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Abstract: We demonstrate experimentally an optical system for un-
dersampling several bandwidth-limited signals with carrier frequencies
that are not known apriori and can be located within a broad frequency
region of 0-20 GHz. The system is based on undersampling synchronously
at three different rates. The optical undersampling down-converts the
entire system bandwidth into a low frequency region called baseband. The
synchronous sampling at several rates enables to accurately reconstruct
signals even in cases in which different signals overlap in the baseband
region of all sampling channels. Reconstruction of three simultaneously
generated chirped signals, each with a bandwidth of about 200 MHz, was
experimentally demonstrated.
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1. Introduction

Passive electronic warfare (EW) systems include reconnaissance or surveillance equipment that
detects and analyzes electromagnetic radiation from radar and communications transmitters
in a potential enemy’s aircraft, missiles, ships, satellites and ground installations. Since the
bandwidth of the radio frequency (RF) spectrum that is currently used for military applications
is extremely broad, on the order of tens of GHz, one of the main limitations of current passive
EW systems is the analog to digital (A/D) signal conversion. Analog to digital conversion can
be performed by multiplying a signal by a train of short pulses. Optics is advantageous for such
applications since optical pulse sources can generate a train of high-repetition rate short pulses
with a very low jitter as required for sampling signals with a very high carrier frequency.

Although in modern military situation the available frequency spectrum is very broad, at a
given time only a small portion of the spectrum is occupied. Therefore, the sampling can be
performed below the Nyquist rate (maximum RF signal frequency). Such technique is called
undersampling and it has been demonstrated in optical systems [1]-[3]. Optical undersampling
is obtained by multiplying the RF signal by a train of short optical pulses. This operation down-
converts the entire broad spectrum of the original signal into a low frequency region called
baseband. In such sampling scheme different parts of the signal spectrum may overlap at the
baseband frequency region. This effect, called aliasing deteriorates the baseband spectrum and
it prevents the reconstruction of the sampled signal. There is a vast literature on theoretical
methods for signals reconstruction from the undersampled data [4]-[6].

In a previous work we have demonstrated theoretically and experimentally a new optical sys-
tem for undersampling several RF signals [7]. This scheme entails gathering samples at several
rates with a total sampling rate that is significantly lower than the Nyquist sampling rate. The
main advantage of the asynchronous sampling scheme is that it does not require the knowledge
of the time offsets between the sampling channels. Hence, the required hardware becomes sim-
ple and robust to errors in sampling times and to differences between the sampling channels.
However, an accurate reconstruction of the signal spectrum by the asynchronous multi-rate
sampling scheme requires that each frequency of the signal support is unaliased in at least one
of the sampling channels baseband.

In [8] we have demonstrated theoretically a new sampling scheme that we call Synchronous
Multirate Sampling (SMRS). We have shown that synchronization between the sampling chan-
nels enables to resolve aliasing and overlaps and to accurately reconstruct signals that could
not be reconstructed by the asynchronous multirate sampling scheme [7]. The reconstruction
of signals in the SMRS scheme is based on solving a system of linear equations that connects
the Fourier transforms of the original and baseband signals. Simulation results show that the
empirical reconstruction success rate in SMRS scheme is much higher than obtained in asyn-
chronous sampling scheme. For example, the reconstruction success rate of a 4 real-valued
signals with a bandwidth of 100 MHz each and a carrier frequency located in the region [0,20]
GHz equals about 60% using the asynchronous sampling scheme [7] and more than 98% by
using the SMRS scheme with the total sampling rate of 12 GHz.

In this paper we demonstrate experimentally an optical system that implements the SMRS
scheme. The system is based on sampling synchronously at three sampling rates. In our ex-
periments we have accurately reconstructed the spectrum of three signals that were generated
simultaneously. The signal carrier frequencies of the signals were unknown apriori and the
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bandwidth of each signal was 100−200 MHz. The bandwidth of the sampling system was
about 20 GHz. We have tested about 100 scenarios for different signals carrier frequencies and
bandwidths. The SMRS scheme enabled to experimentally reconstruct all the scenarios that
were checked. The reconstruction was obtained even for cases in which some down-converted
signals overlapped with other signals in all three sampling channels. Such signals can not be
reconstructed by the asynchronous sampling scheme.

In order to use the SMRS scheme it should be calibrated and its parameters should be ex-
tracted and applied to the signal processing algorithm. We have developed a parametric model
of our sampling system and a method to extract the required parameters as described in Sec-
tion 4 of this manuscript.

The performance of our sampling system is limited by the signal to noise-plus-distortion ratio
(SNDR). The SNDR of a signal at a carrier frequency of 11.1 GHz measured with a resolution
bandwidth of 100 kHz (that corresponds to a sampling window of 10 µs) equals to about 57
dB. This SNDR value corresponds to a resolution of 9.2 effective number of bits (ENOB).

The rest of the paper is organized as follows: in section 2 we describe the experimental setup,
in section 3 we briefly describe the SMRS reconstruction algorithm, in section 4 we describe the
method for extraction of the system parameters and in section 5 we describe the experimental
results.

