 must be equal. Ac-
ordingly, we define a second objective function:

E2�U� = �
i1�i2

�
�U

i1��U
i2

�	Xi1�f�	/Fi1 − 	Xi2�f�	/Fi2�2df. �15�

or the correct U, the objective function E2�U� must equal
ero. A support-consistent combination U for which
2�U�=0 is said to be amplitude consistent.
Unfortunately, there may be more than one amplitude-

onsistent combination. This is the case, for example,
hen for all i1 and i2, �U

i1��U
i2 is empty. In such cases, the

bjective function E2�U� cannot be sufficient to identify
he correct U. Thus, we introduce a third objective func-
ion E3�U�. This function favors options in which the inte-
rals in Eq. (15) are calculated over large sets. The third
bjective function is defined by

E3�U� = �
i1�i2

���U
i1 � �U

i2�, �16�

here ���U
i1��U

i2� is the Lebesgue measure of �U
i1��U

i2.
he amplitude-consistent combination that maximizes
3�U� is deemed to be the correct one. In the rare case

hat E3�U� is maximized by more than one amplitude-
onsistent combination, the outcome of the algorithm is
ot determined.
After the optimal U= 
Uj1

, . . . ,Ujm
� is chosen, the ampli-

ude of the signal is reconstructed from the samples. We
efine the function r�f� as the number of sampled signals
hat are unaliased at the frequency f: r�f�=�i=1

P I�U
i �f�,

here I�U
i �f� is the indicator function of the interval �U

i ,
efined similarly to Eq. (11). For each f within the de-
ected originating bands, i.e., f��n=1

m Ujn
, if r�f��0, we re-

onstruct the corresponding amplitude of the spectrum at
from the sampled signals by

XU�f� =
1

r�f��i=1

P 	Xi�f�	I�U
i �f�

Fin
. �17�

n words, for each frequency f that is unaliased in at least
ne channel, the signal amplitude is averaged over all the
hannels that are not aliased at f. For all other frequen-
ies, notably those that alias in all sampling channels,
U�f� is set to equal zero.

. Reconstruction of the Spectrum Phase
he spectrum of a signal can be expressed as X�f�
	X�f�	exp
j arg�X�f���. In the previous section we de-
cribed how to reconstruct the amplitude 	X�f�	 from the
ignal’s sampled data. In this section we describe a
ethod of reconstructing the phase arg�X�f��. If the time

ffsets �i of Eq. (4), were known a priori, reconstructing
he phase would be trivial. The reconstruction in this case
ould be performed by using a variant of Eq. (17) with
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Xin�f�	 replaced with Xin�f�exp�−2�f�in�. This would yield
full reconstruction of the signal (phase and amplitude).
owever, because of the lack of synchronization between

he channels, the time offsets �i are not known a priori.
onsequently, it is more difficult to reconstruct the phase.
fter identifying the signal bands, we can calculate the
ifferences �i1−�i2 between two different time offsets.
his is sufficient to enable the reconstruction of the phase
f the signal spectrum up to a single linear phase factor.

The difference between two time offsets �i1 and �i2 can
e calculated directly in the case that �U

i1��U
i2 contains at

east one finite interval. In this interval the phase of
i1�f� /Xi2�f� satisfies the following equation:

arg�Xi1�f�/Xi2�f�� = 2�f��i1 − �i2� + 2�k,

for some integer k. �18�

he left-hard side of Eq. (18) is determined by the
ampled data. By performing a linear fit, we calculate the
ifference between the two offsets �i1 and �i2. We do this
or all pairs of offsets for which �U

i1��U
i2 contains at least

ne finite interval.
There may exist cases in which there are i1 and i2 such

hat �U
i1��U

i2 does not contain one finite interval but for
hich �i1−�i2 can still be calculated. For example, in the

ase of three offsets �i1, �i2, and �i3, if one can calculate
�i1−�i2� and ��i2−�i3�, then ��i1−�i3� can also be calcu-
ated by simple algebra. If there exist in , . . . im, such that
or each n
k
m−1, �U

ik��U
ik+1 contains at least one finite

nterval, then we say that in and im are phase connected
nd denote this by in� im. If i� j, then the difference be-
ween the two offsets �j−�i can be calculated. In the case
here �U

i does not contain any finite intervals, we define
i��i. It is clear that � is an equivalence relation [10]
nd thus partitions the �i into equivalence classes.
For each �i1 and �i2 in the same class, one can calculate

heir difference. One can obtain a full reconstruction of
he phase if there exists one class C such that each origi-
ating frequency is unaliased in at least one channel be-

onging to C; i.e., there exist a class C=�in , . . . ,�im, such
hat �k=n

m �U
ik=�k=1

Q Ujk
, where U= 
Uj1

, . . . ,UjQ
�.

