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Multirate Synchronous Sampling of Sparse
Multiband Signals

Michael Fleyer, Alexander Linden, Moshe Horowitz, and Amir Rosenthal

Abstract—Recent advances in electro–optical systems make
them ideal for undersampling multiband signals with very high
carrier frequencies. In this paper, we propose a new scheme for
sampling and reconstructing of a multiband sparse signals that
occupy a small part of a given broad frequency range under the
constraint of a small number of sampling channels. The locations
of the signal bands are not known a priori. The scheme, which
we call synchronous multirate sampling (SMRS), entails gath-
ering samples synchronously at few different rates whose sum is
significantly lower than the Nyquist sampling rate. The signals
are reconstructed by finding a solution of an underdetermined
system of linear equations by applying a pursuit algorithm and
assuming that the solution is composed of a minimum number of
bands. The empirical reconstruction success rate is higher than
obtained using previously published multicoset scheme when the
number of sampling channels is small and the conditions for a
perfect reconstruction in the multicoset scheme are not fulfilled.
The practical sampling system which is simulated in our work
consists of three sampling channels. Our simulation results show
that a very high empirical success rate is obtained when the total
sampling rate is five times higher than the total signal support of
a complex signal with four bands. By comparison, a multicoset
sampling scheme obtains a very high empirical success rate with a
total sampling rate which is three times higher than the total signal
support. However, the multicoset scheme requires 14 channels.

Index Terms—Analog–digital conversion, discrete Fourier trans-
forms (DFTs), least squares methods, matrix inversion.

I. INTRODUCTION

I N many applications of radars and communications sys-
tems, it is desirable to reconstruct a multiband sparse signal

from its samples. When the carrier frequencies of the signal
bands are high compared to the overall signal width, it is not
cost effective and often it is not feasible to sample at the Nyquist
rate. It is therefore desirable to reconstruct the signal from sam-
ples taken at rates lower than the Nyquist rate. Recent advances
in electro–optical systems enable undersampling of multiband
sparse signals with carrier frequencies that can be located in a
very broad frequency region (0–20 GHz) [1]. Such a broad band-
width cannot be obtained in the current electronic technology.
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To exploit the advantages of optical sampling systems the under-
sampling should be performed using a small number of channels
operating at high sampling rates. Moreover, there is an inherent
advantage to sampling, in each channel, near the maximum sam-
pling rate allowed by cost and technology. This is because sam-
pling at higher rates increases the signal-to-noise ratio in the
sampled signals [2].

There is a vast literature on reconstructing multiband sig-
nals from undersampled data [3]–[7]. Most of the methods are
based on a multicoset sampling scheme. In a multicoset sam-
pling scheme, low-rate cosets are chosen out of cosets
of samples, obtained from time uniformly distributed samples
taken at a rate which is greater than or equal to the Nyquist
rate [5]. In each channel, the sampling is offset by a dif-
ferent predetermined integer multiple of the reciprocal of the
rate . The data from the different sampling channels are then
used to reconstruct a signal by solving a system of linear equa-
tions.

In [4], the problem of blind multiband signal reconstruction
was first presented and solved by using a multicoset sampling
scheme. In a blind signal reconstruction, the frequency support
of the signal is not known a priori. Under certain conditions on
the sampling rate and the number of channels, a proper choice of
the time offsets between the sampling channels ensures a unique
reconstruction in case that the signal bands locations are known
a priori [5], or unknown a priori [4], [6], [7].

The main advantage of a multicoset sampling scheme is the
ability to construct a universal sampling pattern [5], [7]. The al-
gorithms for blind signal recovery of [7] and the sufficient con-
ditions for their success rely on this property. However, in order
to obtain a high success rate, the sampling should be performed
using high number of sampling channels. Moreover, in order to
obtain the theoretical minimum sampling rate, the bandwidth of
the signal bands should be equal.

In this paper, we propose a different sampling and reconstruc-
tion strategy. The sampling is performed at different rates
each of which is an integer multiple of a basic sampling rate. The
sampling of all channels starts simultaneously at a given time

. We call this scheme a synchronous multirate sampling
(SMRS) scheme. In a previous work [2], an algorithm for blind
multiband signal reconstruction using asynchronous multirate
sampling (MRS) scheme is described. That sampling scheme
has been successfully implemented in experiments [10]. The
main advantage of the asynchronous sampling scheme is that
it does not require the knowledge of the time offset between
the sampling channels. Hence, the hardware for the implemen-
tation becomes simple and the sampling is robust to errors in
sampling times. This is because each sampling channel can be
implemented separately without synchronization to other chan-
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nels. An accurate reconstruction of the discretized signal spec-
trum by using this scheme requires that each frequency of the
support of the signal be unaliased in at least one of the sampling
channels. On the other hand, an SMRS scheme can reconstruct
a signal in many cases. Included is the case that each part of
the signal is unaliased in at least one channel; the condition of
success in the unsychronized scheme [2]. In addition, an SMRS
scheme can also reconstruct signals in other cases as well. This
is because by using a system of linear equations aliased signals
can often be reconstructed. However, synchronization requires
that errors in the sampling time between the different channels
as well as the differences between the transfer functions of the
sampling channels be kept extremely small.

The Fourier transform of the undersampled signals is related
to the original signal through an underdetermined system of
linear equations that is described with a binary sampling matrix.
With an asynchronous sampling scheme no such linear system
exists.

We provide sufficient conditions for a unique recovery of the
multiband signal locations and, consequently, the signal itself
based on the assumption that the original signal is the sparsest
solution among all signals that yield the same sampled data.
However, these sufficient conditions require the use of many
sampling channels. Therefore, such a scheme is impractical. In
the scheme described in this paper, we use fewer channels thus
sacrificing the sufficient conditions. Instead of assuming that the
original signal is the sparsest we assume that the original signal
is band sparse. This assumption is different from the one used
to obtain sufficient conditions. However, it allows us to attain a
high empirical reconstruction success rate using few sampling
channels.

