448 J. Opt. Soc. Am. B/Vol. 25, No. 3/March 2008

Z. Toroker and M. Horowitz

Optimized split-step method for modeling
nonlinear pulse propagation in fiber Bragg gratings

Zeev Toroker® and Moshe Horowitz

Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
*Corresponding author: ztoroker@tx.technion.ac.il

Received September 26, 2007; revised December 24, 2007; accepted January 7, 2008;
posted January 22, 2008 (Doc. ID 87686); published February 29, 2008

We present an optimized split-step method for solving nonlinear coupled-mode equations that model wave
propagation in nonlinear fiber Bragg gratings. By separately controlling the spatial and the temporal step size
of the solution, we could significantly decrease the run time duration without significantly affecting the result
accuracy. The accuracy of the method and the dependence of the error on the algorithm parameters are studied
in several examples. Physical considerations are given to determine the required resolution. © 2008 Optical

Society of America

OCIS codes: 000.4430, 050.2770, 060.3735, 060.4370, 060.5530.

1. INTRODUCTION

Nonlinear effects and soliton propagation in fiber Bragg
gratings (FBGs) have been extensively studied theoreti-
cally and experimentally [1-14]. Solitonic effects in such
systems can be used for obtaining pulse compression
[1,2], optical switching [3], optical AND gates [4—6], and
for demonstrating the propagation of solitons with a slow
group velocity [7,8]. To improve the performance of de-
vices that are based on FBGs, there is a need to design
and to optimize the grating structure. Nonlinear coupled-
mode equations (NLCME) are used to model pulse propa-
gation in nonlinear FBGs [9,12]. Two main numerical
methods have been used to solve NLCME. The first is
based on a numerical integration using implicit fourth-
order method Runge—Kutta (RK) [13] and the second is
based on using the split-step method [14]. The RK and
split-step methods give results of similar accuracy when
applied to the propagation of a single soliton. However,
the computational run time of the split-step method is
shorter by a factor of 20. However, even when the split-
step method is used for designing gratings, the run time
may remain of the order of several hours. Therefore, the
performance optimization of nonlinear devices based on
FBGs is limited.

In previous works, with both the RK integration and
the split-step methods, a discrete solution of the NLCME
with a temporal step size AT and a spatial step size AZ is
used to represent the field envelope. The spatial and tem-
poral step sizes are related by the group velocity V, of the
pulses in the absence of the grating by the equation AZ
=V,AT.

In this paper, we present an optimized split-step
method (OSSM) for solving the NLCME numerically. An
OSSM is a split-step method that does not require a direct
relationship between temporal and spatial step sizes. The
split-step method requires that a nonlinear and linear op-
erator be solved separately in each iteration. We have
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found a generalized solution of the nonlinear operator and
we use this solution in the OSSM. We have discovered
that, with this new generalized solution, the spatial step
size can be increased substantially without significantly
affecting the accuracy of results. Hence, when applied to
some important problems, the run time can be reduced by
up to a hundredfold.

The spatial step size can be changed dynamically along
the grating when using OSSM. When studying soliton
launching, we could increase the spatial step-size beyond
V,AT by a factor of up to 100 in the uniform part of the
grating. This also significantly reduced the run time in
this region by a factor of up to ~100. Noticeably, there
was no significant decrease in the accuracy of the solu-
tion. In highly nonuniform grating regions the spatial res-
olution should be of the same order as AZ=V,AT. The
overall run time for studying the launching was de-
creased by a factor of ~3.4.

We have demonstrated the use of OSSM for modeling
soliton propagation, two-soliton interaction, optical bista-
bility, and gap-soliton launching in FBGs. The depen-
dence of the error on the spatial and the temporal reso-
lution was studied for a single soliton propagation. In this
example, an increase in temporal step size increased error
primarily in the location of the soliton. On the other hand,
we found that the increase in the error in soliton speed
was small. This is not contradictory, since even small er-
rors in soliton speed will result in large errors in soliton
location after a sufficiently long passage of time. We show
that the Richardson extrapolation may be used to de-
crease the run time slightly. To eliminate errors due to
waves that are backreflected by the grating, an absorptive
boundary window should be used at the grating ends.

2. THEORY
The NLCME

© 2008 Optical Society of America
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are used to model nonlinear pulse propagation in FBGs
[11]. In Eq. (1), u.(z,t) represents the field envelope of the
forward (+) and backward (-) propagating waves, V, rep-
resents the group velocity in the absence of the grating, I'
is the nonlinear coefficient, «(z) is the grating coupling
strength, and &(z) is the detuning parameter [14].

