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Noise distribution in the radio frequency spectrum
of optoelectronic oscillators
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We analyze the distribution of the rf spectrum in optoelectronic oscillators due to the finite duration of the
spectrum measurement. The distribution of the periodogram or the rf spectrum at a given frequency is cal-
culated using a reduced model and is compared to a comprehensive numerical simulation. The model shows
that the rf spectrum at a given frequency fluctuates from measurement to measurement with an exponential
distribution. © 2008 Optical Society of America
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Since optoelectronic oscillators (OEOs) were invented
[1,2], extensive work has been performed to minimize
their phase noise and to improve their Q. Owing to
the stochastic nature of the phase noise, the noise
spectrum fluctuates from one measurement to an-
other. Yao and Maleki [2] presented a reduced model
to analyze the average rf spectrum in a single-cavity
OEO. However, in experiments the rf spectrum is
measured over a limited duration and changes from
one measurement to another. This effect, which is ob-
served in experiments, cannot be described using the
Yao–Maleki model [2].

The rf spectrum or periodogram is an estimate of
the average rf spectrum that is obtained by calculat-
ing or measuring the signal spectrum over a finite
time duration. The variations or the fluctuations in
the rf spectrum determine the shortest measurement
duration that is required for applications based on
the OEO, such as a Doppler radar system that mea-
sures the velocity of slow-moving targets [3].

In a previous work [4], we described a new compre-
hensive model for simulating phase noise and dy-
namic effects in OEOs. This model is based on Monte
Carlo simulations and takes into account physical ef-
fects, such as the fast nonlinearity of the electro-optic
modulator, gain saturation and the different noise
sources that exist in OEOs. In this Letter, we calcu-
late the fluctuations of the rf spectrum in OEOs when
the duration of the spectral measurement is finite.
The distribution of the rf spectrum at a given fre-
quency is calculated using a reduced model and is
compared to the results of our comprehensive nu-
merical simulation. We show that the rf spectrum at
every frequency fluctuates from one simulation run
to another with an exponential distribution assuming
that the resolution of the spectral measurement is
equal to the inverse of the measurement duration.
Given the spectral distribution, it is possible to calcu-
late the spectral fluctuations when a fixed averaging
time is used in an experiment [5] or when the mea-
surement bandwidth is increased beyond the inverse
of the measurement duration. The rf spectral distri-
bution at a given frequency is needed to determine

the expected fluctuation in the rf spectrum obtained
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in different measurements as a function of the mea-
surement duration and bandwidth. This result,
which cannot be calculated using the Yao–Maleki
model, is important to determine the measurement
duration that is required to assure a reliable mea-
surement of the phase noise.

In OEOs the rf spectral density is nearly equal to
the phase-noise spectral density [2,4], because the
amplitude noise is negligible relative to the phase
noise and because the phase fluctuation is signifi-
cantly smaller than unity for frequency offsets that
are smaller than about half the cavity mode spacing.
The output signal of an OEO can be approximated by
a sinusoidal wave with a radial carrier frequency �c,
a time-dependent phase ��t�, and a time-dependent
amplitude �a�t�� [2,4] so that

V�t� = �a�t��cos��ct + ��t�� = a�t�exp�− i�ct�/2 + c.c. �1�

We assume that the complex signal envelope, de-
noted by a�t�= �a�t��exp�−i��t��, is slowly varying rela-
tive to the carrier period �d� /dt���c and �d�a�t�� /dt�
� �a�t���c.