The sampling pattern of the SMRS scheme can also be
obtained by using an equivalent multicoset sampling scheme.
However, since the required time shifts between different
sampling channels is very small, such a scheme cannot be
practically implemented. Moreover, the number of channels in
the equivalent multicoset sampling scheme is very high (on the
order of 55 in one of our practical examples). The equivalent
multicoset scheme enabled us to compare the empirical recon-
struction success rate of SMRS to the reconstruction methods
in [7] for the practical problem studied in this manuscript. In
[7], two algorithms denoted by SBR4 and SBR2 are given for
a blind reconstruction of sparse multiband signal. Since the
sampling pattern in the equivalent multicoset scheme was not
a universal pattern, we could not implement the algorithm de-
scribed in SBR2 that enables a perfect reconstruction by using
fewer sampling channels than required in SBR4 algorithm.
We have implemented the SBR4 algorithm and compared its
performance to our reconstruction method. The reconstruction
method described in this manuscript gives a higher empirical
reconstruction success rate than obtained by using SBR4 algo-
rithm for four bands complex-valued signals and for real signals
with a total bandwidth that is less than one fifth of the total
sampling rate. The higher success rate is obtained since when
the sampling rate in each channel is high, the probability that
a sparse signal aliases simultaneously in all sampling channels
becomes very low in the SMRS scheme. It is lower than in a
multicoset sampling scheme in which, because all channels

sample at the same frequency, an alias in one channel is equiv-
alent to an alias in all channels. A universal sampling pattern
that ensures a perfect reconstruction in a multicoset sampling
scheme [5] can be obtained with a lower total sampling rate
than required by the SMRS scheme. However, such a scheme
requires a higher number of channels than is required in the
SMRS scheme to achieve comparable empirical reconstruction
success rate. This number can be prohibitively high, rendering
such a sampling scheme impractical when implemented with
electro–optical systems.

II. SYNCHRONOUS MULTIRATE SAMPLING

In this section, we describe a general synchronous multirate
sampling. Let be an assumed maximum carrier frequency
and let be the Fourier transform of a
complex-valued signal that is to be reconstructed from
its samples. Throughout the analysis, we calculate the Fourier
transform by

The modifications required to reconstruct real-valued signals
are described in Appendix I. We assume that the signal to
be sampled, in addition to being bandlimited in the frequency
range , is multiband; i.e., the support of its Fourier
transform is contained within a finite disjoint union of intervals

, each of which is contained in . By assump-
tion, .

We also assume that the signal is sparse in a frequency do-
main; i.e., its spectral support is contained within intervals

, where .
In the SMRS scheme, the signal is sampled at different

sampling rates . The signals, modulated by an
optical pulses train at th channel , are given by

(1)

where is a Dirac delta “function.” The Fourier transform
of the sampled signal in the th channel satisfies

(2)

It follows from (2) that all the information about the sampled
Fourier transform is contained in the interval . We
refer to this interval as the th baseband.

In our sampling scheme, each sampling rate is an integer mul-
tiple of a basic frequency resolution

(3)

For each , we define an integer and scalar
, such that . Equation (2) becomes

(4)
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For each and , we define

(5)

Using these definitions, the Fourier transform of the sampled
signal at the th channel becomes

(6)

By using the same frequency resolution for all the sampling
channels we are able to construct a system of linear equations
that allows reconstruction of the Fourier transform of the signal.
By defining to be the number of cells in the
support of the original signal , (6) becomes

(7)

Equation (7) can be written as a matrix equation. We define
an matrix whose elements are given by

(8)

Each element of is equal to either 1 or 0. This is because
there is at most one contribution in the infinite sum of ’s which
is made when . Moreover, is independent
of and the signal . It depends only on the sampling rates
and frequency resolution.

The vectors and are given by

(9)

By substituting (8) and (9) into (7) we obtain a system of
linear equations for th channel

(10)

For each value of , (10) defines a set of linear
equations that relate the Fourier transform of the signal to the
Fourier transform of its samples. The vector in (10) is the
same for all the equations because it does not depend on the
sampling. Therefore, we can construct a single system of linear
equations

(11)

where the vector and the matrix are obtained by con-
catenating the vectors and matrices as follows:

...
...

The matrix has exactly nonvanishing elements in each
column. These correspond to the locations of the spectral replica
in each channel baseband. We note that the matrix is different

from that used in the multicoset sampling scheme [5]. In the
SMRS scheme, the sampling matrix is binary, whereas in the
multicoset sampling scheme, the sampling matrix is a subma-
trix of some discrete Fourier transform (DFT) matrix and thus
contains complex exponentials.

To invert (11) and calculate the signal Fourier transform ,
it is necessary that the number of rows in be equal
to or larger than the number of columns . Defining

makes this condition equivalent to the condition

(12)

The condition on the sampling rates given in (12) is consis-
tent with the requirement that the sampling rate be greater than
the Nyquist rate of a general signal whose spectral support is

. However, when sampling sparse signals, an inversion
of the matrix may be possible even if the condition (12) is not
fulfilled. Our objective is to invert (11) in the case of sparse sig-
nals with sampling rates .

III. INVERSION ALGORITHM

In this section, we describe the inversion algorithm for the
SMRS scheme assuming a sparse signal with unknown signal
bands locations. The purpose of the algorithm is to invert (11);
i.e., to calculate the vector from the vector .

We denote by the set of matrix columns that correspond to
the possible support of a signal, and by the matrix with the
corresponding columns. The resulting system of equations that
relate the original signal to the sampled signal is

(13)

where contains only elements defined by . By inverting
(13), it is possible to reconstruct the original signal cells vector

for any frequency . The reconstruction is unique when
the matrix has a full column rank.

Without the knowledge of the signal support , a unique in-
version of (11) is not possible in the general case, since the orig-
inal matrix is not full column rank. However, if the desired
signal vector is assumed to be sparse for each , then we
obtain the optimization problem

(14)

This is a standard problem of compressed sensing and the suf-
ficient conditions for obtaining a unique solution of (14) were
studied in several works (see [9], for example). In Section III-A,
we provide sufficient conditions for the SMRS scheme to re-
cover a unique solution using the sparsity assumption on the
original signal.