2. Synchronous multirate sampling scheme

Optical undersampling is obtained by modulating a short optical pulse-train by an RF signal
[1]−[3]. The spectral width of the optical pulses should be sufficiently large to enable the sam-
pling of signals with a high carrier frequency. Undersampling enables to down-convert a broad
frequency region into a low frequency region called baseband. The down-converted signal in
the baseband region can then be sampled using a conventional electronic analog to digital (A/D)
converter. In order to reconstruct signals with unknown carrier frequency (blind reconstruction)
we undersample the RF signal using three optical sampling channels that operate with different
parameters.

The setup of our system is shown on Fig. 1. The sampling is performed by modulating the
amplitudes of three optical pulse-trains with rates F1 = 3.8 GHz, F2 = 3.5 GHz and F3 = 4.0
GHz by an RF signal. The rates Fi were chosen to fulfill Fi = Mi∆ f , where Mi are positive
integers and ∆ f = 100 MHz is the bandwidth of a frequency cell in the reconstruction algorithm
[8].

The optical pulse-trains were generated by combining optical and electronic devices. Elec-
trical pulses were generated by using a comb generator that was connected to a phase-locked
loop dielectric resonator oscillators (PLL-DROs) [7]. The electrical pulses at the output of each
comb generator were supplied to electro-absorption (EA) modulator that modulated the inten-
sity of a continuous wave (CW) laser. The PLL-DRO enabled generating low-jitter pulses while
the EA modulator enabled to shorten the pulse duration from about 50 ps to about 24 ps as re-
quired in our system. To compensate losses we used an erbium doped fiber amplifier (EDFA)
with a 30 dB gain and electrical amplifiers (AMP) with an electrical gain of about 25 dB. The
optical powers and losses in the system are the same as described in our setup for asynchronous
sampling [7].

The high frequency signal of a PLL-DRO resonator is stabilized by locking it to a high har-
monic of a reference signal via a balanced mixer and a phase detector [9]. To synchronize three
optical pulse trains we connected three PLL-DROs to the same reference signal. Therefore,
three optical pulse trains were locked and synchronized to the same reference signal with a
frequency of 100 MHz. The synchronization of three PLL-DROs to a single reference source
caused the overlap between the optical pulses of three optical pulse trains every 1/100 MHz =
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(a) Multirate sampling scheme

(b) Optical pulses generator (OPG)

Fig. 1. Schematic description of (a) optical sampling system and (b) optical pulse generator
(OPG). The synchronous multirate sampling is performed simultaneously at three different
rates: F1 = 3.8 GHz, F2 = 3.5 GHz and F3 = 4.0 GHz. A 100 MHz reference signal is used
to synchronize between the different channels. OPG consists of a phase-locked loop di-
electric resonator oscillators (PLL-DROs), a comb generator, an Electro-Absorption (EA)
modulator, and a continuous wave (CW) laser. The optical wavelengths of the OPGs were
1535.04 nm, 1536.61 nm and 1544.53 nm. MUX and DEMUX are optical add-drop mod-
ules that combine and demultiplex three optical pulse trains. EDFA is an erbium-doped
fiber amplifier, MODULATOR is a LiNbO3 Mach-Zehnder modulator, ϕ is an electrical
phase shifter, D is a detector, LPF is an electrical lowpass filter with a bandwidth of 2 GHz
and AMP is an electrical amplifier.
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10 ns.
The optical wavelengths of three optical pulse sources were chosen to be different as in [7].

Therefore, the optical pulse trains could be combined without adding a significant loss by using
an arrayed-waveguide grating (MUX). Such method is used in optical communication systems
that are based on wavelength division multiplexing (WDM) technique. The input RF signal
modulated the intensity of the three pulse trains by using a single-drive Mach-Zehnder electro-
optic modulator. The Vπ of the modulator equals 4.6 V and the maximum power of the RF
signal at the modulator input was about 0 dBm. The bias voltage of the modulator was adjusted
to obtain the minimum second order distortion. Thus, we operated the modulator in its linear
operating region.

The signal at the output of the modulator was demultiplexed by another arrayed-waveguide
grating (DEMUX). Three optical signals at the output of the optical demultiplexer were detected
and electronically sampled by a 3 channel sampling scope that operated at a sampling rate of
5 Gsamples/sec at each channel. The electronic analog to digital conversion was performed
simultaneously in all the sampling channels. A fourth A/D sampling channel was used to sample
the 100 MHz reference signal. This sampling channel enables to estimate the delay between the
electronic A/Ds and the pulse trains as described in the sequel.

3. Synchronous MRS signal reconstruction algorithm

We briefly describe our signal reconstruction method. A detailed description of the algorithm
is given in [8]. Our assumption is that the sampled signal is sparse; i.e, it occupies only a small
fraction of the frequency bandwidth of the system. Our system bandwidth equals to 20 GHz
and the total bandwidth of the signals should not exceed about 2 GHz.

