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Bragg-soliton formation and pulse compression in a one-dimensional periodic structure
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We present a method for efficiently exciting a Bragg soliton with a spectral content located mostly within the
bandgap of a one-dimensional periodic structure. The method is based on a new interaction between Bragg
solitons and on a high intensity enhancement, caused owing to the reduced propagation velocity inside periodic
structures. Our method can also be used for efficient compression of optical pulses. We have theoretically
demonstrated pulse compression with a compression ratio of 2800—over two orders of magnitude higher than
previously reported. The results open new possibilities for experimental demonstration of Bragg soliton propa-
gation and for pulse compression in one-dimensional periodic structures.
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I. INTRODUCTION

Bragg (or gap) solitons are solitary waves that propagate
inside nonlinear periodic dielectric media owing to the inter-
action between Kerr effect and Bragg reflection [1,2]. An
interesting class of Bragg solitons is in-gap solitons, which
are solitons with a spectral content located mostly within the
bandgap, or the forbidden band, of the periodic structure.
The excitation of in-gap solitons is a challenging task that
limits their experimental demonstration. When an incident
pulse is launched into the periodic structure, it may be re-
flected before an in-gap soliton is formed [3,4]. In-gap soli-
tons can be excited if high intensity incident pulses with a
specific profile are used [3]. However, the coupling effi-
ciency in this case is very low, especially for solitons with a
low propagation velocity [3]. Another limitation is nonlinear
instability, which causes the generation of multiple solitons
instead of a single soliton [3,5]. The problem of launching a
single in-gap soliton was solved by using a side-excitation
technique [4,6]. This technique cannot, however, be used for
exciting in-gap solitons in one-dimensional (1D) geometries
such as a fiber Bragg grating (FBG).

Owing to the stringent limitations associated with in-gap
soliton formation, the propagation of a single soliton in a
FBG has only recently been demonstrated [7]. In Ref. [8]
nonlinear switching, based on a solitonic effect, was demon-
strated in a highly nonlinear waveguide. However, the spatial
length of the transmitted pulse was an order of magnitude
larger than the length of the grating, and, thus, soliton propa-
gation was not demonstrated. The use of linear narrow-band
resonances in gratings may theoretically reduce the intensity
required for forming an in-gap soliton [9]. However, the use
of such resonances poses strict limitations on the shape of
the incident pulse. Moreover, when strong resonances are
used, the nonlinear effect, which is not taken into account in
the design, becomes dominant and severely limits the effi-
ciency of the coupling.

In this paper, we demonstrate a method that enables, for
the first time to our knowledge, an efficient excitation of
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in-gap solitons in 1D periodic structures. The method is
based on an interaction between Bragg solitons. This inter-
action is used to overcome the problem of multiple-soliton
formation as it enables the transmission of only the leading
soliton while the trailing solitons are backreflected. We also
use the reduced light velocity in periodic structures, often
referred to as slow light, to reduce the required intensity for
soliton formation. Using the slow-light effect, the incident
pulse can be adiabatically decelerated and compressed even
before nonlinear effects become dominant. In a previous
work, it was noted that the slow-light effect may play a role
in forming Bragg solitons [10]. However, the magnitude of
the slow-light effect was limited owing to linear and nonlin-
ear propagation effects [11,12]. We study the basic limita-
tions of the slow-light effect and show how to use it to sub-
stantially reduce the required intensity for soliton formation.
We note that the soliton formation described in Ref. [7] is
performed using a different method than reported in this pa-
per. In that study, a slow in-gap soliton was excited from a
high-intensity incident pulse with a central wavelength
within the bandgap of a FBG. Although the velocity of the
excited soliton was small, there was no use of the slow-light
effect to adiabatically compress the incident pulse and to
reduce the required intensity for soliton formation. Further-
more the soliton interaction used in our work was not uti-
lized in that work. Using our method, a single in-gap soliton
can be excited with a higher efficiency and with a lower
incident-pulse intensity compared to those used in Ref. [7]
In our scheme, the generated soliton is significantly
shorter than the incident pulse. Thus, our results may also be
important for obtaining compression of pulses with a weak
intensity. Previous works on pulse compression in FBGs
were based on a high-order soliton compression or on tailor-
ing the dispersion along the grating by using a chirp [11,12].
By adding a chirp based compression scheme to our in-gap-
soliton formation method, we demonstrate theoretically a
very high pulse compression of 2800—over two orders of
magnitude higher than obtained theoretically and demon-
strated experimentally in previous works [11,12]. The use of
the nonlinear interaction between pulses enables us to obtain
a single-soliton transmission for a wide range of input inten-
sities. With the use of current technology, our compression
scheme can be used for developing inexpensive picosecond-
pulse sources. While nanosecond pulses can be generated by
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FIG. 1. (Color online) Bandgap diagram of the grating. The
grating is divided into three sections. In the first section, the slow-
light effect is used to enhance the pulse intensity. In the second
region, a soliton interaction is used to form a single in-gap soliton.
In the third region, the soliton is compressed owing to the shifting
of the bandgap.