A. Sufficient Perfect Reconstruction Conditions
for Sparsest Signal Recovery

The conditions on the existence of the sparsest solution of the
underdetermined system of linear equations such as (14) can be
found by using the spark [9] of the sampling matrix.

The spark of a given matrix is the smallest number of
columns of that are linearly dependent. For a universal sam-
pling pattern, the spark of a sampling matrix is equal to the

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on February 19,2010 at 07:03:22 EST from IEEE Xplore.  Restrictions apply. 



FLEYER et al.: MULTIRATE SYNCHRONOUS SAMPLING OF SPARSE MULTIBAND SIGNALS 1147

number of the sampling channels plus one [5]; i.e., any sub-
matrix created by selecting any set of columns of the sampling
matrix has full column rank.

The unique solution of (14) is guaranteed if the spark of the
matrix is at least twice the sparsity of the solution vector

[9]. Calculating the exact value of the spark of may
be practically impossible, but a lower bound can be obtained by
calculating the mutual coherence— (see [9, Lemma 1]). The
mutual coherence of a given matrix is the largest absolute
normalized inner product between different columns from .
According to [9, Th. 2], a unique sparsest solution of (11) exists
if . This gives us a lower bound theoret-
ical condition for perfect reconstruction of the SMRS scheme.
By choosing channels whose frequencies satisfy

, we obtain ( stands for the least
common multiple).

We choose where is the maximum number of
bands with maximum width . Set the sampling rates of the
channels be equal to , where the integers are
chosen to satisfy for each pair of
channels . Therefore, by [9, Th. 2], the unique
solution of (14) is guaranteed for .

Notice that the multiple measurements vector (MMV) system
of linear equations (15) can be solved separately for each .
Then, a unique sparsest solution exists for each one of the
equations. There are several known methods such as orthogonal
matching pursuit or basis pursuit [9] for obtaining a sparsest
solution to an underdetermined system of equations. For both
methods, the sufficient condition for obtaining a unique sparsest
solution to (14) is that [9, Th. 3 and 4].
Therefore, the theoretical sufficient condition also guarantees
that practical algorithms converge to the right solution under
the requirements we impose on the original signal and on the
sampling scheme.

Our sufficient conditions do not take into account the reduc-
tion procedure and the assumption that the signal is composed
of the minimum number of bands. These assumptions will be
introduced in the sequel. Our simulations results show that em-
pirical reconstruction success rate that is close to unity is ob-
tained even when our sufficient conditions on the number of the
samplers and their sampling rates are not satisfied.

B. SMRS Scheme Implemented With a Small
Number of Sampling Channels

In this work, we assume that the signal or the sampling time
window are finite as occurs in practical applications. The re-
sulting finite-time signal can no longer be considered as a multi-
band signal in a strict sense since its spectrum does not equal to
zero over closed intervals. Since time-limited signals are sam-
pled within a finite time window they are completely character-
ized by their DFT sequence. We assume that the signal can be
accurately reconstructed by using only few significant spectrum
components and by discarding small ones. Similar assumption
is commonly used in the field of compressed sensing for repre-
senting signals in a general orthogonal basis [8]. In practice, the
small spectrum coefficients that are below some threshold can
be discarded without significantly effecting the original signal.

Moreover, in practical systems, the dynamic range is limited due
to noise and distortions, and therefore, a threshold is used to
eliminate small frequency components that are below the sensi-
tivity of the system.

In multirate sampling scheme, the sampling frequencies are
multiple of a basic frequency resolution (3). The basic
frequency resolution defines the width of each frequency
cell of the original and the sampled signal vectors and

, respectively. Since we restrict ourself to a discrete signal
problem, we discretize the continuous variable of the system
of (11). There is no unique way for choosing the discrete value
of . However, by selecting a time window with a duration

and calculating the DFT of the sampled sequences, we
obtain a discrete spectrum at frequencies that correspond to a
single sample that is taken in each frequency cell. Therefore, the
discretized equals 0. When the duration of the time window is
longer than , it is also possible to calculate the spectrum
with the required resolution . One could increase the
frequency resolution by choosing a window duration of ,
where is an integer number. This would result in a system
of equations known as an MMV

(15)

where . The solution of such
system of equations can be obtained by extending the algorithm
described in this manuscript. In the rest of this paper, we assume
that the frequency resolution of the discrete spectrum equals
and the discretized value of equals zero.

Because we are using fewer channels than are required to
guarantee a solution, we require that the signal possesses some
mathematical properties. These properties are necessary for suc-
cessful blind signal reconstruction using the SMRS scheme with
small number of the sampling channels.

Property 1—Multiband: The DFT of the signal consists of
a number of bands that lie inside a region ,
where is known a priori. A band is defined as a sequence
of nonzero amplitude values in the discrete Fourier domain.

The maximum frequency fulfills the requirement
. This requirement is explained

in Section III-C that describes the reduction procedure.
Property 2—Sparse: The signal is sparse; i.e.,

. In the discrete problem, the number of nonzero
values in the signal DFT vector must be small compared to
the maximum vector length . This property is es-
sential since we are looking for a sparse solution of the under-
determined system of linear equations (11).

Property 3—Minimal Bands: We require that the original
signal contains the minimum number of bands among all the
signals that result in the same sampled data . Therefore,
we assume that the signal has a band-sparse structure that is
different from a regular sparsity assumption used in our suffi-
cient reconstruction conditions. In Section III-C, we propose a
reduction scheme that provides a band-structure model for each
sampled signal.

Property 4—Uniqueness: There are cases in which the
knowledge of the signal support is not sufficient for signal
reconstruction. This occurs when the sampling matrix
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corresponding to the original signal is not full column
rank. A unique solution to

(16)

exists only if has full column rank [11].
Therefore, we assume that the original sampled signal cor-

responds to a full column rank matrix and the solution exists
provided the signal support.

Property 5—Aliasing: We assume that in the absence of noise
a zero value in a baseband signal frequency corresponds to a
zero value in all the frequencies in the original signal that are
downconverted to that frequency; i.e., if and only
if for all . This assumption
does not hold for specific signals in which two (or more) dif-
ferent frequency components completely cancel each other due
to aliasing. Clearly, in the noiseless environment, the proba-
bility of this happening is zero. However, in a noisy environ-
ment, this assumption is not always fulfilled since a threshold
on the sampled signals has to be defined. We analyze this case
in Appendix III.