The original RF signal x(t) modulates simultaneously P optical pulse-trains with frequencies
Fi = Mi∆ f , 1≤ i≤ P, where Mi are integers. The resulting signals xi(t) contain replicas of the
original signal spectrum X( f ) shifted by an integer multiples of Fi [2]. The baseband frequency
region of the i-th channel equals [−Fi/2,Fi/2]. These baseband signals are electronically sam-
pled for each channel synchronously at a rate Fs ≥maxi{Fi}.

The original signal spectrum X( f ) is connected to the sampled signals spectra Xi( f ) through
the system of linear equations [8]:

x̂(β ) = Q x(β ) , (1)

where the vector x̂(β ) represents the Fourier transform of the sampled signals, the vector x(β )
corresponds to the original signal Fourier transform and Q is a sampling matrix. Vectors x̂(β )
and x(β ) are given with a resolution ∆ f . The variable 0≤ β < ∆ f gives the location within the
frequency cells that construct the spectrum vectors. Each column of the matrix Q corresponds
to a frequency cell of the original signal spectrum and each row corresponds to a frequency cell
of the down-converted signal. In undersampling the number of rows in the matrix Q is smaller
than the number of columns. Therefore, a unique reconstruction of the original signal can not
be obtained unless more assumptions on the signal are added. Although in modern military
environment the available frequency spectrum is heavily used, at a given instant of time only a
small portion of the spectrum is occupied. Therefore, in electronic warfare systems it is required
to sample and reconstruct multi-band sparse signals.

In the first step of our reconstruction algorithm, possible signals locations are identified. In
noisy environment a threshold is applied to identify the baseband signal locations [7]. Fre-
quency cells with values above the threshold are identified as a baseband signals. Then, the
frequency locations of the original signal that do not contribute to a baseband signals are de-
tected and eliminated from the sampling matrix Q. If the resulting reduced matrix has a full
column rank, then the search is complete and the signal can be reconstructed via the pseudo-
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inverse of the sampling matrix. If the reduced sampling matrix is not full column rank, we
assume that the signal obtained after the reduction step is block-sparse. Therefore, we look for
a solution that fulfills the reduced system of equations, but also contains the smallest number of
bands. The pursuit algorithm that we use to find such solution is a variation of the well-known
Orthogonal Matching Pursuit (OMP) modified to search for blocks instead of columns. Numer-
ical simulations indicate that a very high success rate that is close to 100% is obtained when
the sum of the sampling rates in all channels is approximately 8 times higher than the total sig-
nal frequency support. This success rate is higher than obtained by using previously published
methods for undersampling assuming that the number of sampling channels is limited to 3 [8].

4. Non ideal synchronous multi-rate sampling

In a non-ideal system the implementation of the SMRS reconstruction scheme requires to per-
form some modifications on the algorithm given in [8]. Particularly, in a non-ideal system there
is a need to extract parameters of each of the sampling channels. Our experimental results indi-
cate that this extraction should be performed only once over a long time period of few days.

In our system, the RF signal x(t) is undersampled by multiplying the signal with a low-rate
pulse train. The resulting signal is then detected, amplified and sampled by an electronic A/D
converter. The signal at the input of the i-th (i = 1..3) electronic A/D, xi(t) is given by

xi(t) = hi(t)∗
(

x(t)∑
n

pi(t−n/Fi− τi− τ)
)

, (2)

where ∗ denotes a convolution operator, pi(t), τi and hi(t) are the pulse shape of the i-th channel,
the delay of the i-th pulse train at t = 0 and the impulse response function of the detector and
the electrical amplifier of the i-th channel, respectively. Although the electrical signals at the
output of the PLL-DROs are synchronized, a time delay τi must be added due to a slightly
different propagation times of the signals in different channels. The time delay τ is added since
the electronic A/D starts sampling in a time offset with respect to the pulse trains. In deriving
Eq. (2) we neglect the transfer function of the modulator. This function is required to obtain
the correct spectrum amplitude at each frequency; however, since the same modulator is used
to modulate all three pulse trains, it does not affect the stability of the reconstruction.

In a non ideal system, Eq. (2) can be written in the frequency domain, as shown in Appendix
A (Eq. (13)):

Xi( f ) = FiHi( f )exp [− j2π f (τi + τ)]∑
n

Pi(nFi)X( f −nFi)exp [ j2π( f −nFi)(τi + τ)] , (3)

where X( f ), Xi( f ), Hi( f ) and Pi( f ) are the Fourier transform of the original signal x(t), the
baseband signal xi(t), the transfer function hi(t) and a pulse profile pi(t), respectively.