. Physical Signals
o sample realistic signals (i.e., not strictly multiband
nd in the presence of noise), the algorithm needs to be
djusted. In this subsection we describe adjustments to
ur algorithm to overcome the noise. The algorithm re-
uires five new parameters. In Section 5, we give ex-
mples of reconstructing signals contaminated by strong
oise. In those examples, the success of the reconstruction
oes not depend on the exact choice of the five param-
ters.

In the presence of noise, the definition of the support of
he sampled signals must be adjusted. First, a small � is
hosen. Then, a small positive threshold value T is cho-
en. The indicator function Ii�f� is then redefined as fol-
ows:
Ii�f� = �1 if f � �0,Fnyq/2� and
1

2�
�

f−�

f−�

	X
�f��	df� � T

0 otherwise.



�19�

he choice of the threshold T depends on the average
oise level.
When reconstructing physical signals, it is not reason-

ble to expect E1�U� to equal 0 for any combination U. An
nitial adjustment is to require that E1�U��b for some
ositive b. The shortcoming of this condition is that the
hreshold b does not depend on the signal. To make the
hreshold depend on the signal in a simple way, we intro-
uce the following condition:

E1�U� � a min
U

�E1�U�� + b, �20�

here a�1 is a chosen parameter. The parameters a and
control the trade-off between the chance of success and

he run time. If a and b are too small, the correct subset U
ay not be included in the set of support-constitent com-

inations. On the other hand, if a and b are too large,
hen the number of support-consistent combinations may
e large. This results in a slow run time.
Finally, we make two modifications to the objective

unction E3�U�. We replace the length of the mutually un-
liased intervals with a weighted energy of the sampled
ignals in these intervals. The objective function E3�U� is
eplaced with Ê3:

Ê3�U� = �
i1�i2

�
0

Fnyq/2 �Xi1�f�

Fi1 �2

Wi1,i2
�f,U�df, �21�

here Wi1,i2
�f ,U� is a weight function. The weight function

avors combinations in which the sampled signals are
imilar in mutually unaliased internals and is defined in
he following.

We first note that for each of two channels i1 and i2, the
ntersection of their nonaliased supports ��U

i1��U
i2� is a

nion of a finite number of disjoint intervals

1
i1,i2 , . . .VR

i1,i2. We define

�i1,i2
k �U� =

�V
k
i1,i2		Xi1�f�	/Fi1 − 	Xi2�f�	/Fi2	df

�V
k
i1,i2		Xi1�f�	 + 	Xi2�f�		df

. �22�

inally, we define the weight function:

Wi1,i2
�f� = �

k
exp�− ��i1,i2

k �U��IV
k
i1,i2�f�, �23�

here � is a chosen positive constant and IVk
i1,i2�f� is the

ndicator function of the interval Vk
i1,i2. The parameter � is

hosen according to an assumed SNR. When the SNR is
ower, in order to accept higher errors, � is chosen to be
maller. In the case of a noiseless signal and an
mplitude-consistent U, each �i1,i2

k vanishes. Therefore, in
his case, each element in the sum on the right-hand side
f Eq. (21) gives the energy of the signal over �U

i1��U
i2. In

ll other cases, the energy in each interval Vk
i1,i2 is

eighted according to the relative error between Xi1�f�
nd Xi2�f� over Vi1,i2.
k
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Since in the case of noisy signals neither E1�U� nor
2�U� vanishes for the combination that corresponds to

he originating bands, both E1�U� and E2�U� should be
onsidered in the final step of choosing the best combina-
ions. Accordingly, we define the following objective func-
ion Etot�U�:

Etot�U� = −
E1�U�

minU
E1�U��
−

E2�U�

minU
E2�U��
+

Ê3�U�

minU
Ê3�U��

�24�

or all U such that minU
E1�U�� , and minU
E2�U��,
inU
E3�U���0. Among all such combinations that also

atisfy Eq. (20), the one that gives the maximum value of
tot�U� is deemed to be correct. In cases in which either
inU
E1�U��, minU
E2�U��, or minU
E3�U�� equals zero for a

ertain combination U, the maximum of Ê3�U� is chosen as
he solution.