Assuming that the OEO signal is defined over a
time T, where T�1/�c, we can expand a�t� as a Fou-
rier series,

a�t� = �
k=−�

�

ãk exp�− i�kt�, �2�

where the ãk denote the Fourier coefficients and �k
=2�k /T. The rf spectrum of the normalized signal
a�t� /�2RPosc is given by

Srf�fk� =
�ãk�2

2RPosc�f
, �3�

where fk=�k /2� is the frequency offset with respect
to the carrier frequency, R is the impedance at the
output of the detector, Posc is the carrier oscillation
power, and �f=1/T is the frequency resolution. The
average rf spectrum �Srf�fk�	 is equal to the power

spectral density of the rf noise.
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In our numerical model [4] we calculated the rf
spectrum using a Monte Carlo simulation. We model
in each round trip the effect of the electro-optic
modulator, the fiber delay, the photodiode, the rf am-
plifier, and the rf filter. Noise is added to the OEO by
the amplifier, the detector, and the laser. The injected
noise can be modeled as white and complex Gaussian
noise with zero mean that is added at each round trip
of the signal in the OEO [2,4]. Since the injected
noise changes in each round trip, each simulation
run gives a different rf spectrum. The average rf
spectrum is obtained by averaging the rf spectrum
from a single simulation run over a sufficiently large
number of simulation runs.

We study the noise in an OEO that operates in a
stationary condition and that has an oscillating sig-
nal with a complex amplitude a�t�. White complex
Gaussian noise is added to the signal in each round
trip. The added noise can be decomposed into two
components: a component that is in phase with the
signal a�t� at that round trip and a second component
that is phase shifted by 90°, which we will refer to as
quadrature noise. Owing to the fast response time of
the electro-optic modulator, the in-phase noise at a
frequency offset that is less than the cavity mode
spacing is suppressed. By contrast, the quadrature
noise accumulates in the OEO loop and results in
phase noise. In OEOs the injected noise in each
round trip is small compared to the oscillating signal.
Therefore, the change of the signal phase ��t� in a
round trip is small compared to unity and is propor-
tional to the quadrature noise component that is
added to the signal in that round trip. Moreover, ow-
ing to the small noise power, the response of the sys-
tem to the injected noise can be approximated by lin-
earizing about its stationary behavior. Since a
Gaussian distribution is maintained under a linear
transformation, the phase deviations from one round
trip to another are independent and identically dis-
tributed with a real Gaussian distribution. There-
fore, the imaginary and the real parts of the Fourier
coefficients ãk �k�0� will also have a Gaussian distri-
bution with the same distribution. This assumption
was verified using Monte Carlo simulations, as is de-
scribed shortly. In our model, we are only requiring
that the phase change of the signal in a single round
trip is small. Over time the phase change may be-
come large.

The complex normal distribution of the Fourier co-
efficients ãk is completely defined by its first two mo-
ments. The mean of the real and the imaginary parts
of ãk is equal to zero for k�0, and the variance of
both components is equal to �k

2. The complex normal
distribution of ãk implies that the coefficients �ãk� �k
�0� have a Rayleigh distribution with a mean
�� /2�k. Therefore, the distribution of the squared
norm of the Fourier coefficients �ãk�2 �k�0� has an ex-
ponential distribution with a mean of 2�k

2. It follows
from Eq. (3) that

�k
2 = RPosc�Srf�fk�	�f, �4�
so that the rf spectrum at fk, Srf�fk� has an exponen-
tial distribution with a probability density function

p�x� =
1

�Srf�fk�	
exp�− x/�Srf�fk�	�, �5�

where x	0. The probability that x
Srf�fk�
x+dx is
equal to p�x�dx. The power spectral density of the rf
noise can be found either from the Yao–Maleki model
[2] or more accurately from the model in [4].

To verify the results in Eq. (5) we have simulated a
simple single-loop OEO using a Monte Carlo ap-
proach. The OEO contained a Lorentzian filter with a
FWHM of �=20 MHz, a Mach–Zehnder modulator
with a half-wave voltage of V�=3.14 V, and a bias
voltage of VB=3.14. The rf amplifier voltage gain was
equal to GA=7.5, the small-signal open-loop gain was
equal to GS=1.5, the noise power density was equal
to �N=10−17 mW/Hz, and the average oscillation
power at the output of the amplifier was equal to
30 mW. The loop delay 
 was set equal to 0.28 �s.
Figure 1 shows both the rf spectrum and the average
rf spectrum as a function of the frequency offset from
the carrier frequency. The measurement duration T
for calculating the rf spectrum Srf�f� was set equal to
2.8 ms and the frequency resolution was set equal to
357 Hz. For comparison, the average phase-noise
spectrum was added to Fig. 1. Figure 1 indicates that
the average rf spectrum is approximately equal to
the average phase noise spectrum in a wide fre-
quency range up to about 100 kHz.