C. Reduction Procedure

By observing the sampled signals, one can detect baseband
frequencies in which there is no signal. These baseband fre-
quencies can be used together with Property 5 to eliminate orig-
inating frequencies and thus to reduce the matrix in (11). The
elimination is similar to one described in asynchronous MRS
[2]. In Appendix II, we rigorously describe the mathematical
mechanism behind the reduction procedure.

We define the indicator function as follows:

for all such that
otherwise.

(17)

The function is periodic with period . Therefore,
is a periodic extension of an indicator function over the base-
band .

We define the as follows:

(18)

The function equals 1 over the intersection of all the upcon-
verted bands of the sampled signals and it defines the columns
of the matrix that are retained in forming the reduced matrix

. All other columns are eliminated and their corresponding
elements in the vectors are also eliminated. After the elimi-
nation of the columns from the matrix , the matrix rows that
correspond to zero elements in and their corresponding ele-
ments in the vectors are also eliminated.

The reduction process is demonstrated in Fig. 1 for a two-
band complex signal and two sampling channels. The upcon-
verted supports of the sampled signals at sampling frequencies

and are denotes by and , respectively. Two signal
bands overlap in the first sampling channel. The possible signals

Fig. 1. Demonstration of the reduction procedure. Signals sampled at rate �
contain all possible replicas of the original signal. Possible signals locations are
the intersection between the supports of the possible signals sampled at rates �
and � . In channel 1, the pink color denotes overlapping of signal supports.

locations are described by the function which is the intersec-
tion of and . The idea behind the reduction procedure is
also explained in Appendix II.

In some cases, the function equals 1 only for frequencies
within the spectral support of the signal. In such cases, the re-
sulting equations are identical to those found in Section III-B
[see (16)]. However, in other cases, as shown in Fig. 1, may
also equal 1 for frequencies outside the true signal spectral sup-
port. In such cases, the reduced matrix will have more columns
than the matrix obtained in the case in which the spectral sup-
port of the signal is known . As a result, the inversion
requires finding the values of more variables.

Each eliminated zero energy baseband component causes
elimination of respective rows and columns. The elimination
of one baseband entry means that all the frequencies that are
downconverted to that baseband entry (the aliasing frequen-
cies) are also eliminated. This is because of our Property 5:
zero entry in the baseband corresponds to zero entries in all
of the frequency components of the original signal that are
downconverted to frequency of the baseband entry. There-
fore, elimination of one baseband entry results in elimination
of to corresponding
columns. Thus, if the number of the zero elements in is
sufficiently large, the number of rows in the matrix may be
larger than the number of columns.

If in addition, matrix has a full column rank, the problem
is either consistent or overdetermined. In such cases, there is
a unique inversion to the reduced system of linear equations
which can be found using the Moore–Penrose pseudoinverse.
If the matrix is not full column rank, the problem is underde-
termined and the inversion is not unique. A unique solution in
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such cases can be obtained either by increasing the total sam-
pling rate or by adding additional assumptions on the signal.

The choice of sampling rates imposes restrictions on the
possible values of for which an inversion of the reduced
system of linear equations is possible. For the matrix to
have full column rank, it must not have any identical columns.
Since we do not restrict the possible locations of the known
signal bands, any combination of columns of the matrix
may appear in the matrix . Therefore, we require that not
have any identical columns. The matrix is composed of
submatrices whose columns are periodic

For the matrix not to be periodic, it is required that any
common period of the submatrices be larger than .
This condition is met if the least common multiple of the

is larger than . As a result, should fulfill
.

D. Ill-Posed Cases

In many cases, the matrix for unknown band locations is
not full column rank. In these cases, there are subsets of matrix
columns that are linearly dependent. Using this linear depen-
dence, a solution to the reduced system of linear equations can
be found. However, any solution found can be used to construct
an infinite number of solutions to the equation. Thus, there is no
unique solution and the inversion problem is ill-posed.

We attempt to reconstruct a signal in the case in which the
inversion problem is ill-posed by applying Property 3. Since
the original signal is multiband, possible signal locations have a
band structure as explained in Appendix II. Under the assump-
tions stated earlier (the assumption that leads to matrix reduc-
tion, the existence of the unique solution to (16) when the signal
bands are known, and band sparsity) the inversion problem is
reduced to finding the solution of the reduced system of linear
equations that is composed of the minimum number of bands.
The problem is NP-hard since we need to test every possible
combination of bands.

The algorithm described here is of lower complexity and its
purpose is to find a solution that is composed of the minimum
number of bands without testing all the combinations. The re-
sulting algorithm attains a lower success rate but decreases the
runtime significantly as compared to an NP-complex algorithm.
We do not provide the conditions under which the correct solu-
tion is obtained.

Our algorithm is based on the orthogonal matching pursuit
(OMP) [9]. This algorithm belongs to the category of the
“greedy search” algorithms. The original OMP algorithm is
used to find the sparsest solution of underdetermined equa-
tions [9] where is an underdetermined matrix. The
sparsest solution is the solution having the smallest norm
where is the number of nonzero elements in the vector .
The original OMP algorithm collects columns of the matrix
iteratively to construct a reduced matrix . At each iteration

, the column of which is added to to produce a matrix
is the column which results in the smallest residual error

where for every vector .

The iterations are stopped when some threshold is achieved.
Sufficient conditions are given for the algorithm to obtain the
correct solution [9].

We denote , and . Since we are
seeking the solution of with the smallest number of
bands and not the smallest norm , we modify the OMP
algorithm. Instead of choosing a single column as in [9], we
select iteratively blocks of columns. Each band that corresponds
to sequence of ones of the function identifies a possible band
of the spectral support of the reconstructed signal. The columns
of the matrix can be divided into blocks. The th band
contains the index of columns of the matrix .