To reconstruct the phase, the only change made is in
ow the difference between the offsets is calculated.
quation (18) holds for all the disjoint intervals Vk

i1,i2

�U
i1��U

i2. Accordingly, we perform the linear fit for each
ntervals and obtain a certain value for �i1−�i2. Each
alue is weighted by the length of its respective Vk

i1,i2.
hese weighted values are averaged. The result is an es-
imate for �i1−�i2. This averaging procedure may in-
rease the accuracy in the estimate of �i1−�i2.

. COMPLEXITY CONSIDERATIONS
n this section we discuss the considerations made to re-
uce the computational complexity of our algorithm.
hoosing a subset U�P
U� involves calculating three ob-

ective functions. We explain why eliminating possibilities
hrough the use of E1�U� alone can significantly reduce
he run time.

In the first step of the algorithm, we find support-
onsistent combinations by calculating the objective func-
ion E1�U� for elements in P
U�. Assuming the largest el-
ment in P
U� contains K intervals, and that the signal is
omposed of up to N bands in �0,Fnyq/2�, the number of
lements in P
U� that one needs to check is equal to

�
n=1

N �K

n� . �25�

n the case where N�K, the complexity is approximately
�2N�. When N /K�1, the last term in Eq. (25), the num-
er of options to be checked is approximately equal to
�KN /N!�.
The complexity of checking a single option out of P
U�

or support consistency [Eq. (14)] is O�1�, and it does not
epend on the number of points used to discretize the
pectrum. In contrast, the complexity of checking such an
ption for amplitude consistency [Eqs. (15) and (16)] is of
he order of the number of points used to represent the
pectrum. This is a major reason for using the support-
onsistency criterion to narrow down the number of op-
ions needed to be checked for amplitude consistency. The
mplitude consistency is calculated only for support-
onsistent options, which are in general much fewer than
hat is prescribed by Eq. (25).

. NUMERICAL RESULTS
his section describes results of our numerical simula-

ions. The simulations were carried out in the two cases
onsidered in the previous sections: (i) ideal multiband
ignals and (ii) noisy signals. In all our examples, the
umber of channels P was set equal to three, P=3.
In all our simulations, the number of the bands in

0,Fnyq/2� equals N, where N
4. Unless stated other-
ise, the band number refers to the number of bands in

he nonnegative frequency region �0,Fnyq/2�. Using the
otations in Eq. (2), each signal in each band is given by

Sn�f� = �An cos���f − fn�/Bn� if 2	f − fm	/Bn � 1

0 otherwise, �
�26�

here Bn is the spectral width of the nth band, fn is its
entral frequency, and An is the maximum amplitude. The
otal spectral measure of the signal support equals �x
2�n=1

N Bn, and the minimal sampling rate is equal to 2�x
6], twice the Landau rate. In each simulation, all the
ands had the same width, i.e., Bn=�x / �2N�. The ampli-
udes An were chosen independently from a uniform dis-
ribution on [1, 1.2]. The central frequencies fn were also
hosen independently from a uniform distribution on the
egion �0,Fnyq/2�. We eliminated cases in which there was
n overlap between any two different bands. The time off-
ets �i were chosen independently from a uniform distri-
ution on �0,1/Bn�.
In each of the simulations, we set B=800 MHz and 40
Fnyq
76 GHz. This choice of parameters is consistent
ith previous optical sampling experiments [1]. The sam-
ling rates were chosen as F1=3.8F0, F2=4F0, and F3

4.2F0, where the value F0 varied between simulations.
hese sampling rates were chosen such that, for each pair
f sampling rates �Fi ,Fj�, the functions Ii�f�, Ij�f� do not
ave a common multiple smaller than Fnyq. This condition

s satisfied for all F0�Fnyq/76.
To obtain an exact reconstruction, the resolution in

hich the spectrum is represented �f should be such that
he discretization of the originating baseband downcon-
erts exactly to the discretization grid in each baseband.
his condition is satisfied when Fi /�f �i=1,2,3� is an in-

eger. In our examples, we used a spectral resolution �f
0.8 MHz for all the channels.
The use of the same spectral resolution for all channels