Equation (4) shows that the variance of the com-
plex normal distributed Fourier coefficients, �k

2, de-
pends on the frequency offset fk, owing to the
frequency dependence of the rf spectral density,
�Srf�fk�	. The dependence of the Fourier coefficients
on the frequency offset can be eliminated by defining
a normalized Fourier coefficient, �rf�fk�
= ãk / �2RPosc�Srf�fk�	�f�1/2. Therefore, all of the nor-

Fig. 1. Radio frequency spectrum Srf�fk� as a function of
the frequency offset from the carrier frequency. The spec-
trum was calculated from a single simulation run with a
measurement duration of T=2.8 ms (light gray curve). The
rf spectral density (black curve) and the phase spectral
density (dark gray curve) were calculated by averaging the

results the over 350 runs.
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malized Fourier coefficients when k�0 have a com-
plex normal distribution with zero mean and a vari-
ance of 0.5.

Figure 2 shows the distribution of the real and the
imaginary parts of the normalized Fourier coeffi-
cients, Re��rf� and Im��rf�, calculated at three differ-
ent frequencies: 357, 179, and 71 kHz. Figure 2 dem-
onstrates that the distribution of each of the
normalized Fourier coefficients converges to a com-
plex normal distribution with a variance of 0.5. This
result is in agreement with our model for calculating
the phase noise distribution.

Figure 3 shows that the distribution of the normal-
ized rf spectrum, ��rf�fk��2, at a fixed frequency fk

=1/10, converges to an exponential distribution with
a mean value of 1. Identical distributions were ob-
tained for 20 different frequencies in the frequency
range 70–350 kHz. The predicted experimental dis-
tribution of the rf spectrum, which is the main result
of this Letter, can be verified by repeatedly measur-
ing the spectrum with a fixed duration and band-
width.

Fig. 2. (Color online) Distribution of the real and the
imaginary normalized Fourier coefficients, �rf�fk�, calcu-
lated from 30,000 simulation runs at three frequencies:
fk
=1/10 (diamonds), fk
=1/20 (circles), and fk
=1/50 (tri-
angles). The results are compared to a normal distribution
with a variance �2=0.5 (dashed curve).

Fig. 3. (Color online) Distribution of the normalized rf
spectrum, ��rf�fk��2, at a frequency fk
=1/10 calculated from
30,000 runs. An exponential distribution with an average
Our simulation enables us also to calculate the
cross-correlation between the normalized Fourier co-
efficients and its dependence on the measurement
duration:

Rfk,fm
= ��rf�fk��rf

* �fm�	. �6�

Figure 4 shows the cross-correlation value obtained
for fk=1/5
. The cross correlation was calculated for
three different measurement durations: T=1/ fk, T
=2/ fk, and T=20/ fk. From Fig. 4, we conclude that
the cross-correlation between the components at dif-
ferent frequencies is less than 0.1 when the measure-
ment duration is larger than T�20/ fk. When the
measurement duration is small a correlation is found
between the rf spectral components at nearby fre-
quencies. This result indicates that the phase noise
in OEOs is coherent for a limited duration.

To conclude, we have analyzed theoretically the
distribution of the rf spectrum at a given frequency
using a reduced model and a comprehensive numeri-
cal simulation. The rf spectral distribution at a fixed
frequency has an exponential distribution.
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of 1 is added for comparison (dashed curve).


