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Optimized split-step method for modeling
nonlinear pulse propagation in fiber Bragg gratings
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We present an optimized split-step method for solving nonlinear coupled-mode equations that model wave
propagation in nonlinear fiber Bragg gratings. By separately controlling the spatial and the temporal step size
of the solution, we could significantly decrease the run time duration without significantly affecting the result
accuracy. The accuracy of the method and the dependence of the error on the algorithm parameters are studied
in several examples. Physical considerations are given to determine the required resolution. © 2008 Optical
Society of America
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. INTRODUCTION
onlinear effects and soliton propagation in fiber Bragg
ratings (FBGs) have been extensively studied theoreti-
ally and experimentally [1–14]. Solitonic effects in such
ystems can be used for obtaining pulse compression
1,2], optical switching [3], optical AND gates [4–6], and
or demonstrating the propagation of solitons with a slow
roup velocity [7,8]. To improve the performance of de-
ices that are based on FBGs, there is a need to design
nd to optimize the grating structure. Nonlinear coupled-
ode equations (NLCME) are used to model pulse propa-

ation in nonlinear FBGs [9,12]. Two main numerical
ethods have been used to solve NLCME. The first is

ased on a numerical integration using implicit fourth-
rder method Runge–Kutta (RK) [13] and the second is
ased on using the split-step method [14]. The RK and
plit-step methods give results of similar accuracy when
pplied to the propagation of a single soliton. However,
he computational run time of the split-step method is
horter by a factor of 20. However, even when the split-
tep method is used for designing gratings, the run time
ay remain of the order of several hours. Therefore, the

erformance optimization of nonlinear devices based on
BGs is limited.
In previous works, with both the RK integration and

he split-step methods, a discrete solution of the NLCME
ith a temporal step size �T and a spatial step size �Z is
sed to represent the field envelope. The spatial and tem-
oral step sizes are related by the group velocity Vg of the
ulses in the absence of the grating by the equation �Z
Vg�T.
In this paper, we present an optimized split-step
ethod (OSSM) for solving the NLCME numerically. An
SSM is a split-step method that does not require a direct

elationship between temporal and spatial step sizes. The
plit-step method requires that a nonlinear and linear op-
rator be solved separately in each iteration. We have
0740-3224/08/030448-10/$15.00 © 2
ound a generalized solution of the nonlinear operator and
e use this solution in the OSSM. We have discovered

hat, with this new generalized solution, the spatial step
ize can be increased substantially without significantly
ffecting the accuracy of results. Hence, when applied to
ome important problems, the run time can be reduced by
p to a hundredfold.
The spatial step size can be changed dynamically along

he grating when using OSSM. When studying soliton
aunching, we could increase the spatial step-size beyond

g�T by a factor of up to 100 in the uniform part of the
rating. This also significantly reduced the run time in
his region by a factor of up to �100. Noticeably, there
as no significant decrease in the accuracy of the solu-

ion. In highly nonuniform grating regions the spatial res-
lution should be of the same order as �Z=Vg�T. The
verall run time for studying the launching was de-
reased by a factor of �3.4.

We have demonstrated the use of OSSM for modeling
oliton propagation, two-soliton interaction, optical bista-
ility, and gap-soliton launching in FBGs. The depen-
ence of the error on the spatial and the temporal reso-
ution was studied for a single soliton propagation. In this
xample, an increase in temporal step size increased error
rimarily in the location of the soliton. On the other hand,
e found that the increase in the error in soliton speed
as small. This is not contradictory, since even small er-

ors in soliton speed will result in large errors in soliton
ocation after a sufficiently long passage of time. We show
hat the Richardson extrapolation may be used to de-
rease the run time slightly. To eliminate errors due to
aves that are backreflected by the grating, an absorptive
oundary window should be used at the grating ends.

. THEORY
he NLCME
008 Optical Society of America
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±i�zu± + iVg
−1�tu± + ��z�u� + ���u±�2 + 2�u��2�u± + ��z�u± = 0,

�1�

re used to model nonlinear pulse propagation in FBGs
11]. In Eq. (1), u±�z , t� represents the field envelope of the
orward �+� and backward �−� propagating waves, Vg rep-
esents the group velocity in the absence of the grating, �
s the nonlinear coefficient, ��z� is the grating coupling
trength, and ��z� is the detuning parameter [14].

The split-step method is based on separating the propa-
ation operator into a linear and a nonlinear operator.
ach operator has a simple solution. In each small section
f the medium, the propagation is calculated for each of
he operators separately. The error in the solution of the
plit-step method is mainly because the two operators do
ot commute and the solution of the nonlinear operator is
pproximated. The split-step method is used extensively
or solving the nonlinear Schrödinger equation (NLS)
15,16].

