the power efficiency initially increases, but then decreases because
junction heating increases carrier leakage and therefore reduces
1,4 The maximum power cfficiencies are 51% (for 0.6A, P = 0.60
W) at -55°C, 57% (for 0.8A, P = 0.87W) at 25°C, and 46% (for
0.6A, P =0.48W) at 75°C. .

As shown in Fig. 3, for currents below ~:'1A, V} decreases with
increasing temperature, a consequence of the decrease in the
energy gap. The diode series resistance R,, calculated from the
data in the current range between 0.6 and 1.6A, is 0.297W at —55
and 75°C, and 0.219W at 25°C. Although a maximum power level
was obtained for the lowest temperature of —55°C, the larger Vy,
and R, reduce the power conversion efficiency. As a result, the
highest power efficiency is obtained for the device tested at a heat-
sink temperature of 25°C.

In conclusion, we have demonstrated strained-layer InGaAs-
AlGaAs GRINSCH-SQW diode lasers that have maximum power
conversion efficiencies of =46% and maximum output power lev-
els of = 1.8W for temperatures between —55 and 75°C.
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Narrow-linewidth, singlemode erbium-
doped fibre laser with intracavity wave
mixing in saturable absorber

M. Horowitz, R. Daisy, B. Fischer and J. Zyskind

Indexing terms: Fibre lasers, Laser linewidth, Electromagnetic wave
absorption

Narrow-linewidth, single longitudinal mode i is
demonstrated in an erbium-doped fibre laser with an intracavity
nonlincar absorptive wave mixing of the counter propagating
beams. An unpumped length of erbium-doped fibre serves as the
saturable absorber. Linewidths of the order of a few kilohertz are
obtained.

Single frequency, narrow-linewidth erbium-doped fibre lasers can
be very important in fibre-optic communication for uses such as
wavelength division multiplexing and coherent systems. Conven-
tional methods of using filters in the cavity, such as passive grat-
ings, do not provide an immediate solution for strong narrowing
and single mode operation, especially for lasers with long cavities.
Long cavities are needed not only for high oscillation powers but
also for their inherent potential for very narrow linewidths. In this
work we present a demonstration of a method 1] that uses wave
mixing of the oscillating beams in an intracavity saturable
absorber to reduce the oscillation linewidth and to obtain single
longitudinal mode operation. This is carried out in an erbium-
doped fibre laser cavity. The narrowing effect seems to be surpris-
ing because we know that coupling, interference and spatial hole
burning cause a degradation of the oscillation quality of lasers {2—
4], a reduction of its coherence and an increase of its linewidth.
However, these problems result from saturation of an amplifying
medium, and for saturation of an absorber the outcome is quite
different. This can be understood by considering the reflections
from the induced saturable gain grating due to the interference
pattern. These reflections interfere destructively (180° out of
phase) with the corresponding copropagating waves [5} and there-
fore they provide a negative feedback, which in turn tends to elim-
inate the grating (from which they originate) by a reduction of the
coherence. However, in a saturable absorber the nonlinear wave
mixing has an opposite effect. The reflections from the induced
saturable absorbing grating are in-phase and provide positive feed-
back. The same conclusion can be obtained [1] by realising that
the absorption is lower for light intensity which has a nonuniform
periodic distribution along the saturable absorber, than it is in the
uniform case. Therefore in the presence of a saturable absorber,
coherence and single longitudinal mode operation induce the
standing wave and are thus favoured. Moreover, the effect on a
third wave with a different frequency is the opposite {1]: the
absorption is higher for nonuniform distribution than for the uni-
form case. Thus the saturable absorber favours elimination of all
other longitudinal modes. We note that passive modelocking in
such a system that contains erbium doped fibre as a saturable
absorber cannot be simply used for passive modelocking because
of its long time response (~10ms).