Equations (2) and (3) indicate that in order to accurately reconstruct the sampled signal the
system parameters τi, τ , pi(t) and hi(t) should be known. These parameters change the sam-
pling matrix that was given in [8] for an ideal sampling. In Appendix A we develop equation
(22) that connects vectors of the sampled baseband signals x̂(β ) and the original signal spec-
trum x(β ):

x̂(β ) = Q x(β ) , (4)

where the vector x̂(β ) and the matrix Q are obtained by concatenating vectors WHi(β )xi (β )
and matrices QiWτi respectively:

x̂(β ) =




WH1(β )x1 (β )
WH2(β )x2 (β )
WH3(β )x3 (β )


 , Q =




Q1Wτ1
Q2Wτ2
Q3Wτ3


 . (5)
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The elements of the Mi×M matrix Qi are given by

(Qi)k+1,l+1 = ∑
n

Pi(nFi)δ [l− (k +nMi)],

where Pi( f ) is the Fourier transform of the i-th channel pulse, and matrices Wτi and WHi(β )
equal:

Wτi = diagk {exp( j2πk∆ f τi)}
WHi(β ) = diagk

{
H−1

i (k∆ f +β )exp [ j2π(k∆ f +β )(τi + τ)]exp(− j2πβτi)
}

/Fi. (6)

Notice that matrices Qi correspond to a single channel sampling matrix and the matrix Q is
the sampling matrix for three sampling channels used in our system.

4.1. Measurement of the impulse response hi(t)

The transfer function hi(t) of the i-th sampling channel is determined by the delay of the op-
tical channels between the modulator and the detectors, the detector response function and the
response function of the electrical amplifiers and filters. We measured the Fourier transform of
hi(t) − Hi( f ) by supplying a sinusoidal wave with a controllable frequency to the sampling
system and to additional (fourth) port of the electrical A/D. The frequency of the sinusoidal
wave varied between 5 MHz and 2 GHz with a step size of 5 MHz. The transfer function Hi( f )
was measured for each channel i (i = 1 . . .3). Figure 2 shows the amplitude and the phase of
Hi( f ) for three channels. The same results were also obtained by using a network analyzer.
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Fig. 2. Transfer function Hi( f ) of three sampling channels measured in the frequency re-
gion 5 MHz−2 GHz with a resolution of 5 MHz.

4.2. Minimizing the relative delays between τi

In our scheme all three optical pulsed sources are locked to a common reference signal with a
frequency of 100 MHz. However, since different optical pulse trains propagate through slightly
different fiber lengths before arriving to the modulator, the pulse trains are shifted by a delay τi.
Delays of different optical pulse trains τi can be made approximately equal by adding a tunable
electrical phase shifter (ϕ) to each pulse generator as shown in Fig. 1. The tuning of the phase
shifters is performed by measuring the pulse trains at the entrance of the modulator by using
a sampling oscilloscope with a 50 GHz bandwidth optical input. Figure 3 shows three optical
pulse trains when the phase shifters are adjusted to obtain the best overlap between them. We
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have verified that the relative delays between the pulse trains did not change over a very long
time duration of several days. Therefore, after the calibration process we could assume in our
reconstruction algorithm that τi = 0.
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Fig. 3. Three optical pulse-trains measured at the modulator input by using a sampling
oscilloscope with an optical bandwidth of 50 GHz. Delays between the pulse-trains were
adjusted to obtain the best overlap between pulses.

4.3. Extracting parameters of the optical pulsed trains

The classical theory of signal sampling is based on multiplying a signal by a train of impulses
with a negligible duration. We use a simple and robust optical pulse source that generates rela-
tively broad pulses (with a duration of about 25 ps) and the electrical bandwidth of our optical
sampling system is broad (0-20 GHz). As a result, we had to take into account the pulses shape
in our reconstruction algorithm. The non-ideal optical pulses create a different amplitude and
phase for each signal replica of the sampled signal as given in Eq. (3). This effect is especially
important in a system based on SMRS, since in different channels the same signal may be
down-converted to baseband from different replicas.

Equation (3) indicates that there is no need to measure the entire pulse spectrum and it is
sufficient to measure the pulses spectrum only at frequencies nFi, where n ≥ 0 is an integer
number. While the amplitude coefficients of the pulse spectrum Pi(nFi) can be directly meas-
ured by using an RF spectrum analyzer, we retrieved the phases of the pulse coefficients Pi(nFi)
indirectly by applying an optimization procedure to Eq. (4). We supply the system with an
RF multi-band signal with known frequency bands that were measured by using RF spectrum
analyzer. Since the signal frequencies are known we retain in the matrix Q, given in Eq. (4),
only columns that correspond to those frequencies. Our system is not ideal and the noise is
added to measurements. Therefore, Eq. (4) is not fulfilled with equality and we choose to find
a least square solution to this equation. This solution x∗S is obtained by multiplying both sides
of Eq. (4) by a pseudo-inverse of the matrix QS, denoted by Q†

S [15]:

x∗S (β ) = Q†
Sx̂(β ) . (7)

Q†
S depends on pulses parameters Pi(nFi) that we want to retrieve. We estimate these parameters

by optimizing Eq. (7) to make the calculated baseband signals most consistent with the meas-
ured once. We use a square norm error criteria as a cost function for our optimization problem
and substitute x∗S back to Eq. (4). The resulting error equals:

ε2(β ) =
∥∥∥
(

I−QSQ†
S

)
x̂(β )

∥∥∥
2
. (8)
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The parameters that should be optimized in Eq. (8) are Pi(nFi), i = 1 . . .3 and the initial A/D
sampling time τ .