using a relatively low-cost microchip Q-switched laser, the
generation of picosecond pulses requires a more complex
and expensive source Ref. [12]. Using our method, picosec-
ond pulses can be generated by efficiently compressing
nanosecond Q-switched pulses.

II. ANALYSIS AND RESULTS

To demonstrate our method, we analyzed the propagation
inside the grating schematically described by the bandgap
diagram [13] given in Fig. 1. The colored strip in Fig. 1
represents the local bandgap, i.e., the wavelengths that are
reflected from different locations of the grating when nonlin-
ear effects are negligible [13]. The color code corresponds to
the wavelengths of the bandgap. The spectrum of the inci-
dent pulse is also marked in the figure with a violet color.
The grating can be divided into three main regions. In the
first region, apodization is used to adiabatically decrease the
pulse velocity and to enhance its intensity. In this region,
most of the spectrum of the incident pulse is located outside
the grating bandgap. In the second region, multiple pulses
are formed owing to modulation instability. The chirp of the
grating and the interaction between the pulses are used to
couple a single soliton into the bandgap while the other
pulses are backreflected. At the output of the second grating
region, a compressed in-gap soliton is obtained. To further
compress the soliton, we add a chirp to the last grating re-
gion. The soliton in this region is no longer an in-gap soliton
and it is compressed owing to the adiabatic decrease in the
effective dispersion along the grating.

The propagation of light in a nonlinear FBG can be de-
scribed by the following coupled-mode equations [3]:
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where &, is the envelope of the forward (+) and the back-
ward (—) electric waves; V,, is the group velocity in absence
of the grating; «(z) is the grating amplitude; I" is the nonlin-
ear coefficient; and &(z) is the chirp parameter. The soliton
solution of Eq. (1) is obtained for an infinite uniform grating
and is described by two parameters: 0<p<m and |v|<1,
where v is the velocity of the soliton, normalized by the
group velocity of the medium V,, and p is a free parameter
[2]. The energy, E, and the spatial full-width-at-half-
maximum (FWHM) of the soliton, &, are given by
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In the first grating region, the spectrum of the incident pulse
is centered outside the grating bandgap and the spectral
bandwidth of the pulse is significantly smaller than the spec-
tral width of the bandgap. Therefore, the pulse propagation
in this grating region can be described by the inhomogeneous
NLS equation [14]:
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the prime denotes a spatial derivative d/dz; y=1/ V=02
and v is the normalized group velocity:
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where () is the temporal frequency of the fields &,. The field
a(t,z) is directly connected to the fields &£, [14], and its
intensity is equal to |£,>+|E_|>. The function ¢(z), given
in Ref. [14], causes a phase shift in the solution and it
can be eliminated by using the transformation a(z)
—a(z)explifiP({)d{]. The first term in the right-hand side
of Eq. (4) shows that an enhancement of the field intensity is
obtained when v’(z) <O0.