We start the iteration with the empty set of column
indexes, the empty matrix , and the set , so
that at th iteration the following holds: . At the

th iteration the algorithm must decide which band to
add to . If the index set is chosen, then
and . The matrix is the matrix whose
columns are selected from according to the indexing set .

The band added is the one that produces the smallest residual
error where is the
matrix obtained by adding the band indexed by to . The
algorithm stops when the threshold is reached. The threshold

is a very small number and reflects upon the finite numerical
precision of the calculations.

The algorithm performed well in our simulations. However,
there were rare cases in which the support of the reconstructed
solution did not contain all the originating bands and rare cases
in which the reconstructed signal was incorrect even though all
the assumptions on a signals given in Section III-B were ful-
filled. The algorithm failed primarily for one of two reasons.
One of them was due to the inclusion of a band that reduced the
residual error on the one hand, but on the other hand, caused
a resulting matrix to be not full column rank as hypothe-
sized in our problem (in Section III-B). This can happen, for
example, when a band consists of a correct subband and erro-
neous subblocks. Including any erroneous subblocks may result
in an ill-posed problem. Another reason for failure was a large
dynamic range of the signals. When reconstructing such signals,
correct bands may be ignored by the algorithm in cases that the
energy within the bands is significantly lower than the energy in
other bands.

It is difficult to find adequate sufficient conditions for the
modified OMP to succeed. There are two main reasons for this.
First, in the previously described reduction procedure, different
signals result in different reduced matrices and different band
partitions. Second, because of aliasing or adjacency, the size of
each band may be different. These situations occur even if the
signal bands are of the equal size and the number of bands is
constant, but their locations are varying. In our algorithm, we
do not make any assumption on the signal band widths or their
number.

IV. SIMULATIONS RESULTS

The ability of the signal reconstruction algorithm to recover
different types of signals was tested. In all of our simulations, it
was assumed that there are only three sampling channels as used
in our electro–optical system [10]. In the first set of simulations,
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TABLE I
SIMULATION PARAMETERS

TABLE II
EMPIRICAL SUCCESS RATES OBTAINED BY USING SMRS RECONSTRUCTION

SCHEME AND BY USING SBR4 CALCULATED FOR FOUR-BAND COMPLEX

SIGNALS AND FOR FOUR-BAND REAL SIGNALS

the ability of the algorithm to reconstruct multiband complex
and real-valued signals with different spectral supports, shapes,
and bandwidths that were not known a priori was tested. Addi-
tional simulations were performed in which real-valued multi-
band signals were contaminated by additive white noise. Simu-
lation parameters (frequency range, sampling rates, and number
of signal bands) are shown in Table I. Band carrier frequencies
were chosen from a uniform distribution over the maximum sup-
port. In different simulations, the width of each band (hence the
total bandwidth of the signal) was varied. The reconstruction al-
gorithm was unaware of the number of signal bands. In all the
simulations, the frequency resolution was set to 5 MHz. For each
set of simulations, we counted the mean rate of ill-posed cases
in which the modified OMP algorithm had to be used to recover
the signal. Mean times for accurate signal reconstruction were
also recorded. Failures of the reconstruction were either because
one of the initial assumptions given in the previous section was
not fulfilled or because of the failure of the modified OMP al-
gorithm.

Since the data obtained by the SMRS scheme can be also ob-
tained by a multicoset sampling scheme, we compared the em-
pirical success rate of our reconstruction algorithm to the suc-
cess rate obtained using SBR4 scheme of [7]. We could not im-
plement the algorithm described in SBR2 that enables a perfect
reconstruction by using less sampling channels than required in
SBR4 scheme since our sampling pattern is not universal. In
order to obtain a universal sampling pattern as used in SBR2,
the number of sampling channels should be significantly higher
than 3.

The sampling rates in our simulations were selected based
on the constraints on the maximum sampling rate of the optical
system [10]. In general, the sampling rates should be chosen to
be as close as possible to the maximum sampling rate to achieve
highest SNR as well as maximum total sampling rate. In addi-
tion, the necessary condition on the of the sampling rates
(see Property 1) must be applied. It can be easily shown that

the effective sampling rate (number of samples per unit time) is
bounded by

(19)

where is the greatest common divisor. To maximize the ef-
fective sampling rate rates should be chosen in a way that mini-
mizes the number of sampling times common to more than one
channel. This is achieved when the is minimal. In addition,
we require each to be greater than the maximum possible
signal support . This is to increase the
number of gaps in the baseband and thus to improve the reduc-
tion procedure.

In some choices of frequency rates, there are several values
of the basic frequency resolution that satisfy (3). If the max-
imum signal widths are known beforehand, this information can
be used to choose . Whereas a smaller gives a higher suc-
cess rate, too small value results in too large sampling matrix.

The simulations were performed on a 2-GHz Core2Duo
central processing unit (CPU) with 2-GB RAM storage in
the Matlab 7.0 environment (no special programming was
performed to use both cores).

A. Ideal Multiband Signals

Since we assume sampling in a finite length time window we
represent the signals in our simulations by their DFT. Therefore,
the signals we use in our simulations are sparse in a discrete
sense; i.e., most of the elements of the DFT of the signal sampled
at the Nyquist rate are equal to zero. On the other hand, the
continuous-valued Fourier transform of the same signal does
not have zero energy in any band with a finite support due to
the finite time window of the signal.

For ideal signals, the algorithm was evaluated by a perfect
reconstruction criterion for the DFT sequence; i.e., a mean dif-
ference between the DFT of the original and the reconstructed
signal is less than . Whenever this error was attained, the
reconstruction was deemed to have been successful. Otherwise,
it was deemed to have failed. The threshold for the modified
OMP was chosen accordingly: .

The same data that are obtained using the SMRS scheme can
always be obtained by a multicoset sampling scheme since the
ratio between each pair of sampling rates is rational. However, in
our examples, the number of the sampling channels in the equiv-
alent multicoset scheme is significantly higher than in SMRS
where only three sampling channels were used. The sampling
rate of each coset is equal to 50 MHz and the number
of multicoset sampling channels is equal to 58. The time
offset between the cosets is a multiple of 1/399 GHz. The
downsampling factor is 399 GHz/50 MHz .