To implement the split-step method for solving the
LCME, Eq. (1) is presented in the form

�tw = �D̂ + N̂�w, �2�

here

D̂�z� = Vg�i��z� i��z�

i��z� i��z�� , �3�

N̂�z,t� = Vg��z + N−�z,t� 0

0 − �z + N+�z,t�� , �4�

N��z,t� = i���u��2 + 2�u±�2�, �5�

w = �u−�z,t�

u+�z,t�� .

The operator N̂�z , t� represents the nonlinear propaga-
ion effect, and the operator D̂�z� represents the linear ef-
ect due to the grating. The propagation in Eq. (1) is per-
ormed in the time domain rather than in the spatial
omain as is often performed when solving the NLS equa-
ion. The NLCME describes the propagation of two coun-
erpropagating waves. Therefore, the boundary conditions
n the spatial domain are usually given at the two oppo-
ite sides of the grating. Such boundary conditions often
ake necessary the use of an iterative solution in cases
hen the equations are solved in the spatial domain.
ince the input wave is usually launched only from one
ide of the grating, it becomes easier to implement the so-
ution to the NLCME in the time domain.

We implemented two types of OSSM: nonsymmetrized
nd symmetrized. The solution of the nonsymmetrized
SSM is given by

w�z,t + �T� 	 e�T·D̂e
t
t+�TN̂dt�w�z,t�. �6�

n the NLS equation, the local error has a leading order
erm of O���T�2� [16], where O���T�2� means ��T�2 is
ounded for sufficiently small temporal step size �T.
The solution of the operator D̂ is given by
exp��T · D̂� = ei�h� cos���z�h� i sin���z�h�

i sin���z�h� cos���z�h� � , �7�

here h=Vg�T. To obtain the solution to the operator
ˆ �z , t�, we use the following transformation:

�± =
1

2
�Vgt ± z�. �8�

he nonlinear operator N̂��+,�−� in the new coordinate
ystem, ��+,�−�, is given by

N̂��+,�−� = �N−��+,�−� 0

0 N+��+,�−�� , �9�

here N���+,�−� are the functions defined in Eq. (5) ex-
ressed using the coordinates ��+,�−�. The solution of Eq.
9) is given by

u−��+,�− + h� = e

�−

�−+h
N−��+,�−��d�−�u−��+,�−�

u+��+ + h,�−� = e

�+

�++h
N+��+� ,�−�d�+�u+��+,�−�

. �10�

he integration in Eq. (10) can be performed using the
ectangular integral approximation



�−

�−+h

N−��+,�−��d�−� 	 hN−��+,�−�,



�+

�++h

N+��+�,�−�d�+� 	 hN+��+,�−�. �11�

hese integrals have a local second-order error. After
ransforming N±��+,�−� back to the original coordinates
z , t�, the solution of the nonlinear propagation is given by

u��z � h,t + �T� = exp�hN��z,t��u��z,t�. �12�

Substituting Eqs. (7) and (12) into Eq. (6) yields the fol-
owing solution of the nonsymmetrized OSSM:

u−�z,t + �T� = ei�h�cos��h�exp�hN−�z + h,t��u−�z + h,t�

+ i sin��h�exp�hN+�z − h,t��u+�z − h,t��,

u+�z,t + �T� = ei�h�cos��h�exp�hN+�z − h,t��u+�z − h,t�

+ i sin��h�exp�hN−�z + h,t��u−�z + h,t��.

�13�

The solution of the symmetrized OSSM is given by

w�z,t + �T� 	 e�TD̂/2e
t
t+�TN̂dt�e�TD̂/2w�z,t�. �14�

he local error in the case of NLS is of the order of
���T�3� [15].
In the symmetrized OSSM, the solution of the operator

ˆ is given by Eq. (7) with �T /2 substituted for �T. The
olution of the nonlinear operator N̂�z , t� is given in Eq.
10). In the symmetrized OSSM, the integration in Eq.
10) is performed more accurately using the trapezoid in-
egral approximation:
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�−

�−+h

N−��+,�−��d�−� 	
1

2
h�N−��+,�−� + N−��+,�− + h��,



�+

�++h

N+��+�,�−�d�+� 	
1

2
h�N+��+,�−� + N+��+ + h,�−��.

�15�

he trapezoid approximation has a local third-order error.
ransforming the result back to the original coordinates
z , t� yields the solution of the nonlinear propagation:

u��z � h,t + �T� = e�h/2��N��z,t�+N��z�h,t+�T��u��z,t�.

�16�

The solution of the symmetrized OSSM is given by

u−�z,t + �T� = ei�h�cos��h�exp�h

2
�N−�z + h,t�

+ N−�z,t + �T���u−�z + h,t�

+ i sin��h�exp�h

2
�N+�z − h,t�

+ N+�z,t + �T���u+�z − h,t�� ,

u+�z,t + �T� = ei�h�cos��h�exp�h

2
�N+�z − h,t�

+ N+�z,t + �T���u+�z − h,t�

+ i sin��h�exp�h

2
�N−�z + h,t�

+ N−�z,t + �T���u−�z + h,t�� . �17�

he functions N��z , t+�T� are calculated using a two-
tep iterative procedure [16]. Initially, the functions

��z , t+�T� are replaced by N��z , t� in Eq. (17). The re-
ults u±�z , t+�T� are then used to calculate the new value
f N��z , t+�T�. We repeat this iteration two times to ob-
ain an accurate enough result for N��z , t+�T�.