Since the optimization problem (8) is highly non-linear and complex we use a MATLAB@
Genetic Algorithm Toolbox to obtain a global minimum for the objective function. After per-
forming the genetic algorithm search, additional search was performed by using a local op-
timization function to improve the result accuracy. To speed up the optimization we use fre-
quency resolution of ∆ f = 100 MHz.

Our RF source could generate signals in the frequency region between 6 and 12 GHz. There-
fore, we could calibrate our system only at that frequencies. The calibration was performed
by supplying three signals whose central frequencies were located in the frequency regions
(6,8.75) and (10,12.25) GHz. The spectral width of each signal was about 150 MHz. This
choice of the signal frequencies enables to obtain two pulse coefficients for each pulse train.
Therefore, the number of parameters that should be optimized equals 13− amplitude and phase
for each pulses coefficient and the initial A/D sampling time τ . The optimized pulses coeffi-
cients amplitudes and phases were P1(2F1) = 1.08exp( j0.53), P1(3F1) = 0.93exp( j0.14) for
the 3.8 GHz channel, P2(2F2) = 1.20exp( j0.77), P2(3F2) = 0.95exp( j0.52) for the 3.5 GHz
channel, and P3(2F3) = 0.65exp( j0.89), P3(3F3) = 0.48exp( j3.18) for the 4.0 GHz channel.

We have verified that the ratio between the Fourier coefficients obtained by solving the op-
timization problem are approximately the same (up to 3% difference) as measured directly by
using the RF spectrum analyzer.

To extract pulses parameters for the whole system frequency region (0-20 GHz) 6 signals
at the following frequency regions may be used: (2,5.25), (6,8.75), (10,12.25), (13.3,14),
(15.75,17.1), and (19.25,20) GHz. Assuming that each signal width equals about 100 MHz
the resulting sampling matrix QS will be small and the optimization can be performed in a
reasonable time. Additional signals may be added to enhance the optimization accuracy.

4.3.1. Extracting the time offset of the electronic A/D τ

The electronic A/D conversion does not start at the time when the optical-pulse trains overlap.
This effect is modeled by adding a time offset τ in Eq. (2). The time offset τ changes the
sampling matrix in Eq. (4) and therefore it should be extracted. The optical pulse trains are
synchronized to a reference signal with a frequency of 100 MHz. Therefore, we sampled this
reference signal simultaneously with the other three channels by adding another low-rate A/D
converter (fourth channel). At the calibration process the signals that are used to extract the
parameters of the optical pulses are supplied to the system. The phase of the reference signal
was also measured at the beginning of the sampling that is used for the calibration. Then,
the value of τ was extracted by solving the optimization problem described in the previous
subsection. The extraction of the delay τ should be performed only once. After completing the
calibration the value of τ was updated by comparing the phase of the reference 100 MHz signal
to the phase of the reference signal that was measured in the calibration process.

5. Experimental results

In our experiments we have sampled an RF source that could generate three signals simulta-
neously. Each signal had a bandwidth of 100−200 MHz and a carrier frequency between 6 to
12 GHz. The limitation on the carrier frequency is caused only due to our RF-signal genera-
tor and not due to the bandwidth of the sampling system. The sufficient sampling rate for the
electronic A/D converter in each channel equals to the frequency of the corresponding pulse
train. To simplify the hardware, the sampling rate of all the electronic A/D converters was set
to 5 Gsamples/sec. This sampling rate is higher than theoretically required and therefore re-
dundant frequency components at frequencies that are higher than the repetition rate of the
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corresponding pulse train were discarded. As a result, the effective total sampling rate equals
11.3 Gsample/sec. The total frequency support of the RF signals used in our experiment ap-
proximately equals 2 · 3 · 150 MHz = 900 MHz (the support of a real signal equals twice the
bandwidth of its positive frequency components). The ratio between the total sampling rate to
the signal support equals about 12.5. This ratio is higher than the minimum ratio of about 8 that
was required in the numerical simulations [8]. We note that since in our experiments we used
the same reconstruction algorithm as in our numerical simulations, we expect that the minimum
ratio that is required in the experiments will be about 8. The minimal theoretical sampling rate
that is required for a blind multiband signal reconstruction equals twice the signal support.

The sampling window duration equals 8.2 µs that corresponds to a frequency resolu-
tion of 122 kHz. To reduce software runtime the frequency cell width was chosen to be
∆ f = 4 GHz/840 = 4.7619 MHz. This is consistent with our sampling rates requirement:
F1 = 3.8 GHz = 798 · ∆ f , F2 = 3.5 GHz = 735 · ∆ f and F3 = 4.0 GHz = 840 · ∆ f . Af-
ter inverting the matrix and performing the signal reconstruction the frequency resolution
of the reconstructed signal was increased to that of the sampled data (122 kHz) by setting
βn = n∆ f/39, 0≤ n < 39, in Eq. (22) (Appendix A) where n is an integer number. To decrease
the reconstruction error and to increase the robustness of the system to variations in system pa-
rameters we apply a simple algorithm that enhances the consistency of the sampling equations.
The algorithm is described in Appendix B.