EDF1 EDF 2 980nm

. Fig. 1 Erbium-doped fibre laser system with amplifying part (EDF 2)

and intracavity saturable absorber (EDF 1)

The mirror’s reflectivity was ~95%. The polarisation controllers (PC)
are adjusted such that the polarisation states of the counterpropagat-
ing waves are perpendicular in the amplifier (EDF 2) and parallel in
the saturable absorber section (EDF 1)

The experimental setup is shown in Fig. 1. Erbium-doped fibres
were used as the amplifying and the saturable absorbing media.
The gain section was pumped by a 980nm diode laser and the sat-
urable absorber part was unpumped. The fibres had a 2.5um alu-
mino-germano-silicate core with a numerical aperture of 0.33 and
an erbium concentration of 2500ppm. The amplifier and absorber
sections had lengths of 50 and 32cm, respectively. The overall cav-
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ity length was 10.4m. To reduce the broadening effect in the gain
section of the laser (see Fig. 1), the wave mixing was eliminated by
making the polarisations of the counterprapogating beams in this
section perpendicular, using polarisation controllers. The opera-
tion of the laser system with the saturable absorber section in it
showed bistable behaviour of the oscillation power as a function
of pumping. A detailed theoretical analysis of this effect will be
reported elsewhere [1].

-10 10 -
ot 4
-20
£ 10}
g
3 -20
®_30
-30t

~40 L . N
1529 1530 1-5311-532 [2iei] 15630 1532 1534
a wavelength, pm b  wavelength, ym
Fig. 2 Spectra of fibre without and with saturable absorber section

a Without saturable absorber
b With saturable absorber

The spectrum of the fibre laser without the saturable absorber
section (replaced by a regular singlemode fibre) is shown in Fig.
2a. The spectrum was very broad and erratic. In this case, the
threshold pumping light power (of 980nm) was ~10mW. With the
saturable absorber section, we obtained a much narrower
linewidth (Fig. 2b). Here, the linewidth measurement is limited by
the resolving power of the grating-based spectrum analyser which
was 0.1 nm. The spectrum was stable for periods of minutes. The
threshold pumping light power (of 980nm) in this configuration
was 50mW. To verify singlemode operation and to evaluate the
linewidth more carefully, we also used a Fabry-Perot etalon, RF
spectrum analyser, as well as delayed self-homodyning (Mach-
Zehnder interferometer). From the RF spectra we have found that
for most of the time (90%) the laser oscillated in a single longitu-
dinal mode, as indicated by the absence of a peak at 9.6 MHz, the
frequency corresponding to the beating between adjacent cavity
modes. From time to time the laser did build up a second mode,
as indicated by the momentary presence of the peak at 9.6MHz
(Fig. 3). The width of this peak was below 5kHz. The Mach-Zech-
nder interferometer showed a strong interference between the two
split arms having a mutual delay of 7.5km (corresponding to an
upper limit of 20kHz for the linewidth). In curve (i) of Fig. 4, the
interference is evident in the strong fluctuations seen in the time
domain which are related to thermal changes of the refractive
index in the long fibres. Curve (i) in Fig. 4 is the output intensity
of the interferometer when one branch was blocked.
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f, MHz
Fig. 3 RF spectrum of output detected light, observed af instances when
two longitudinal modes existed

The singlemode operation is a result of the nonlinear wave mix-
ing and the induced grating which enhance the coherence and
eliminate other modes, as explained above. A first estimate of the
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Fig. 4 Time dependence of interference in delayed self homodyning
experiment (Mach-Zehnder interferometer) and output when one branch
is blocked

(i) Time dependence of interference: The path difference between the
two branches was 7.5km
(ii) Output when one branch is locked

filtering effect can be obtained by considering a simple passive
grating. Note that the possibility of self-induced distributed grat-
ing in long fibres in the cavity is by itself an advantage, which is
difficult to achieve in other ways. For such a passive grating with
length /, the filtering width is given by Vg = ¢/Q2nl) =
312MHz. This is larger than the longitudinal mode spacing Av =
o/(2nL) = 9.6MHz, where now L (= 10.4m) is the laser cavity
length. Note however, that the active parts in the cavity in our
experiment had a length of only 0.82m; therefore the overall
length could have been shortened to make the mode spacing com-
parable to the frequency width of the passive grating. Adding to
this filtering effect the mechanism of the nonlinear wave mixing
described earlier, causes the strong tendency to a singlemode oscil-
lation. The theoretical linewidth-limit of a singlemode laser can be
very narrow due to the long cavity. According to the Schawlow-
Townes formula with values of 95% mirror reflectivity, cavity
length of 10m, one roundtrip absorption of 50% and power of
0.ImW, the theoretical limit can reach 10! to 10-2Hz. Therefore, a
linewidth i the kilohertz regime is not surprising, and we expect
that by proper thermal and acoustical stabilisation, as well as opti-
misations of the lengths of the erbium-doped fibres, it will be pos-
sible to reduce the linewidth and ensure the robustness of
singlemode operation.
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