In this paper, we have compared results of the nonsym-
etrized OSSM with results of the symmetrized OSSM.
e have found the nonsymmetrized OSSM as compared

o the symmetrized OSSM to require less run time and to
ield results of similar accuracy.

The nonsymmetrized OSSM in Eq. (13) and the sym-
etrized OSSM in Eq. (17) require spatial shifts of ±h
±Vg�T in the location z. The shift operation originates

n the coordinate transformation in Eq. (8). In the case of
spatial step size equal to �Z=Vg�T, the spatial shift is

imply a shift of the discrete solutions u±�z , t� by one spa-
ial step size either forward or backward as in [14]. For
xample, consider the discretized spatial axis �z �N with
n n=1
patial step size zn+1−zn=�Z=Vg�T. For n=1,2, . . . ,N, a
eft spatial shift of the field envelopes u±�zn , t� by h is
iven by

u±�zn + h,t� = �u±�zn+1,t� n = 1, . . . ,N − 1

0 n = N
. �18�

right spatial shift of the field envelopes u±�zn , t� by h is
iven by

u±�zn − h,t� = �0 n = 1

u±�zn−1,t� n = 2, . . . ,N
. �19�

In the OSSM we allowed the spatial step size �Z to be
ifferent than h. In the case h=N�Z (where N�1 is an
nteger), the spatial shift operation in Eqs. (12) and (16) is
imply performed by shifting the discrete solution of
±�z , t� by N times the spatial step size �Z. Depending on
he direction of the shift, zeros should be added at the be-
inning or at the end of the solution. However, in case
Vg�T���Z, or the case that the ratio between h and �Z
oes not equal an integer, the spatial shift is performed
sing the Fourier transform,

u��z ± h,t + �T� = IFT�e±jkhFT�u��z,t���, �20�

here FT and IFT are the Fourier and the inverse Fou-
ier transform, respectively, that are performed in the
patial domain, and k is the spatial frequency.

The step-size �Z can be dynamically changed during
he pulse propagation in order to optimize performance.
n the case h=N�Z, some of the points in the array rep-
esenting the discrete field should be simply deleted.
owever, when the spatial step size �Z should be de-

reased, the Shannon Sampling Theorem can be used to
nterpolate the missing points [17]:

u±�zm,t� = �
n=1

M

u±�zn,t�sinc�	c�zm − n�zo��, �21�

here zn= �n−1��zo is the old spatial grid, M is the num-
er of points used to represent the discrete field in the old
esolution, zm= �m−1��z is the new spatial grid with a
patial step size of �z��zo, and 	c=
 /�zo.

The ability to control the spatial resolution along the
ulse propagation results in a significant reduction in the
un time of the numerical solution. We demonstrate this
n Section 3. In regions of the grating in which there is not
fast change in the pulse, the spatial step size �Z can be

hosen to be significantly larger than Vg�T. For example,
n the case of an interaction between two solitons, the
patial step size can be increased by a factor of 10 to
0Vg�T without significantly affecting the accuracy of so-
utions. When launching a soliton, an apodization section
s used in the grating entrance in order to decrease the
ulse reflection. In the apodization region, the spatial
tep size �Z should be of the order of Vg�T. On the other
and, in the uniform region of the grating, �Z can be of
he order of 100Vg�T. Hence, the run time in this region
an be decreased by a factor of �100.
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. NUMERICAL RESULTS
e will demonstrate the advantages of the OSSM in solv-

ng four different problems. In three of the problems, the
ength of the grating is infinite. These problems are the
ropagation of a soliton, the collision of two solitons, and
he launching of a soliton. In our simulation, we used a
patial window with finite width L of the order of tens of
entimeters.

In FBGs, the speed of solitons is sometimes signifi-
antly lower than the speed of dispersive waves that
ropagate in the grating. This is a physical phenomenon.
ispersive waves are sometimes generated during the in-

eraction of solitons or when launching a soliton. How-
o
I

w
=
t
s

F
l
c
t
c
=
s
w
i

ver, in the simulation, when dispersive waves arrive at
he boundaries of the window, they may be falsely mod-
led to be backreflected. Also, due to aliasing in the fast
ourier transform (FFT) operation in Eq. (20), dispersive
aves may be falsely modeled to reenter the opposite side
f the window. In case of infinite gratings, such waves
hould simply exit the spatial region in which solitons are
oncentrated. Therefore, dispersive waves may be simu-
ated incorrectly.