In the first set of simulations, we assumed complex signals
to compare the results to those published using the multicoset
sampling recovery scheme of [7]. Both the real and imaginary
spectra of the signal within each band were chosen to be nor-
mally distributed. Specifically, for each frequency in a
chosen band, the real and imaginary components of were
chosen randomly and independently from a standard normal dis-
tribution. The amplitude of each bands’ spectra was scaled by
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Fig. 2. Empirical success percentages for four-band complex signals calculated
by using the SMRS reconstruction scheme (circles) and by using SBR4 in [7]
(crosses) as a function of the spectral support (BW) for � � 20 GHz
and a total sampling rate � � 3 GHz. The number of sampling channels
is equal to 3 in the SMRS scheme and is equal to � � �� in the equivalent
multicoset sampling scheme.

a constant such that each band’s energy was equal to a uni-
formly generated value on the interval ; i.e., for specific
band

Identical DFTs of the signals were used to test the multicoset
sampling reconstruction scheme of [7]. The empirical success
rates were obtained for each bandwidth (BW) of the original
signal DFT by using 10 000 runs. The success rates for the two
reconstruction methods is shown in Fig. 2.

As is evident from Fig. 2, the empirical success percentage
of an ideal reconstruction is high using the reconstruction
method described in this manuscript when BW .
The empirical success rate is significantly higher than obtained
by using SBR4 scheme of [7]. The results given in [7] shows
that for the empirical perfect reconstruction is achieved
with at least six channels and with BW . In the
SMRS scheme, a very high empirical success rate was obtained
using only three channels with a total sampling rate that obeys

BW . The total sampling rate in a multicoset scheme
can be significantly lower than required in SMRS scheme.
However, the number of channels that are used in that scheme
is significantly higher compared to that used in SMRS where
only three sampling channels are used. For example, in SBR2
scheme (downsampling factor ) the empirical success
rate was calculated for complex signals with four bands, each
having a 100-MHz bandwidth. A very high reconstruction
success rate was obtained for BW greater than about
3. However, the number of sampling channels was
compared to only three channels in SMRS.

The mean percentage of ill-posed cases is shown in Fig. 3.
The figure shows that for BW , in most of the
tested cases, the matrix inversion was ill posed. Nonetheless, a
very high success percentage was obtained for these cases. This
indicates that our modified OMP algorithm was very successful
in resolving these cases.

Fig. 4 shows the mean runtime as a function of BW
(constant total sampling rate and varying signal support). Be-
cause matrix inversion is the most computationally intensive
operation in the algorithm, the mean runtime decreases as the
signal bandwidth decreases. This is because, strictly speaking,

Fig. 3. Ill-posed cases mean percentage for four-band complex signals for dif-
ferent spectral supports (BW) with � � 20 GHz and a total sampling
rate � � 3 GHz.

Fig. 4. Mean runtimes for four-band complex signals for different spectral sup-
ports (BW) with � � 20 GHz and a total sampling rate � � 3 GHz.

with a fixed resolution, the matrix size monotonically depends
on total signal bandwidth. Moreover, as the ratio BW in-
creases, the possible spectral support obtained at the first step
of the reconstruction increases beyond the increase of the signal
bandwidth.

The algorithm, modified as explained in Appendix I, was also
tested against real-valued signals. The sampling frequencies are
the same as are used in our optical experimental setup based on
asynchronous MRS [2]. Each band was chosen to be of equal
width BW/8. Once a band was chosen, the Fourier trans-
form of for was determined by the following
formula:

(20)

The phase was chosen randomly from a uniform distribution
on and the amplitude was chosen randomly from a
uniform distribution on .

Fig. 5 shows the empirical success rate of the algorithm tested
against real-valued signals. As is evident from the figure, the
empirical success rate is high when BW . We note
that the required sampling rate is significantly higher in this ex-
ample than in the complex signals simulation. The reason is that
in the real case example there are twice as many bands as in the
complex case simulations. Hence, after the sampling, an overlap
may also occur between the negative and positive bands of the
real signal. We note that when sampling a real signal at a sam-
pling rate , it is sufficient to know the Fourier transform in
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Fig. 5. Empirical success percentages for equal four-band real signals calcu-
lated by using the SMRS reconstruction scheme (circles) and by using SBR4 in
[7] (crosses) as a function of the spectral support (BW) for � � 40 GHz
and a total sampling rate � � 12 GHz. The number of sampling channels
is equal to 3 in the SMRS scheme and is equal to � � �� in the equivalent
multicoset sampling scheme.

Fig. 6. Ill-posed cases mean rate for four-band real signals for different spectral
supports (BW) with � � 40 GHz and a total sampling rate � � 12
GHz. The number of channels in the equivalent multicoset sampling scheme is
� � ��.

a frequency region . However, for real signals, there is
uncertainty as to whether a signal in baseband is obtained from
a signal in the positive band or in the negative band.

The system parameters (number of sampling channels, sam-
pling rates, ) that were used in our last simulation are the
same as those used in our optical sampling experimental setup.
The fact that the simulation results were obtained in a practical
situation demonstrates that our SMRS scheme can reconstruct
sparse signals by using both a fewer number of sampling chan-
nels and a lower total sampling rate than are required by multi-
coset sampling schemes.

The number of ill-posed cases and the mean recovery run-
times for the real-valued signals are shown in Figs. 6 and 7, re-
spectively. It can be seen that the mean rate of ill-conditioned
cases is much lower for real-valued signal simulations than for
complex ones. This could be due to the correlation between pos-
itive and negative frequency components of real signals. The de-
crease in the number of ill-conditioned cases is advantageous,
since whenever there is no need to apply the pursuit algorithm
the solution is obtained with confidence.

The empirical success rate of SBR4 algorithm applied to
the equivalent multicoset scheme for real-valued signals is
also shown in Fig. 5. It is lower than the empirical success

Fig. 7. Mean recovery times for equal four-band real signals for different spec-
tral supports (total bandwidth) with � � 40 GHz and a total sampling
rate � � 12 GHz.

rate of our reconstruction algorithm except for the case when
the width of the bands of real-valued signals becomes very
large. The SMRS requires using high-frequency resolution to
obtain possible signals locations. This requirement increases
the runtime. Specifically, for our simulation setup, the runtime
of the SBR4 routine of [7] is smaller by a factor of about 50
than in our algorithm due to the low-frequency resolution and
the smaller matrices that are used.