The split-step method is based on separating the propa-
gation operator into a linear and a nonlinear operator.
Each operator has a simple solution. In each small section
of the medium, the propagation is calculated for each of
the operators separately. The error in the solution of the
split-step method is mainly because the two operators do
not commute and the solution of the nonlinear operator is
approximated. The split-step method is used extensively
for solving the nonlinear Schrodinger equation (NLS)
[15,16].

To implement the split-step method for solving the
NLCME, Eq. (1) is presented in the form

‘9tw = (D +]V)W, (2)
where
A i8z)  ik(z)
D(z)=V, ixz)  idz))’ @
) 39, +N_(z,0) 0
N(z,t)=V, 0 -d,+N,(z,t))’ “
N (z,t) =il (us ]2 + 2l f?), ©)

u_(z,t)
i PRET
The operator N (z,t) represents the nonlinear propaga-

tion effect, and the operator D(z) represents the linear ef-
fect due to the grating. The propagation in Eq. (1) is per-
formed in the time domain rather than in the spatial
domain as is often performed when solving the NLS equa-
tion. The NLCME describes the propagation of two coun-
terpropagating waves. Therefore, the boundary conditions
in the spatial domain are usually given at the two oppo-
site sides of the grating. Such boundary conditions often
make necessary the use of an iterative solution in cases
when the equations are solved in the spatial domain.
Since the input wave is usually launched only from one
side of the grating, it becomes easier to implement the so-
lution to the NLCME in the time domain.

We implemented two types of OSSM: nonsymmetrized
and symmetrized. The solution of the nonsymmetrized
OSSM is given by

Wizt + AT) = AT DSt "Nt g7 1) (6)

In the NLS equation, the local error has a leading order
term of O[(AT)?] [16], where O[(AT)?] means (AT)? is
bounded for sufficiently small temporal step size AT.

The solution of the operator Dis given by
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cos[«(z)h]

i sin[x(z)h])
i sin[k(2)h] > D

AN ok
exp(AT - D) =e'” ( cos[k(z)h]

where h=V,AT. To obtain the solution to the operator
N (z,t), we use the following transformation:

(Vi 22). ®)

DN | =

Ty =

The nonlinear operator N(T+,T_) in the new coordinate
system, (7,,7_), is given by

N_(7,,7.) 0 )

0 N.(r.,7) ®)

N(T+5 T—) = (

where N-(7,,7_) are the functions defined in Eq. (5) ex-
pressed using the coordinates (7,,7_). The solution of Eq.
(9) is given by

N (7,7 )dr

u_(r,7_+h)= el u_(r,,7)

10
+hN+(TL,T_)dTL ( )

u+(7-+ + hv 7-—) = ej": u+(T+, T—)

The integration in Eq. (10) can be performed using the
rectangular integral approximation

T_+h
f N—(T+7 TL)dTL = hN—(T+7 T—)’

T, +h
N.(7,7)d7, =hN (7,,7.). (11)

Ty

These integrals have a local second-order error. After
transforming N,(7,,7_) back to the original coordinates
(z,¢), the solution of the nonlinear propagation is given by
u-(z ¥ h,t + AT) = exp[AN=(z,t) Ju=(z,t). (12)
Substituting Eqgs. (7) and (12) into Eq. (6) yields the fol-
lowing solution of the nonsymmetrized OSSM:

u_(z,t + AT) = e!™{cos(xh)exp[AN_(z + h,t)Ju_(z + h,t)
+i sin(kh)exp[AN,(z = h,t)|u,(z — h,t)},

u,(z,t + AT) = e!™{cos(xh)exp[AN,(z - h,t)Ju,(z - h,t)
+i sin(kh)exp[AN_(z + h,t)|u_(z + h,t)}.
(13)
The solution of the symmetrized OSSM is given by
£+AT,

W(Z,t+AT) =eATD/29ft th,eATD/ZW(Z,t). (14)

The local error in the case of NLS is of the order of
O[(AT)?] [15].

In the symmetrized OSSM, the solution of the operator
D is given by Eq. (7) with AT/2 substituted for AT. The
solution of the nonlinear operator N (z,t) is given in Eq.
(10). In the symmetrized OSSM, the integration in Eq.
(10) is performed more accurately using the trapezoid in-
tegral approximation:
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- 1
J N(7,7)d7 = ShIN_(7,,7.) + N7, 7_ + h)],

Ty +h 1
N (7,7)d7, = Eh[N+(T+’ 7))+ N, (7, +h,7)].