Figure 4 shows the reconstructed spectrum and a close up on each of the reconstructed sig-
nals. Figure 5 shows the baseband spectra measured by the A/D at the output of the sampling
channels. The baseband spectra are calculated from the reconstructed signals (blue curves) us-
ing Eq. (4) and compared to the spectra of the measured baseband signals (red dashed curves).
In this example, the signal with the highest carrier frequency (around 11.25 GHz) overlaps with
two other signals at the baseband of all the sampling channels. We note that the signal frequency
locations were not known before the reconstruction. An accurate reconstruction is obtained al-
though the signal around 11.25 GHz overlaps after down-conversion with other signals and it
can not be directly reconstructed from the baseband spectrum of any single channel. Therefore,
such spectrum can not be reconstructed by using asynchronous multi-rate sampling scheme [7]
with same sampling rates. In such sampling scheme each frequency of the signal should be un-
aliased in at least one of the sampling channels. In order to verify the reconstruction algorithm
results we have compared the reconstructed spectrum to that measured by an RF spectrum an-
alyzer as shown on Fig. 6. These results indicate that an excellent quantitative agreement is
obtained between two spectra. The spectrum measurement by using the RF spectrum analyzer
required many RF pulses. On the other hand, our system requires only a single RF pulse for
measuring the entire sparse spectrum and hence it can be used in a real-time applications.

In cases where no overlap between different signals occurs in one of the sampling channels,
the reconstruction could be also verified by up-converting the baseband signal in that channel
according to Eq. (3). Figure 7 shows the reconstructed spectrum and a zoom on each signal
(blue curve) in such case. Figure 8 shows the baseband spectra that are calculated from the
reconstructed signal (blue curve) and compared to the spectrum of the measured baseband
signals (red dashed curves). The down-converted signals in the experiment do not overlap at the
3.8 GHz channel. Therefore, the original spectrum could be directly retrieved from the baseband
spectrum of that channel. The up-conversion was performed according to the signal frequencies
that were measured by the RF spectrum analyzer. The up-converted spectrum which is shown
by the green curve in Fig. 7 is in excellent quantitative agreement with the blind reconstruction
of the spectrum (blue curve).

In our experiments we have detected and reconstructed more than 100 different spectra. An
accurate reconstruction was obtained for all spectra that were checked. The worst run-time of
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Fig. 4. Reconstructed spectrum of three signals and a zoom on each signal. The signal lo-
cated around 11.25 GHz overlaps with other signals in the baseband region of all channels.
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Fig. 5. Baseband spectra of three sampling channels calculated from the reconstructed sig-
nal (blue curves) and compared to the spectrum of the measured baseband signals.
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Fig. 6. Comparison between the reconstructed spectrum (blue curve) and the spectrum
measured by the RF spectrum analyzer (red dashed curve).
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Fig. 7. Reconstructed spectrum of three signals and a zoom on each signal (blue curve).
Since no aliasing occurs at the baseband of the 3.8 GHz channel, the original spectrum
can be also directly calculated from the measured spectrum of that channel. An excellent
agreement is obtained between the reconstructed and directly calculated spectra.
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Fig. 8. Baseband spectra of three sampling channels calculated from the reconstructed sig-
nal (blue curves) and compared to the spectrum of the measured baseband signals.
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Fig. 9. Baseband spectrum of a signal at the 3.8 GHz sampling channel measured using the
RF spectrum analyzer (green curve) and compared to the Fourier transform of the sampled
baseband signal (blue curve). The input signal frequency equals 11.1 GHz and its power
equals 6.5 dBm. The resolution bandwidth of the spectrum analyzer equals 100 kHz. The
acquisition window of the sampling equals 8.19 µs that corresponds to a frequency resolu-
tion of about 122 kHz.

the signal reconstruction algorithm was about 0.6 seconds when running in Matlab on Intel Pen-
tium Core2 Duo 2.9 GHz machine with a 2 GBytes RAM Memory. Most of the computational
effort was spent on calculating the Fourier transform of the sampled signals and on enhancing
the consistency by the algorithm described in Appendix B. We notice, however that in all our
experiments the signals were reconstructed without applying any pursuit algorithm, since the
reduced matrix was full-rank for all cases. The run times can be dramatically improved by using
a digital signal processor (DSP).

5.1. Measuring the system performance and the sampling jitter

The system performance can be characterized by the effective number of bits (ENOB). For a
sinusoidal wave the ENOB is approximately connected to the signal-to-noise-plus-distortion
ratio (SNDR) by [10]-[12]:

ENOB = (SNDR(dB)−1.76)/6.02. (9)

To measure the SNDR for baseband signals we provided the system a sinusoidal wave with
a frequency of 11.1 GHz. The frequency of the signal was chosen in a way that ensures that
the second order distortion at 22.2 GHz is within the bandwidth of our system. The down-
converted signal at the 3.8 GHz channel was sampled by the electronic A/D and it was also
measured using the RF spectrum analyzer. When the signal power was increased to 6.5 dBm
the second harmonic distortions were slightly higher than the noise floor. Figure 9 shows the
spectrum of the down-converted signal measured by an RF spectrum analyzer with a resolution
bandwidth of 100 kHz. Such resolution corresponds to the acquisition window on the order of
10 µs. The SNDR depends on the resolution bandwidth. Assuming a window duration of 10
µs the SNDR for a 100 kHz resolution bandwidth equals about 57 dB. This result corresponds
to 9.2 effective bits. Assuming a window duration of 0.1 µs the resolution bandwidth equals
10 MHz and the SNDR equals 41.7 dB which corresponds to about 6.6 effective bits. One of
the causes of noise added by the down-conversion is the timing jitter of the optical pulse-trains.
Assuming that the input signal is a sinusoidal wave with a frequency fc, the signal-to-noise
ratio of the baseband signals is theoretically limited by the aperture jitter [12, 13]:

SNR[dB] =−20log10(2π fc∆t), (10)
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Fig. 10. Phase noise of three optical trains. The integrated jitter in the frequency region,
30.5kHz - 1 MHz equals: 11.5, 13.1 and 17.1 fs for 3.8, 3.5 and 4.0 GHz sampling channels,
respectively.

We used Agilent E5052B Signal Source Analyzer for phase noise measurements. Figure 10
shows the single side-band phase noise spectrum L( f ) of three optical pulse-trains.

To estimate the standard deviation of the jitter we integrated the power spectrum L( f ) over
the specified bandwidth [13]:

σJ =
1

2π fc

√
2

∫ f1

f0
L( f )d f , (11)

where f0 and f1 define the integration region. The initial frequency f0 is connected to the
sampling window duration, TW , by f0 = 1/4TW [14]. In our scheme the sampling window
duration equals 8.19 µs and therefore the initial integration frequency is f0 = 30.5 kHz. The
jitter in a frequency region of 31 kHz − 1 MHz equals 11.5, 13.1 and 17.1 fs for the 3.8, 3.5
and 4.0 GHz sampling channels, respectively. Using the measured phase noise and Eq. (10)
we can estimate the SNR that is caused by the jitter. Assuming a sinusoidal input wave with a
frequency of 20 GHz the jitter induced SNR equals 56.8 dB, 55.7 dB and 53.6 dB for the 3.8,
3.5 and 4.0 GHz channel, respectively. These results imply that for a sampling window duration
of about 10 µs and a signal with a 20 GHz carrier frequency, the noise induced by the jitter is
expected to be similar to the noise level measured in our system for the 11.1 GHz sine wave
signal. By assuming a shorter window duration (larger resolution bandwidth) the amplitude
noise is expected to be the dominant noise in the system.

6. Conclusions

We have demonstrated experimentally a new system for sampling and reconstruction of several
bandwidth-limited signals with unknown carrier frequencies that can be located in a broad fre-
quency region of 0-20 GHz. The system is based on a synchronous undersampling at several
sampling rates. Accurate reconstruction was obtained even when the spectrum of some down-
converted signals was deteriorated in all the sampling channels due to aliasing. Such spectra
could not be reconstructed by using the asynchronous multi-rate sampling scheme [7]. The
optical pulse trains were generated by combining an electrical comb generator and an electro-
absorption modulator. The locking of the sampling channels was obtained by providing the
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same reference signal to the PLL-DROs that operated at different frequencies. The reconstruc-
tion of signals that alias in part of the sampling channels is based on solving a set of linear
equations. Therefore, the system should be calibrated and the parameters of each sampling
channel should be extracted once in a long time (few days). We have developed methods for
extracting the required system parameters.

We have demonstrated experimentally the reconstruction of three signals that were generated
simultaneously. The bandwidth of each signal was 100-200 MHz and their carrier frequencies
were located in a broad frequency region (6-12 GHz). The frequency locations of the signal
were not known to the spectrum reconstruction algorithm. The system could accurately recon-
struct signals in all the scenarios we tested (more than 100). It could also solve cases when one
of the signals overlapped with other signals in the baseband region of all three sampling chan-
nels. The bandwidth of our system is about 20 GHz and the ENOB is about 9 bits, assuming a
sampling window duration of 10 µs that corresponds to a resolution bandwidth of 100 kHz.

7. Appendix A

In this appendix we develop equations that connect the original signal to the down-converted
signals in the non-ideal sampling system.

Equation (2) gives the connection between the continuous time original signal x(t) and the
down-converted signal xi(t).

The connection between the spectrum of the original signal X( f ) and the down-converted
signals Xi( f ) is given by

Xi( f )/Fi = Hi( f ){X( f )∗∑n Pi(nFi)δ ( f −nFi)exp [− j2πnFi (τi + τ)]}= (12)
= Hi( f ){∑n Pi(nFi)X( f −nFi)exp [− j2πnFi (τi + τ)]} ,

where Pi( f ) is the Fourier transform of a single pulse pi(t), Hi( f ) is a Fourier transform of hi(t)
and δ ( f ) is the Dirac delta function.