The maximum intensity enhancement obtained owing to
the slow-light effect is limited by several phenomena given
in Eq. (4): Kerr nonlinearity, dispersion, and pulse deforma-
tion. In addition, effects that are neglected in Eq. (4), such as

066611-2



BRAGG-SOLITON FORMATION AND PULSE...

high-order dispersion terms and the reflection from the grat-
ing, may also limit the intensity enhancement. When all of
the limiting effects are small, Eq. (4) indicates that the inten-
sity of the pulse is enhanced by a factor 1/v,, where v is the
pulse velocity at the end of the first grating region, v,
=v(z=L,).

The distortive effect of the second term on the right hand
side of Eq. (4) can be calculated by ignoring dispersion and
nonlinear effects in Eq. (4). Assuming that the distortion is
small and that v(2)< 1, we obtain

g)a(z=0,t— Ar), (7)
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where At is the time delay due to the propagation in the
grating and «=«(z=L,). Equation (7) shows that the distor-
tion effect is negligible when vo>(KVgTO)‘“2, where T is
the temporal FWHM of the incident pulse. Defining a param-
eter széKVgTO, we require that w>1. For hyperbolic-
secant pulses and u=8, the maximum contribution of the
second term in Eq. (7) is less than 6% of the maximum
amplitude of a(z=0,7). The condition w>1 can also be ob-
tained by requiring that the effect of higher-order dispersion
terms, ignored in Eq. (4), is significantly smaller than the
effect of second-order dispersion. We note that the amplifi-
cation due to the slow-light effect is not very sensitive to the
frequency of the incident pulse. For example, by increasing
the central frequency of an incident pulse with a hyperbolic-
secant profile by the FWHM of the pulse spectrum, the am-
plification is reduced by only 18%.

The slow-light effect causes the incident pulse to be com-
pressed when propagating through the apodized region of the
grating, z<<L;. In the region L;<z<L;+L,, the incident
pulse will propagate as a Bragg soliton if the intensity and
duration of the compressed pulse fulfill the soliton condition
[14]. Assuming v§< 1, the peak power of the incident pulse
that is required for soliton formation can be obtained by
using Eqgs. (4) and (5):

2 = &; (8)
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The length of the apodization L; should fulfill two re-
quirements: it should be long enough to minimize the reflec-
tion from the grating [10,14], but short enough so that the
effects of second-order dispersion and Kerr nonlinearity will
not significantly affect the pulse. We assume in our calcula-
tions that the apodized section has a quarter-period sine pro-
file. We find that if the apodization length fulfills the condi-
tion L; <0.15uV, T, the effect of both dispersion and Kerr
nonlinearity is small. When L;<0.15uV,T, and only the
second-order dispersion affects the pulse propagation, we ob-
tain that the broadening of the root-mean-square pulse dura-
tion in the apodization region is less than 5%. When L,
<0.15uV,T, and only Kerr nonlinearity affects the pulse
propagation, the accumulated phase across the apodization
length is less than 0.247 for the intensity given in Eq. (8).

The apodization length should be long enough to mini-
mize reflections from the grating. We use the expression
given in Refs. [10,14] to obtain an upper bound on the re-
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flectivity R at the central frequency of the incident pulse,
which can be calculated using Eq. (6). In our grating, we
obtain that the reflectivity fulfills R < 1.6(kv3L;)2. Thus, if
the apodization length fulfills the condition L, =8V, T,/ u the
reflection is lower than 2.5%. In practice, we have found that
even apodization lengths shorter than 8V, T,/ u have a reflec-
tion lower than 2.5%. For =8, the two requirements on the
apodization length can both be met. Hence, our estimations
show that when w=8 the slow-light effect can be used to
enhance the pulse intensity by 1/v, when the maximum
pulse intensity is sufficient to generate a single Bragg soli-
ton.