The simplest way to overcome these problems is, at
ach propagation step, to multiply the fields by an absorb-
ng window [18–20]. In our simulations we used this ap-
roach with a window function given by
W�z� =�
sin1/3�
�z +

L

2�� �2La�� −
L

2
� z � −

L

2
+ La

1 −
L

2
+ La � z �

L

2
− La

− sin1/3�
�z −
L

2�� �2La�� L

2
− La � z �

L

2

� , �22�
here L is the width of the window, and La is the width of
ach absorbing layer. The location of the grating region in
hich the fields are of interest is −Lw /2�z�Lw /2, where
w� �L−2La�. In the following examples we required that
−Lw�10Wm, where Wm is the maximum spatial full
idth at half-maximum (FWHM) of the propagating
ulses’ intensity.
Another method commonly used to overcome the

oundary reflection problem is to add a perfectly matched
ayer (PML) [21]. This method has been applied recently
n FBGs [22]. Although this method reduces the reflection
ffects, it requires the solution of an additional propaga-
ion equation in the matched layer. Hence, it is more com-
utationally demanding.

. Propagation of a Soliton
n the first example, we compared the split-step solution
iven in Eq. (6) to the known one-soliton solution that de-
cribes the propagation of a single soliton in an infinite
niform grating [9]. The coupling coefficient and the non-

inear coefficients of the grating were equal to �
9000 m−1 and �=5 km−1 W−1, respectively. The effective
efractive index in the absence of the grating was equal to
=1.45. The soliton parameters, as defined in [11], were

�̃ ,v�= �0.02,0.12�. The input soliton had a spatial FWHM
f WS=9.72 mm and a peak power of 478.8 W. The fre-
uency offset relative to the Bragg frequency of the grat-
ng was equal to 298.46 GHz. We compare the result of
he nonsymmetrized OSSM to the analytical one-soliton
olution given in [9]. To simulate an infinite grating we
sed the window function of Eq. (22). The parameters
ere chosen as follows: L=40 cm, Lw=30 cm, and La
2 cm. We define the relative error between the analytical
ne-soliton solution I1�z , t� and the numerical solution
2�z , t� at time t by


 =
�I1 − I2�

�I1�
, �23�

here �Ii�z , t� � = �
�Ii�z , t��2dz�1/2 �i=1,2� and Ii�z , t�
�ui,+�z , t��2+ �ui,−�z , t��2. Figure 1 compares the results ob-

ained using nonsymmetrized OSSM with a spatial step
ize of �Z=Vg�T (dashed–dotted curve) and �Z

ig. 1. (Color online) Comparison between the intensity calcu-
ated using the explicit one-soliton solution in FBGs [9] (solid
urve) and the numerical solution obtained using nonsymme-
rized OSSM with a spatial step size of �Z=WS /40 (dashed
urve) and �Z=WS /2400 (dashed–dotted curve), where WS
9.72 mm is the spatial FWHM of the soliton. The temporal step
ize was equal in both cases to �T=WS / �2400Vg� and the result
as calculated after the soliton propagated a distance of 13.5 cm

nside the grating.
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60Vg�T (dashed curve).The temporal step size in both
ases was equal to �T=WS / �2400Vg�, where WS is the
patial FWHM of the soliton. The comparison was per-
ormed at t=5.45 ns, which corresponds to a propagation
f the soliton through a distance of 13.5 cm inside the
rating. The relative error was equal to 0.964% for a spa-
ial step size of �Z=Vg�T and 0.9641% for a spatial step
ize of �Z=60Vg�T. The increase of the spatial step size
ade it possible to decrease the run time from 6 h into

nly 8 min while keeping a similar accuracy.
Figure 2 compares the results obtained using

ifferent temporal step sizes of �T=WS / �1600Vg� ,
S / �800Vg� ,WS / �4000Vg�, and WS / �200Vg�. The spatial

tep size in all cases was kept constant, �Z=WS /40. The
omparison was performed after the soliton propagated
hrough a distance of 13.5 cm inside the grating. The fig-
re shows that as the temporal step size increases, the er-
or in the soliton amplitude and in the soliton location in-
reases. Figure 3 shows the global relative error as a
unction of the normalized temporal step size, �TVg /WS,
fter the soliton has propagated through a distance of
3.5 cm inside the grating. The nonsymmetrized OSSM
ade it possible to keep in all the calculations a constant

patial step size of �Z=WS /40. The figure indicates that
hen the propagation of a single soliton is calculated, the

elative error approximately depends on the square of the
emporal step size. Therefore, the global error is of the or-
er of O���T�2� rather than an error of the order of
���T�� as one may expect, since we used the nonsymme-

rized split-step method given in Eq. (6). A similar depen-
ence of the error was also found in the next example,
here a two-soliton interaction was studied.
We define the amplitude error or the relative error in