These results show that using the constant frequency reso-
lution to define sparsity is less effective for the SMRS scheme
than for the universal multicoset sampling scheme. The reduc-
tion procedure available in our scheme enables to define blocks
adaptively according the sampled data.

B. Noisy Signals

Our algorithm’s performance was also tested for its ability to
reconstruct real-valued signals contaminated by Gaussian white
noise. In this paper, we did not optimize the algorithm to recon-
struct noisy signals. However, the presence of noise required
some small modifications of the algorithm in order to recon-
struct signals with a high success rate. There are several reasons
for that. In a noisy environment, the noise is present in the whole
signal spectrum. Therefore, the original signal can no longer be
considered multiband in the strict sense. Also due to sampling
at different rates each baseband signal component will contain a
different noise after the downconversion. In addition, since the
sampling is performed at a rate lower than the Nyquist rate, the
noise from the entire spectrum is accumulated at baseband.

Our first algorithm modification is in detecting the possible
bands of the originating signal. Because the spectral support of
the noise is not restricted to the spectral support of the uncon-
taminated signal, the indicator functions in (17) cannot be di-
rectly used. Instead, we adapt (17) to noisy cases by applying a
threshold similarly to [2].

Due to destructive interference between signals, some fre-
quency components at baseband may become lower than noise.
This may create some “holes” in the detected signal bands (see
Appendix III). To overcome this problem, each band of the re-
constructed signal was widened on each side of each detected
interval in . The resulting widened signal support is further
used to invert the corresponding sampling matrix in (13).
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The solution of the linear equations given in (28) is also mod-
ified in the noisy case. Each baseband frequency is contam-
inated by noise from frequencies . Not all the noise
replicas are reconstructed. Therefore, in the ideal noiseless case,
the error norm vanishes, whereas with a signal containing noise,
one must relent on a perfect reconstruction of the DFT sequence
and settle for a minimum error. In the noisy case, the solution to
(28) should solve the least square problem
and . When the matrices are not
full column rank, we use the modified OMP algorithm which is
adjusted to account for the errors due to noise. As noted above,
in the noiseless case, one can expect a perfect reconstruction of
the DFT sequence and thus the threshold error can be set to
0 or a very small number. However, with noisy signals, some
care must be taken in choosing . On the one hand, if the is
chosen too large, the algorithm may stop before a solution is
reached. On the other hand, if is chosen too small, the recon-
structed signal may include bands that are not in the originating
signal thus causing the corresponding matrix to be rank-defi-
cient. The problem of a too low threshold is solved by adding
another stop criterion. Instead of stopping the algorithm only
when a threshold is attained, we also check at each iteration
whether the band that reduces the residual error the most causes
the resulting matrix to be rank-deficient. When this occurs, the
search stops and the band is not added to the matrix.

The recovery scheme was tested against real-valued signals
with eight bands (four positive frequencies bands and four neg-
ative frequencies bands) contaminated by noise. The signals
without noise were generated and sampled exactly as in the
noiseless simulations of real signals. Noise was added at each
frequency of the whole spectrum support range [ 20, 20] GHz.
The noise had a normal distribution with standard deviation

; the SNR was defined by
10.5 dB, where 4 GHz. This definition takes into ac-
count the accumulation of noise in baseband due to sampling.
The sampling rates were the same as those in the noiseless real-
valued simulations (Table I). The indicator functions were
constructed by applying a threshold according to [2].

Each time the modified-OMP was used the value of the
threshold was chosen to be equal to .
This value was evaluated before beginning the modified-OMP
iterations.

The success was measured by the algorithm’s ability to
achieve a low error -norm below for
each recovered band. The mean error for each recovered band

and the true band were evaluated as follows:

where is the band support.
Statistics on recovering eight bands 200-MHz width each are

based on 10 000 tests. The simulation show that, although the
algorithm’s performance inevitably decreased, it still achieved
a high empirical recovery rate (37 failures out of 10 000 tests).
Additional simulations were performed by changing the total
bandwidth rates as was done in the simulations performed for
the noiseless case. In Fig. 8, the empirical success percentage is
presented for 1000 simulations of noisy signals. The results of

Fig. 8. Empirical success percentages for four bands of real signals noise that
were contaminated with a noise with a standard deviation of � � ���� for
different spectral supports of the signal (BW) with � � 40 GHz and a
total sampling rate � � 12 GHz.

the simulations are similar to those in the noiseless case. When
the total sampling rate is eight times higher than the bandwidth
rate, high success percentage was achieved. The recovery error
level depended on the threshold choice. Lower threshold allows
more accurate reconstruction but increases the recovery time.
Different error criteria are also possible. For example, choosing

-norm instead of -norm and setting the error threshold to
be as in [2] resulted in 99.5% empirical success rate in
recovering signals with a total bandwidth of 1.6 GHz and 99.8
percent empirical success rate for signals with a total bandwidth
of 1.5 GHz.

Additional simulations were performed with signals sug-
gested in [12]. The use of the Hermite polynomial shapes
suggested in that work did not significantly change the recon-
struction success rates in Fig. 8.

V. CONCLUSION

In this paper, we describe a multirate synchronous sampling
scheme for blind reconstruction of sparse multiband signals
using a small number of sampling channels whose total sam-
pling rate is significantly lower than the Nyquist rate. This
scheme is an alternative approach to a multicoset sampling
scheme applicable when the number of sampling channel is
limited. It also yields a significant improvement compared to
the previously published multirate asynchronous scheme. The
scheme is especially effective when the sampling rate of each
sampling channel is high.

Our new reconstruction method includes a reduction proce-
dure and a band-sparsity modification of a common pursuit al-
gorithm. If the sampled signals possess some reasonable prop-
erties, we obtain a very high empirical reconstruction success
rate.