s not only convenient for implementation of our algo-
ithm, but it is also compatible with the operation of the
ampling system used in our experiments [1]. In the
mplementation of the sampling system, an optical sys-
em performs the downconversion of the signal by multi-
lying it by a train of short optical pulses. In each channel
different repetition rate of the optical pulse train is

sed. The sampled signal in each channel is then con-
erted into an electronic signal and passed through a low-
ass filter that rejects all frequencies outside the base-
and. The P-filtered sampled signals have a limited
andwidth. These signals are sampled once more, this
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ime at a constant rate, using P electronic A/D converters.
he use of the optical system allows the use of electronic
/D converters whose bandwidth is significantly lower

han the bandwidth of the multiband signal [1]. Because
he signals at the basebands are sampled with the same
ime resolution and have the same number of samples,
heir spectra, which are obtained using the fast Fourier
ransform, have the same spectral resolution.

In the first set of simulations we increased the signal
andwidth without changing the sampling rates. We used
wo performance criteria: correct detection of the originat-
ng bands and exact reconstruction of the signal. As to the
rst criterion, we required only that the spectral support
f the signal be detected without an error. As to the sec-
nd criterion, we required that the signal spectrum
phase and amplitude) be fully and exactly reconstructed
ithout any error. Because the second criterion concerns
xact reconstructions, in the case that the algorithm
ailed to reconstruct the signal at even a single frequency,
t was considered to have failed the second criterion.

We chose F0=1 GHz. This corresponds to a total sam-
ling rate Ftot=F1+F2+F3, which equals 15 times the
andau rate (7.5 the minimum possible rate). The statis-
ics were obtained by averaging over 1000 runs. Figures
(a) and 3(b) show the results for signals with three and
our positive bands, respectively, as a function of the
yquist rate. In Fig. 3(a), the percentage of correct band
etections is shown by the squares, whereas the full re-
onstruction percentage is shown by circles. The open
ircles and squares represent the results obtained when
he maximum number of bands assumed by the algorithm
as three, and the dark circles and squares represent the

ases in which the maximum assumed band number was
qual to four. The full reconstruction percentages were
he same for both choices of the maximum number of
ands, and thus the open and dark circles are indistin-
uishable in Fig. 3. Figure 3(b) shows the band-detection

ig. 3. Success percentage for the first set of simulations with F
f a correct band detection is shown by the squares. The full reco
epresent the results obtained when the assumed maximum num
esent the cases in which the maximum assumed positive band n
or both choices of the maximum number of bands, and thus the
hows the band-detection percentage (solid curve) and reconstru
umber of originating and assumed positive bands equals four.
ercentage (solid curve) and reconstruction percentages
dashed curve) in the case where both the maximum num-
er of originating and assumed bands is four. The figures
how that both the success percentages were high and
ere not significantly dependent on the Nyquist rate of

he signal or on the number of assumed bands.
Figure 4 shows the average run time as a function of

he Nyquist rate. The results in the case of four input
ands in which the assumed maximum number of bands
s four is shown by the solid curve. The results in the case
f three input bands is shown by the dotted curve in the
ase of three assumed bands and with the dashed curve in
he case of four assumed bands. The results show that

Hz as a function of the Nyquist rate. In Fig. 3(a), the percentage
ion percentage is shown by circles. The open circles and squares

f positive bands equals three. The dark circles and squares rep-
equals four. The full reconstruction percentages were the same

and dark circles are lndistinghishable in this figure. Figure 3(b)
percentages (dashed curve) in the case that both the maximum

ig. 4. Run time for the second set of simulations as a function
f the Nyquist rate. The results in the case of four input positive
ands with an assumed number of positive bands equal to four is
hown by the solid curve. The results in the case of three input
ositive bands are shown with the dotted curve in the case of
hree assumed positive bands and with the dashed curve in the
ase of four assumed positive bands.
0=1 G
nstruct

ber o
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hile an increase in the Nyquist rate does not signifi-
antly affect the reconstruction statistics, it results in an
ncrease in the run time.