he peak intensity at time t as
S

F
s
a
c
t
g


a =
�P1 − P2�

P1
, �24�

here Pi=maxz�Ii�z , t�� �i=1,2� is the maximum intensity
t time t calculated using the explicit one-soliton solution
i=1� [9] and by using the OSSM �i=2�. The results were
ompared at t=5.45 ns, where P1=478.8 W. The relative
rror in the soliton location at t=5.45 ns is defined by


z =
�Z1 − Z2�

WS
, �25�

here Zi=
−�
� zIi�z , t�dz /
−�

� Ii�z , t�dz �i=1,2� is the first-
rder moment of the soliton position at t=5.45 ns, and Z1
s the exact soliton location that is equal to 21.54 cm. The
esults obtained in Fig. 4 indicate that for a single soliton

ig. 3. (Color online) Relative error, defined in Eq. (23), between
he explicit one-soliton solution and the numerical results as a
unction of the temporal step size, �TVg /WS, calculated after the
oliton has propagated a distance of 13.5 cm along the grating.
he spatial step size was equal to �Z=WS /40, where WS is the
patial FWHM of the soliton. The solid line is a least-square
ean error linear fit: ln�
�=1.9708 ln��TVg /WS�+15.228.
ig. 2. (Color online) Comparison between the intensity of the
xplicit one-soliton solution (solid curve) and the numerical solu-
ion that was calculated using nonsymmetrized OSSM with a
emporal step size of �T=WS / �1600Vg� (dashed curve), �T
WS / �800Vg� (dashed–dotted curve), �T=WS / �4000Vg� (dotted
urve), and �T=WS / �200Vg� (left-pointing triangle marker). The
omparison was performed after the soliton had propagated a
istance of 13.5 cm along the grating. The spatial step size was
qual to �Z=W /40.
ig. 4. (Color online) Relative error between the explicit one-
oliton solution and the numerical results of the output soliton
mplitude (solid curve) and the output soliton position (dashed
urve) as a function of the temporal step size, �T, calculated af-
er the soliton has propagated a distance of 13.5 cm along the
rating. The spatial step size was equal to �Z=W /40.
S
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ropagation, as the temporal step size decreases, the er-
or in the soliton location converges more quickly than
he error in its amplitude. A similar behavior of the error
as obtained in all the examples analyzed in this work.
he error in the speed of the soliton is defined by


v =
1

vVg

��Z�t2� − �Z�t1��

t2 − t1
, �26�

here t2=5.45 ns, t1=2.63 ns, v=0.12, �Z�t�=Z�t�−Zs�t�,
�t� is the first-order moment of the soliton position at

ime t, and Zs�t� is the exact soliton location at time t. The
elative errors in the speed were equal to 0.4%, 0.1%, and
.004% for a temporal step size of �T=Ws / �800Vg�, �T
Ws / �1600Vg�, and �T=Ws / �8000Vg�, respectively. The
patial step size was kept constant in all cases, �Z
Ws /40. The results indicate that the error in the soliton
peed is very small. However, this error is accumulated
nd it may cause an error in the soliton location, as can be
bserved in Fig. 4.

Since the small error in the soliton location usually
oes not have a significant physical meaning, one may in-
rease the temporal step size and ignore the very small
rror in the soliton speed. However, the inaccuracy in the
oliton location may significantly affect the error, as de-
ned in Eq. (23).
The result shown in Fig. 1 indicated that, using the

onsymmetrized OSSM, we can increase the spatial step
ize �Z beyond Vg�T without a significant increase in the
rror. We have also checked the possibility of improving
he result’s accuracy by using the Richardson extrapola-
ion [15,23]. This method was previously used to decrease
he simulation run time when solving the NLS equation
15]. The Richardson extrapolation is based on propagat-
ng the solution in the time domain using a fine resolution
T and a coarse resolution 2�T.
Since the global error that was obtained in Fig. 3 was of

he order of O���T�2�, we have implemented the Richard-
on extrapolation, assuming a local error of the order of
���T�3�. After performing the Richardson extrapolation,

he local error is expected to be of the order of O���T�4�.
e have verified that if we implement the Richardson ex-

rapolation using coefficients that correspond to a local er-
or of O���T�2� or O��T�, the global error only increases
ompared to that obtained without using the extrapola-
ion. Assuming a local error of the order of O���T�3�, the
ichardson extrapolation is implemented using the con-
ection [23]

u±�z,t + 2�T� = �8/7�u±
f �z,t + 2�T� − �1/7�u±

c �z,t + 2�T�

+ O���T�4�, �27�

here u±
f �z , t� and u±

c �z , t� are the solutions using the fine
nd the coarse resolution, respectively. By using the Rich-
rdson extrapolation with a fine temporal step size of
T=WS / �6400Vg� and a spatial step size of �Z=WS /40,
e obtained a relative error of 0.02% compared to an er-

or of 0.13% that was obtained without using the Richard-
on extrapolation for a temporal step size of �T
WS / �6400Vg�. Therefore, the Richardson extrapolation