The grating profile used in the next examples had an
apodized region with a quarter-period sine profile and a
length of L;=2 cm that began at z=0. For z>2 cm, the cou-
pling coefficient was equal to k=9000 m~'. The lengths of
the grating parts marked in Fig. 1 are L,=5 cm, L;=4 cm,
L,=5cm, and Ls=21 cm. The chirp parameter did not
change in the sections with the lengths L, L,, and L, and had
a linear profile for the section with the length L;. The value
of the chirp parameter &(z) was equal to O at the beginning of
the second grating region and was equal to —40.5 m™! at its
end. Owing to the chirp, about 90% of the incident pulse
energy overlapped with the grating bandgap at the end of the
second grating region. The chirp in the third grating region
was

8(z) =-40.5+1.35 X 10%(z-0.16)> m~". 9)

We also assumed a group velocity, V,=2X 10% m/sec and a
nonlinear coefficient ['=5 km™' W~!, as used in Ref. [12].

In order to simulate the propagation of a pulse in the
grating described by Fig. 1, Eq. (1) was solved by using the
method in Ref. [15]. The input pulse had a hyperbolic-secant
profile with a temporal FWHM of T,=640 ps. The peak in-
tensity and the central frequency of the input pulse were
chosen to obtain vo=1/12: & ..=34W and Q/V,
=9031 m™!, respectively. The reflectivity from the apodized
region was approximately 2.5%. Figure 2 shows the propa-
gation of the incident pulse in the grating for z<<L;+L,. The
figure shows that the incident pulse is spatially compressed
at the first grating region (z<L,) and eventually forms a
soliton. The result of the simulation shows that the pulse is
decelerated to a 1/12 of its original velocity and, hence, its
peak intensity is enhanced by a factor of 12, in agreement
with Eq. (4).

Owing to the chirp in the second grating region, the soli-
ton cannot penetrate the grating and it is, therefore, reflected.
In order to form an in-gap soliton, we used a significantly
higher intensity, Sé,max=340 W. The use of a higher intensity
caused the intensity enhancement due to the slow-light effect
to decrease to about 9.1 compared to 12, obtained in the
linear regime. The incident and transmitted pulses at the en-
trance and at the output of the whole grating are shown in
Figs. 3(a) and 3(b), respectively. The transmitted pulse had a
FWHM of 0.25 ps with a peak power of 160 kW, which
corresponds to a compression ratio of approximately 2800.
For comparison, in the compression scheme given in Ref.
[12] the incident pulse had an incident power of 1400 W and
the compression ratio was about 12.
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FIG. 2. (Color online) Formation of a soliton at the grating
region 0 <z<<L;+L,. The pulse is spatially compressed by a factor
of 12 owing to the slow-light effect and evolves into a Bragg
soliton.

When an in-gap soliton is excited, nonlinear instability
often causes the generation of multiple pulses [3,5]. Figure
3(c) shows that three pulses were generated at the input of
the second grating region. However, the linear chirp and the
nonlinear interaction between the pulses in the second grat-
ing region were used to overcome the nonlinear instability.
Figure 3(d) shows that only the leading pulse penetrates the
grating bandgap whereas the trailing pulses are backre-
flected. We have numerically validated that the transmitted
pulse at the output of the second grating region is an in-gap
soliton. The energy of the in-gap soliton is equal to 50% of
the input pulse intensity. In contrast, when a hyperbolic-
secant pulse with a peak power of about 1700 W is directly
launched into a uniform grating, as performed in Ref. [3], the
transmitted soliton carries only about 4% of the incident
pulse energy, assuming that the grating has the same param-
eters as in the end of the second grating region.
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FIG. 4. (Color online) Propagation of two identical solitons in
the second region of the grating. The interaction between the soli-
tons causes only the leading soliton to be transmitted while the
trailing soliton is backreflected.