In the second set of simulations, we measured the per-
ormance of our algorithm as a function of F0. The
yquist rate used in the simulation was Fnyq=40 GHz.
or each choice of F0, the statistics were obtained by av-
raging over 500 runs. The results did not change signifi-
antly when the averaging was performed over 1000 runs.
he simulation was run for the same number of originat-

ng bands and assumed bands as in the first set of simu-
ations. Figures 5(a) and 5(b) show the success percent-
ges for signals with three and four bands, respectively,
nd Fig. 6 shows the average run time. The two success
ercentages and the run time are shown as a function of
he total sampling rate Ftot divided by the Landau rate
Landau=800 MHz. The symbols used in Figs. 5(a) and
(b) and Fig. 6 correspond to those used in Figs. 3(a) and
(b) and Fig. 4, respectively.
The results shown in Figs. 5(a) and 5(b) demonstrate

hat, in all the cases that we checked, the average per-
entage of successful band detections was over 99.5% for
ampling frequencies above 8 times the Landau rate. The
econstruction percentages were lower than these band-
etection percentages and were also much more affected
y the sampling rate and by the number of originating
ands. As expected, the run time increases dramatically
ith a reduction in the sampling rate and also increases
ith the assumed maximum number of bands. We ran

imilar simulations with different numbers of originating
ands and different numbers of assumed bands. The
rends were similar.

In the final set of simulations, the signals are noisy. We
dded to the originating signal white Gaussian noise in
he band �−Fnyq/2 ,Fnyq/2�, where Fnyq=40 GHz. We de-
ote by � the standard deviation of the Gaussian noise in

ig. 5. Success percentage for the first set of simulations as a fu
n Fig. 3, in Fig. 5(a), the percentage of a correct band detection i
ircles. The open circles and squares represent the results obtaine
he dark circles and squares represent the cases in which the m
he band-detection percentage (solid curve) and reconstruction pe
f originating and assumed positive bands equals four.
he presampled signal. Upon sampling the signal at rate
i, the standard deviation of the noise increases to �i

���Fnyq/Fi� owing to aliasing of the noise, where �x�
quals the smallest integer greater than or equal to x.

In this set of simulations, we reconstructed signals
ith different noise levels added. We chose �=6 MHz. The

hreshold was chosen to be T=2 maxi��i�. Accordingly, the
arameter � in Eq. (23) was chosen to be �=maxi��i�. The
ther parameters used in the simulation were a=2 and
=16 MHz. Because the signals were not ideal, an exact
econstruction was not possible and the definitions of an
ccurate band detection and accurate reconstruction
eeded to be changed. A band detection was deemed accu-

of the sum of the sampling rates divided by the Landau rate. As
n by the squares. The full reconstruction percentage is shown by
n the assumed maximum number of positive bands equals three.

assumed positive band number equals four. Figure 5(b) shows
ges (dashed curve) in the case where both the maximum number

ig. 6. Run time for the first set of simulations as a function of
he sum of the sampling rates divided by the Landau rate in the
ases of signals with four and three positive bands. The results in
he case of four input positive bands with an assumed number of
ositive bands equal to four is shown by the solid curve. The re-
ults in the case of three input positive bands is shown by the
otted curve in the case of three assumed positive bands and by
he dashed curve in the case of four assumed positive bands.
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ate if the originating bands approximately matched the
econstructed bands. A signal reconstruction was deemed
ccurate if the signal’s originating bands were detected
ccurately and if each reconstructed band XU�f� satisfied

�
Bm

	XU�f� − X�f�	 � max
i

��i�Bm. �27�

ere X�f� is the noiseless signal, and the integration is
erformed over only the detected band. In a correct recon-
truction, it is expected that the average reconstruction
rror is lower than the standard deviation of the noise in
he noisiest channel, i.e., the channel at the lowest sam-
ling rate. We chose the same sampling rates as those
hosen in the second set of simulations. For these rates,
axi��i�=3.3�.
The detection percentages and reconstruction percent-

ges are shown in Fig. 7. The figure clearly shows that
igh percentages are obtained even in the case of a low
NR. We repeated this last set of simulations using
aussian signals instead of the signals of Eq. (26). We

ound that the results are not sensitive to the specific
hoice of signal type.