mproves the accuracy compared to that obtained using
he fine resolution. However, the Richardson extrapola-
ion also increased the run time to 18 min compared to a
un time of 10 min that was obtained using the solution
ith the fine resolution. Similar results were obtained for
fine resolution of WS / �1600Vg� and for a spatial step size
Z=WS /40. The Richardson extrapolation enabled us in

his case to reduce the error from 2.17% to 1.2%, while the
un time increased from 7.5 to 11.5 min. We could also de-
rease the error to 0.96% without using the Richardson
xtrapolation by decreasing the temporal step size to �T
WS / �2400Vg�. The run time in this case was equal to
4 min. The results obtained indicate that the use of the
ichardson extrapolation enables one to only slightly de-
rease the run time, while the use of the OSSM with a
arge spatial step size enables one to significantly de-
rease the run time without a significant increase in the
esult error, as shown in Fig. 1. We would also like to note
hat the Richardson extrapolation made it possible to in-
rease the result’s accuracy only when the fine temporal
tep size was lower than �T=WS / �1600Vg�.

. Collision of Two Solitons
n the second example, we study the collision of two soli-
ons in an infinite uniform grating with a coupling coeffi-
ient �=9000 m−1. The nonlinear coefficient was equal to
=5 km−1 W−1 and the effective refractive index in the ab-
ence of the grating was equal to n=1.45. To simulate in-
nite grating, we used the window function of Eq. (22).
he parameters were chosen as follows: L=105 cm, Lw
85 cm, and La=5 cm. The soliton parameters, as defined

n [11], were ��̃1 ,v1�= �0.022,0.1�, ��̃2 ,v2�= �0.02,0.12�. At
=0, the spatial separation and the phase differences be-
ween the solitons’ peaks were 6 cm and 0 rad, respec-
ively. The input solitons had a spatial FWHM of 8.86 and
.72 mm. The peak power of the two input solitons and
heir frequency offset relative to the Bragg frequency
ere equal to 582 W, 478.8 W, 297.78 GHz, and
98.46 GHz, respectively.
Figure 5 shows the interaction calculated using the

ig. 5. (Color online) Collision between two solitons calculated
sing nonsymmetrized OSSM shown in (a) a three-dimensional
lot and in (b) a two-dimensional plot. The simulation param-
ters were �Z=WS /80, Vg�T=WS /800, where WS=8.86 mm is
he spatial FWHM of the shorter soliton. The peak power of the
wo input solitons and their frequency offset relative to the local
ragg frequency are equal to 582 W, 478.8 W, 297.78 GHz, and
98.46 GHz, respectively.
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onsymmetrized OSSM given in Eq. (13) for a spatial step
ize �Z=WS /80 and a temporal step size �T=WS /800Vg,
here WS=8.86 mm is the spatial FWHM of the shorter

oliton.
We have studied the convergence of the solution as a

unction of the temporal step size as performed in the pre-
ious example. Figure 6 compares the output intensity ob-
ained at the end of the interaction at t=25.52 ns using
ifferent temporal step sizes of �T=WS / �8000Vg� (solid
urve), �T=WS / �1600Vg� (dashed–dotted curve), and �T
WS / �800Vg� (dashed curve), where WS=8.86 mm is the

nput spatial FWHM width of the shorter soliton. The
patial step size was equal in all the calculations to �Z
WS /40. The figure indicates that when the temporal
tep size is equal to �T=WS / �800Vg�, the error is mainly
aused due to a slight shift in the soliton locations. The
un time in this case is equal to 1 h compared to a run
ime of 10 h using a temporal step size of �T
WS / �8000Vg�. Since the small shift in the solitons loca-

ion usually does not have a physical significance one may
se the larger temporal step size in order to decrease the
un time.

Figure 7 compares the intensity of the two solitons af-
er the interaction calculated using the nonsymmetrized
SSM given in Eq. (13) (dashed curve) with the results of

he symmetrized OSSM given in Eq. (17) (solid curve).
he spatial and the temporal step sizes were equal to
Z=WS /800 and �T=WS / �800Vg�, respectively. At the
nd of the interaction at t=25.52 ns, the relative error be-
ween the results was equal only to �=0.007%. Thus, we
scertained that the relative error between the nonsym-
etrized OSSM and the symmetrized OSSM is very

mall. This result was also verified for all the other ex-
mples given in this manuscript. Since the relative error
etween the two implementations is very low, we used the
onsymmetrized OSSM throughout the manuscript.
The nonsymmetrized OSSM makes it possible to in-

rease the spatial step size and hence to significantly re-
uce the run time without a significant increase in error.
o verify that the spatial step size �Z may be significantly
ncreased compared to Vg�T without a significant in-