By defining X̃( f ) = X( f )exp( j2π f τ) we obtain

Xi( f )/Fi = Hi( f )exp [− j2π f (τi + τ)]∑
n

Pi(nFi)X̃( f −nFi)exp [ j2π( f −nFi)τi] , (13)

where f is a baseband frequency 0≤ f < Fi.
To obtain matrix equations similar to ideal case analyzed in [8] we define an integer k and

scalar β ,0≤ β < ∆ f , so that for any 0≤ f ≤ Fi, f = k∆ f +β . Equation (13) can be written as

Xi(k∆ f +β )H−1
i (k∆ f +β )exp [ j2π(k∆ f +β )(τi + τ)]exp(− j2πβτi)/Fi =

= ∑n Pi(nFi)X̃((k−nMi)∆ f +β )exp [ j2π(k−nMi)∆ f τi] . (14)

We define vectors

Xk
i (β ) = Xi(k∆ f +β )

Xk (β ) = X(k∆ f +β ) (15)

and matrices

Wτi = diagk {exp( j2πk∆ f τi)}
WHi(β ) = diagk

{
H−1

i (k∆ f +β )exp [ j2π(k∆ f +β )(τi + τ)]exp(− j2πβτi)
}

/Fi. (16)

Using these definitions we rewrite Eq. (14) by
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[WHi(β )]k,k Xk
i (β ) = ∑

n
Pi(nFi)Xk−nMi(β )(Wτi)k−nMi,k−nMi . (17)

By using the same frequency resolution ∆ f for all the sampling channels we are able to
construct a system of linear equations that connect the original and the down-converted spectra.
By defining M = dFmax/∆ f e to be the number of cells in the support of the original signal X ( f )
Eq. (17) becomes

[WHi(β )]k,k Xk
i (β ) =

M−1

∑
l=0

Xl (β )(Wτi)l,l ∑
n

Pi(nFi)δ [l− (k−nMi)]. (18)

Equation (18) can be written in a matrix-vector form. We define an Mi×M matrix Qi whose
elements are given by:

(Qi)k+1,l+1 = ∑
n

Pi(nFi)δ [l− (k +nMi)]. (19)

Vectors xi (β ) and x(β ) are given by

[xi (β )]k j
= X

k j
i (β ) , 1≤ k j ≤Mi

[x(β )]l = Xl (β ) , 1≤ l ≤M. (20)

By substituting Eq. (19) and (20) to Eq. (18) we obtain the system of linear equation for i-th
channel:

WHi(β )xi (β ) = QiWτi x(β ) . (21)

For P sampling channels a single system of linear equations can be obtained:

x̂(β ) = Q x(β ) , (22)

where the vector x̂(β ) and the matrix Q are obtained by concatenating vectors WHi(β )xi (β )
and matrices QiWτi as follows:

x̂(β ) =




WH1(β )x1 (β )
WH2(β )x2 (β )

...
WHP(β )xP (β )


 , Q =




Q1Wτ1
Q2Wτ2

...
QPWτP


 .

8. Appendix B

To enhance the consistency of the sampling equations we apply the following simple method af-
ter the reconstruction of the signal. In the first step we extract the support of the signal by using
the reconstruction method as in [8]. Let S be a set of columns corresponding to reconstructed
signals frequency locations. We denote by QS a sampling matrix with columns corresponding
to these locations. This matrix is constructed by retaining corresponding columns in a matrix
Q given in Eq. (22).

Equation (22) connects the original signal to the Fourier transforms of the sampled signals.
However, since our sampling model contains only the main effects and since the noise is present
in the system, Eq. (22) is not fulfilled with equality. The solution we obtained minimizes the
square norm of the error between the Fourier transform of the measured sampled signals and
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the baseband signal that are calculated from the reconstructed signal: x̂(β )−QS xS (β ). The
solution vector xS is found by multiplying x̂(β ) by a pseudo-inverse matrix Q†

S [15].
In order to further reduce the error we define a set of coefficients αi, i = 1,2,3 . . .P that mul-

tiply each sampling channel. These coefficients compensate errors in the baseband spectrum.
Assuming αibi(β ) be a compensated baseband signal vector, where bi(β ) = WHi(β )xi (β ) as
defined in Appendix A. Our goal is to find the parameters that enhance the consistency of our
sampling model by minimizing the least squares error. Using our consistency criteria we obtain
the following minimization problem:

min
x(β ), α1,...,αP, ∑i|αi|2>0

∥∥∥∥∥∥∥
QSx(β )−




α1b1(β )
...

αPbP(β )




∥∥∥∥∥∥∥

2

, (23)

where we optimize Eq. (23) for parameters αi and a reconstructed signal xS simultaneously.
Let M = QSQ†

S− I. We define matrices Mi with the number of columns equal to the length
of the baseband vectors bi such that:

M = [M1|M2 . . . |MP] ,

i.e stacking the matrices Mi in a row provides the matrix M. It is easy to verify that the mini-
mization problem (23) can be converted to the following eigenvalue problem:

VT Va = λa, (24)

where V is equal to a stacked matrix [M1b1|M2b2 . . . |MPbP].
The eigenvector a corresponding to a smallest eigenvalue λ contains coefficients αi that are

used as a gain for each channel sequence. The reconstructed signal xS is obtained by multiplying

a baseband vector




α1b1(β )
...

αPbP(β )


 by a pseudo-inverse matrix Q†

S.
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