The interaction between the pulses in the second region of
the grating can be understood by considering the interaction
between two identical solitons, demonstrated in Fig. 4. The
soliton parameters are p=0.05 and v=0.1. When the two
solitons propagate through the chirped region (7<z
<12 cm) they are decelerated [16]. Since the leading soliton
starts decelerating before the second soliton, the distance be-
tween the two solitons decreases and their interaction
strength increases. The figure shows that the interaction
causes the leading soliton to be transmitted while the trailing
soliton is backreflected. This result is not sensitive to the
phase of the input pulses and it is similar to that obtained in
Fig. 3.

We have validated that the in-gap soliton formation is not
sensitive to changes in the bandgap of the grating and to
changes in the intensity of the incident pulse. For example,
we obtained that a single soliton was transmitted for incident
pulse intensities in the range of 230 to 500 W. The in-gap
soliton formation was also not sensitive to the input pulse
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shape; we obtained the same qualitative results for an input
Gaussian pulse.

The spatial FWHM of the transmitted gap soliton at the
output of the second region of the grating is about 2.1 mm,
which corresponds to a compression factor of about 61. In
the third grating region, a quadratic chirp is used to further
compress the transmitted soliton. The soliton in this region is
accelerated. When the soliton is adiabatically compressed,
and the pulse energy is approximately conserved, Egs. (2)
and (3) show that when v approaches one, the soliton spatial
width ¢ decreases and the parameter p increases. Since stable
soliton propagation is possible only when the parameter p is
smaller than approximately 7/2 [17], the maximum achiev-
able velocity v is bounded and limits the maximum pulse
compression. Although the compression scheme is most ef-
fective when the final velocity v is close to one, to the best of
our knowledge, pulse compression has not been previously
studied in this case. Previous works were based on using the
inhomogeneous NLS equation to analyze the pulse compres-
sion. However, the NLS equation can only describe Bragg
solitons that fulfill p<<1 [18]. Therefore, the amount of com-
pression that was obtained by using the inhomogeneous NLS
equation was limited to about 3-10 [11]. In our example, we
found that the velocity of the soliton before exiting the grat-
ing was v=0.986, which corresponds to p=0.75. The spatial
compression of the pulse in the third grating region was
equal to 47, giving a total compression factor of about 2800.

III. CONCLUSIONS

In conclusion, we have demonstrated a method for an
efficient in-gap soliton formation in FBGs. Our method is
based on using a soliton interaction, which enables us to
obtain a single-soliton transmission when multiple solitons
are formed. We have also used the slow-light effect to sub-

PHYSICAL REVIEW E 74, 066611 (2006)

stantially reduce the required intensity for the soliton forma-
tion. While the slow-light effect in FBGs has been studied in
previous works [10-12], we have studied, for the first time to
our knowledge, the fundamental limitations of this effect.
Our analysis enabled us to significantly increase the magni-
tude of the slow-light effect beyond what was obtained in
previous works.

When using our method for in-gap soliton formation, the
spatial width of the formed soliton is significantly shorter
than the width of the incident pulse. Thus, our soliton-
formation method can also be used for pulse compression.
By adding a chirp-based compression scheme to our in-gap-
soliton formation method, we have theoretically demon-
strated a very high pulse compression of 2800—over two
orders of magnitude higher than obtained theoretically and
demonstrated experimentally in previous works [11,12]. The
incident pulse had a peak power of only 340 W, which is
significantly lower than the power used in previous works on
pulse compression in FBGs.

The compression scheme described in this paper may be
applied to generate high-intensity picosecond pulses. Using
our scheme, nanosecond pulses, generated by Q-switched la-
sers, can be efficiently compressed into picosecond pulses.
Therefore, using our method for compressing pulses gener-
ated by Q-switched lasers may be an alternative to mode-
locked lasers used for generating picosecond pulses. The rep-
etition rate of pulses generated by Q-switched lasers is
significantly lower than that of pulses generated by mod-
elocked laser. Therefore, Q-switched lasers can be easily am-
plified in order to obtain very high optical-pulse intensities.
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