ig. 6. (Color online) Intensity of the two solitons after their in-
eraction calculated at t=25.52 ns. The spatial step size was
qual to �Z=WS /40 and the temporal step size was equal to
T=WS / �8000Vg� (solid curve), �T=WS / �1600Vg� (dashed–dotted
urve), and �T=W / �800V � (dashed curve).
S g
rease in the error, we have analyzed the soliton interac-
ion using a spatial step size �Z=10Vg�T. The temporal
tep size �T=WS / �800Vg� was the same as that used in
ig. 7. Figure 8 compares the pulse intensity obtained us-

ng the higher spatial step size, �Z=10Vg�T (solid
urve), to that obtained using the lower spatial step size,
Z=Vg�T (dashed curve). The relative error at the end of

he interaction at t=25.52 ns was equal to �=0.49%. By
ncreasing the spatial step size �Z by a factor of 10, the
un time decreased from 12 to 2 h without a significant in-
rease in the error. The main reason that the time reduc-
ion that was obtained is less than the ratio between the
wo step sizes is that in the case when �Z�Vg�T, the
patial shift operation is implemented using FFT instead
f just shifting an array and adding zeros.

We calculated the average speed of each soliton after
he interaction as a function of the temporal step size.
he average speed is defined as �vi�= �Zi�t2�−Zi�t1�� / �t2
t1�, where i=1,2, t1=22.1 ns, t2=25.5 ns, Zi�t1� is the lo-

ig. 7. (Color online) Intensity of two solitons, calculated at the
nd of their interaction at t=25.52 ns, by using symmetrized
SSM (solid curve) and by using nonsymmetrized OSSM

dashed curve). The spatial and temporal resolution are �Z
WS /800 and �T=WS / �800Vg�, respectively. The solitons’ param-
ters are the same as in Fig. 5.

ig. 8. (Color online) Intensity of two solitons after their inter-
ction, calculated at t=25.52 ns using nonsymmetrized OSSM for
spatial step size of �Z=WS /800 (solid curve) and �Z=WS /80

dashed curve). The temporal step size was equal to �T
W / �800V � in both cases.
S g
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ation of the ith soliton at t= t1, and Zi�t2� is the location
f ith soliton at t= t2. The spatial step size was equal to
Z=Ws /40. Using a temporal step size �T=Ws /800Vg the
peed of the first soliton �i=1� was equal to 0.1196Vg and
he speed of the second soliton was equal to 0.0997Vg. Us-
ng a temporal step size �T=Ws /1600Vg, the speeds of the
wo solitons were 0.1199Vg and 0.0999Vg. Using a tempo-
al step size of �T=Ws /8000Vg, the speeds of the two soli-
ons were equal to 0.12Vg and 0.0999Vg. Therefore, as ob-
ained in the simulation of a single soliton, the error in
he solitons’ velocity is very small.

We compared the results after the interaction at t
25.52 ns using different widths of the window function.
he temporal and the spatial step sizes were equal to
T=Ws /1600Vg and �Z=Ws /40, respectively. The widths
f the window function were changed between 105 to
55 cm. The width of the absorbing layer was equal to
a=5 cm. The solution for different window widths was
ompared to that obtained using a window of 155 cm. The
elative errors obtained for window widths of L=135, 125,
15, and 105 cm were equal to 
=0.0033%, 0.0038%,
.0034%, and 0.0053%, respectively. Therefore, a window
ith a length of L=105 cm, as used in Figs. 5–8, is suffi-

ient for obtaining an accurate result.

. Bistability
n the next example we use the nonsymmetrized OSSM
or analyzing a device with bistable behavior. The ana-
yzed device had the same parameters as given in [3]. The
rating had a length of L=1 m, a nonlinear coefficient of
=0.1 m−1 W−1, and a coupling coefficient of �=5 m−1. The

nput wave was a continuous-wave signal with a detuning
arameter that was equal to �=4.75 m−1. The boundary
onditions were equal to u−�z=L , t�=0, u+�z=0, t�=A. The
olution was first calculated for an amplitude A that was
ncreased between 0 to 2 �W in steps of 0.01 �W. Then,
he solution was calculated again for an amplitude A that
as decreased to 0 in steps of 0.01 �W.
Figure 9 shows the device transmissivity as a function

f the incoming amplitude. The device was analyzed using
spatial step size �Z=0.002 m (solid curve) and �Z

0.008 m (dashed curve). The temporal step size was
qual to �T=0.002/Vg s. The figure shows that the in-

ig. 9. (Color online) Transmissivity versus the incoming am-
litude of a bistable device formed by a uniform FBG.
rease in the spatial step size �Z did not add a significant
rror. The relative error between the two results was
qual to 1%. However, the increase in the spatial step size
y a factor of 4 enabled the reduction of run time from 18
o 6.4 h. We note that in [3] a similar bistable curve was
btained using a direct numerical integration of the
LCME.