. CONCLUSION
ypical undersampling schemes are PNS schemes. In
uch schemes samples are taken from several channels at
he same low rate. These schemes have many drawbacks.
n this paper we propose a new scheme for reconstructing
ultiband signals under the constraint of a small number

f sampling channels. We have developed an MRS
cheme: a scheme in which each channel samples at a dif-
erent rate. We have demonstrated that sampling with
ur MRS scheme can overcome many of the difficulties in-
erent in PNS schemes and can effectively reconstruct
ignals from undersampled data. For a typical sparse
ultiband signal, our MRS scheme has the advantage

ver PNS schemes because in almost all cases, the signal
pectrum is unaliased in at least one of the channels. This
s in contrast to PNS schemes. With PNS schemes an
lias in one channel is equivalent to an alias in all chan-
els.
Our MRS scheme uses a smaller number of sampling

hannels than do PNS schemes. We also choose to sample
t a sampling rate higher than that used in PNS schemes

ig. 7. Success percentage for the third set of simulations with
0=1 GHz and Fnyq=20 GHz as a function of standard deviation
of the added noise. The figure shows the band-detection per-

entage (solid curve) and reconstruction percentages (dashed
urve) in the case where both the maximum number of originat-
ng and assumed positive bands equals four.
o attain the theoretical minimum overall sampling rate
equired for a perfect reconstruction. The use of higher
ates has an inherent advantage in that it increases the
ampled SNR. Our MRS scheme also does not require the
olving of poorly conditioned linear equations that PNS
chemes must solve. This eliminates one source of lack of
obustness of PNS schemes. Our simulations indicate
hat MRS schemes, using a small number of sampling
hannels (three in our simulations) are robust both to dif-
erent signal types and to relatively noisy signals.

Our reconstruction scheme does not require the syn-
hronization of different sampling channels. This signifi-
antly reduces the complexity of the sampling hardware.
oreover, asynchronous sampling does not require very

ow jitter between the sampling times at different chan-
els as is required in PNS schemes. Our reconstruction
cheme resolves aliasing in almost all cases but not all. In
are cases, reconstruction of the originating signal fails
wing to aliasing. One of the methods to resolve aliasing
s to synchronize the sampling in all the channels. With
uch synchronization, aliasing can be resolved by invert-
ng a matrix as is similarly done in PNS schemes. How-
ver, such an approach requires both much more complex
ardware and a larger number of sampling channels that
ample with a very low jitter. Moreover, in the case of sig-
als that are aliased simultaneously in all channels, the
oise in the reconstructed signal is expected to be much
tronger than the noise in the original signal.

Future work should focus on testing our algorithm’s
bility to reconstruct experimental data. Optical systems
or performing experiments are currently in existence.

PPENDIX A
n Subsection 3.A.1 we have denoted the intervals over
hich the indicator function I�f�=1 by U1 , . . . ,UK. In this
ppendix we give the sufficient and necessary conditions
nder which the spectral support of a signal coincides
ith a subset U of 
U1 , . . . ,UK� and under which the func-

ion E1�U� [Eq. (14)] is equal to zero. Although it applies
or more general cases, we assume that the function X�f�
s piecewise continuous.

The conditions are as follows:
1. For each frequency f0 that fulfills �f0−�

f0+�	X�f�	2df�0 for
ll ��0, we obtain that �f0−�

f0+�	Xi�f�	2df�0 for all ��0 and

 i
P.
2. For each originating band with support �a ,b�, there

xists an interval �a−� ,a+��, ���0�, whose downcon-
erted band does not overlap any other downconverted
and in at least one of the sampled signals. Similarly, for
ach originating band with support �a ,b�, there exists an
nterval �b−� ,b+��, whose downconverted band does not
verlap any other downconverted band in at least one of
he sampled signals.

Condition 1 ensures that originating bands are con-
ained within �i=1

K Ui. Condition 2 guarantees that the
riginating bands coincide exactly with a subset of P
U�.
t is obvious that when the conditions are satisfied,
1�U�=0.
The first condition excludes cases in which the down-

onverted bands cancel each other’s energy over a certain
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nterval due to destructive interference. When the condi-
ion is fulfilled, for each frequency f0 within the originat-
ng bands, we obtain I�f0�=1. Thus, each originating band
a ,b� is contained within one of the intervals that make
p the support of I�f�. Mathematically, for each �a ,b�,
here exist Uk such that �a ,b��Uk.

The second condition assures us that for each originat-
ng band �a ,b�, the intervals �a−� ,a� and �b ,b+�� are not
ontained within any of the Uk for all values of �. Conse-
uentially, if �a ,b��Uk, then �a ,b�=Uk. When the two
onditions are fulfilled, we obtain that there exists a set of
ntervals U, which matches the originating bands, and for
hich E1�U�=0
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