Our sampling and reconstruction scheme has significant ad-
vantages as compared to a multicoset sampling scheme. Our al-
gorithm provides higher empirical reconstruction success rate
than the multicoset based [7] algorithm SBR4 for four-band
complex signals and for four-band real signals with a total band-
width that is less than one fifth of the total sampling rate.

Our simulations also show that the number of sampling chan-
nels in the SMRS scheme that is required to achieve high recon-
struction success rate is significantly lower than required by the
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multicoset sampling scheme. Only three sampling channels are
required to obtain a very high reconstruction success rate with
the same system parameters that are currently used in our exper-
imental setup for electro–optical asynchronous undersampling
[10].

Sufficient conditions for perfect reconstruction in SMRS
scheme are provided. The sufficient conditions do not take into
account that the signal is block-sparse. Therefore, very high
empirical reconstruction success rates are obtained even when
the sufficient conditions are not fulfilled.

We intend in the near future to implement the multirate sam-
pling scheme in our lab for sampling signals in the frequency
region of [ 20, 20] GHz.

APPENDIX I
REAL-VALUED SIGNALS

In this Appendix, we present the modifications to (11) for the
real signals recovery. For simplicity, we develop the equations
for . Since the signal is real valued, its Fourier transform
fulfills

(21)

where is the complex conjugate and and
are real numbers.

It follows from (21) and (1) that for each channel index
all the information about is contained in the in-

terval . Consequently, it is convenient to choose
the sampling frequencies such that
where is an integer. Because the conjugation operation

is not complex linear, (10) needs to
be replaced with two systems of equations: one for the real part
and one for the imaginary part.

We use the following notations to represent the Fourier trans-
form of the real signals in the discretized frequencies:

(22)

The sequence contains the samples of in the
baseband . The sequence contains the
samples of given in , where is
chosen to fulfill . Equation (2) now takes the
following form:

(23)

Equation (23) can be written in a matrix form as

(24)

where and are given by

(25)

and is a matrix whose elements are given by

(26)

Note that, since the signal is real valued, all of its spectral infor-
mation is contained in the positive frequencies.

Each element in is equal to either or 0. Equation (24)
for the different sampling channels can be concatenated as in
complex signals case to yield

(27)

The Fourier transform can be decomposed into its real and imag-
inary parts. As a result, (27) becomes

(28)

where and . In addition, only com-
ponents that correspond to positive frequencies are retained in
the vectors and . The elements of the matrices and

are given by

(29)

The reconstruction is performed with (28) exactly as in the com-
plex case.

APPENDIX II
REDUCTION PROCEDURE

In this Appendix, we explain the idea behind the reduction
procedure. By using the multirate sampling scheme, it is pos-
sible to obtain a set of possible signals locations and thus to
reduce the sampling matrix .

Consider a complex signal consisting of a single signal fre-
quency . Due to the sampling theorem sampling with rate ,
the original frequency aliases to the baseband frequency

(30)

where is an integer such that .
The observed frequency originates from a set of possible

locations at

(31)

For , we obtain the original frequency .
By sampling the signal at different rates , the set of

all possible signals locations is obtained by taking the intersec-
tion of possible locations resulting at sampling channel (31)

(32)
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Thus, any fulfills (31) for every and also
.

By applying a multiband signal model Property 1 on signal
bands edges, one obtains a set of possible signal bands locations.
Consider a multiband signal that occupies a union of intervals

on the frequency axis. For channel with sam-
pling rate , the possible signals locations are given by the set

(33)

By sampling with sampling rates, a smaller set of possible
locations is obtained by taking the intersection of

(34)

It follows from (34) that has a multiband structure. It also
contains the original signal bands as shown for a single fre-
quency. This structure is used in the modified-OMP algorithm
to identify the minimum subset of that contains the original
signal support.

In some cases, the resulting disjoint intervals of are larger
than the signal bands themselves. This is resolved only after the
original signal shape is recovered. Only then the true support is
obtained.

APPENDIX III
REDUCTION PROCEDURE ANALYSIS IN NOISY ENVIRONMENT

In this Appendix, we analyze the performance of the reduc-
tion procedure in the noisy environment. There are cases in
which some frequency components of the original signal can
sum up to an amplitude which is lower than noise. This could
cause such signals to be undetected. Signals can also be unde-
tected if it they are canceled out by noise.

Consider the observed signal at some baseband frequency
of the th channel . The sequence

of the DFT values of some noiseless signal is downconverted to
the same baseband frequency . The maximum length of
the sequence is . Also assume that the signal is
contaminated by some noise sequence . The DFT value at
the baseband frequency at th channel is

(35)

For some threshold , the probability of misdetecting a signal
in a given baseband frequency is

(36)

We have performed simulations with the same signal profiles
that were used in our real signal simulations (20) for different
bandwidths (50, 100, 150, and 200 MHz). The signals were gen-
erated as in our noisy signals simulations section with SNR
10.5 dB. Each signal consisted of four equal size bands (eight

Fig. 9. Probability of misdetecting points in one band. Real-valued four-band
(eight positive and negative frequencies) signals sampled with rates of 3.8, 4.0,
and 4.2 GHz with SNR of 10.5 dB at baseband. Each band shape is given by
(20). The number of discrete points in each signal band is given in the legend.

for positive and negative frequencies). We calculated the em-
pirical rate of misdetecting a signal frequency in our reduction
procedure.

Fig. 9 shows the probability of misdetecting a given number
of points in a single band. The number of discrete points of
each signal band is shown in the legend (one bandwidth/ ).
The -axis indicates the number of misdetected points, and the

-axis shows the corresponding probability of misdetection.
To resolve this misdetection, the bands were widened on each

size by 10% such that the total bandwidth increased by 20%.
Blocks which contained less than ten points were widened on
each side to contain exactly ten points. By using such simple
method, we were able to recover the vast majority of points that
were misdetected in a reduction procedure (94% for signals with
200-MHz bands and 100% for the rest of the signals).

Additional simulations were performed with signals sug-
gested in [12]. The use of the Hermite polynomial shapes
suggested in that work did not significantly change the results
presented in Fig. 9.
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