. Launching of a Soliton
n the last example, we use the nonsymmetrized OSSM
or analyzing the launching of a gap soliton. The grating
onsists of an apodization region that is used to efficiently
aunch the soliton in a uniform region where the soliton
ropagates. The apodization segment had a quarter-
eriod sine profile with a length L1=2 cm. The uniform
rating section had a length L2=26 cm and an amplitude
=9000 m−1. The nonlinear coefficient was equal to �
5 W−1 km−1, and the effective refractive index in the ab-
ence of the grating was equal to n=1.45. The boundary
ondition was u+�z=0, t�=�34 sech��t−3T0� /0.5499T0�,
here T0=640 ps. The incident pulse had a spatial
WHM of 13.24 cm, a peak power of 34 W, and a detuning
arameter that was equal to �=9031 m−1. In this ex-
mple, the grating is half infinite and the parameters of
he window function were chosen as follows: L=40 cm,
w=30 cm, and La=2 cm. The spatial and the temporal
tep sizes in the apodized region were equal to �Z
0.005 mm and �T=0.005 mm/Vg s, respectively.
In the uniform region, the spatial and the temporal

tep size were equal to �Z=1 mm and �T
0.005 mm/Vg s, respectively. We have started the simu-

ation with a spatial and a temporal step size of �Z
0.005 mm and �T=0.005 mm/Vg s, respectively. To in-
rease the spatial step size �Z in the uniform region of
he grating, we have tracked the location of the signal
eak along the propagation. When the location of the
eak intensity was 30 mm inside the uniform grating sec-
ion, the spatial step size was increased to 1 mm and the

ig. 10. (Color online) Output intensity after launching an in-
ut hyperbolic-secant pulse through an apodization section and
9 cm of uniform grating. The solid curve gives the result calcu-
ated using a uniform spatial step size with �Z=Vg�T
0.005 mm, and the dashed curve gives the result obtained using
onsymmetrized OSSM with a nonuniform spatial step size with
Z=Vg�T=0.005 mm in the apodized grating region and �Z
1 mm, V �T=0.005 mm in the uniform region.
g
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emporal step size was kept constant, �T
0.005 mm/Vg s. The results were compared to those ob-

ained using constant spatial and temporal step sizes of
Z=0.005 mm and �T=0.005 mm/Vg s, respectively, as
sed in [14]. Figure 10 shows a comparison between the
ulse intensities at t=12.91 ns, which corresponds to a
ropagation of 19 cm in the uniform grating region. Fig-
re 11 compares the peak intensity as a function of time
f the two solutions. The relative error in the peak inten-
ity at t=12.91 ns between the solution with the uniform
patial step size and the solution with the varying spatial
tep size was equal to �a=0.1%.

The control of the spatial resolution along the grating
ade it possible to decrease the run time from 604 to

78 min. In the uniform grating section, the run time was
ecreased by a factor of �100 from 393 to 4 min. The spa-
ial step size could be significantly increased inside the
niform grating section without affecting the error, since
he change in the pulse shape in that region is slow. In the
podization section, the input pulse significantly changes
ntil it becomes a soliton, and therefore the spatial step
ize should be kept small.

We would like to note that the first, the second, and the
ast examples given in this section run on an X4100 AMD
4� processor with 8 Gbytes of memory. The third ex-
mple runs on a PC-Pentium IV with a 1.8 GHz dual-core
rocessor and 1 Gbyte of memory. All the examples were
mplemented using MATLAB software.

. CONCLUSION
n conclusion, we have demonstrated and studied the per-
ormance of an optimized split-step method (OSSM) for
olving the nonlinear coupled-mode equations that are
sed to model nonlinear pulse propagation in FBGs. We
ave used the method to numerically analyze a single
oliton propagation, two solitons’ interaction, bistable be-
avior, and a soliton launching in FBGs. Unlike in the nu-
erical methods that were previously demonstrated, the
SSM does not require a direct connection between the

ig. 11. (Color online) Peak power as a function of the propaga-
ion duration obtained by using a uniform spatial step size (solid
urve) and by using nonsymmetrized OSSM with a nonuniform
patial step size (dashed curve). The simulation parameters are
he same as used in Fig. 10.
emporal and the spatial step size. Therefore, the spatial
tep size may be significantly increased without affecting
he accuracy of the result. Hence, we could decrease in
ome problems the run time by a factor of up to 100. To
mplement the method, a generalized solution for solving
he nonlinear operator in the split-step procedure was de-
eloped. We have found that the use of nonsymmetrized
SSM is enough to obtain accurate results with a short

un time. The spatial step size can be dynamically con-
rolled along the grating. The maximum spatial step size
s obtained in grating regions where the change in the
ropagating pulses is relatively slow, as occurred, for ex-
mple, during a soliton propagation. When analyzing the
ropagation of a pulse using nonsymmetrized OSSM, the
ain error is obtained in the location of the propagating

ulse and not in the pulse amplitude. Since a small shift
n the pulse location usually does not have a significant
hysical meaning, one may increase the temporal step
ize and ignore the very small error in the pulse speed.
he Richardson extrapolation was used to slightly de-
rease the run time.
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