(15)

The trapezoid approximation has a local third-order error.
Transforming the result back to the original coordinates
(z,t) yields the solution of the nonlinear propagation:

u-(z¥ h,t + AT) =e(h/Z)[N:(z,t)+N:(zIh,t+AT)]uI(Z’t)'
(16)
The solution of the symmetrized OSSM is given by

h
u_(z,t+AT) = eiﬁh{cos(;(h)exp{ E[N_(Z + h,t)
+N_(z,t + AT)]}u_(z +h,t)
[N+(Z - hyt)

h
+1 sin(xh)exp{ 3

+N,(z, t+AT)]}u+z h t)

) h
u,(z,t + AT) = ! cos(Kh)exp —[.

2 J(z=ht)

+N,(z,t+ AT‘)]}u+(z —h,t)
h
+1 sin(xh)exp{ E[N_(z +h,t)

+N_(z,t+AT)]}u_(z+h,t):|. (17)

The functions N+ (z,t+AT) are calculated using a two-
step iterative procedure [16]. Initially, the functions
N~(z,t+AT) are replaced by N+(z,?) in Eq. (17). The re-
sults u,(z,t+AT) are then used to calculate the new value
of N=(z,t+AT). We repeat this iteration two times to ob-
tain an accurate enough result for N (z,t+AT).

In this paper, we have compared results of the nonsym-
metrized OSSM with results of the symmetrized OSSM.
We have found the nonsymmetrized OSSM as compared
to the symmetrized OSSM to require less run time and to
yield results of similar accuracy.

The nonsymmetrized OSSM in Eq. (13) and the sym-
metrized OSSM in Eq. (17) require spatial shifts of +h
==V AT in the location z. The shift operation originates
in the coordinate transformation in Eq. (8). In the case of
a spatial step size equal to AZ=V, AT, the spatial shift is
simply a shift of the discrete solutions u,(z,t) by one spa-
tial step size either forward or backward as in [14]. For
example, consider the discretized spatial axis {zn}ff:l with
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spatial step size z,,,1-2,=AZ=V,AT. Forn=1,2,...,N, a

left spatial shift of the field envelopes u,(z,,t) by h is
given by

U4 (2,41,t) n
ut(zn"'h,t): { ’“’1
0 n

1,...,N-1

N (18)

A right spatial shift of the field envelopes u.(z,,t) by & is
given by

L 0 n=1
uslzn = hot) = u(z,.,t) n=2,....N’ (19)

In the OSSM we allowed the spatial step size AZ to be
different than i. In the case h=NAZ (where N>1 is an
integer), the spatial shift operation in Eqs. (12) and (16) is
simply performed by shifting the discrete solution of
u.(z,t) by N times the spatial step size AZ. Depending on
the direction of the shift, zeros should be added at the be-
ginning or at the end of the solution. However, in case
(V,AT)<AZ, or the case that the ratio between h and AZ
does not equal an integer, the spatial shift is performed
using the Fourier transform,

u-(z £ h,t+AT) = IFT{e " FT[u-(z,t)]}, (20)

where FT and IFT are the Fourier and the inverse Fou-
rier transform, respectively, that are performed in the
spatial domain, and % is the spatial frequency.

The step-size AZ can be dynamically changed during
the pulse propagation in order to optimize performance.
In the case h=NAZ, some of the points in the array rep-
resenting the discrete field should be simply deleted.
However, when the spatial step size AZ should be de-
creased, the Shannon Sampling Theorem can be used to
interpolate the missing points [17]:

M

ut(zmat) = 2 uz(zmt)Sinc[wc(Zm
n=1

-nlz,)], (21)

where z,=(n—-1)Az, is the old spatial grid, M is the num-
ber of points used to represent the discrete field in the old
resolution, z,,=(m-1)Az is the new spatial grid with a
spatial step size of Az<Az,, and w,=7/Az,.

The ability to control the spatial resolution along the
pulse propagation results in a significant reduction in the
run time of the numerical solution. We demonstrate this
in Section 3. In regions of the grating in which there is not
a fast change in the pulse, the spatial step size AZ can be
chosen to be significantly larger than V,AT. For example,
in the case of an interaction between two solitons, the
spatial step size can be increased by a factor of 10 to
10V AT without significantly affecting the accuracy of so-
lutions. When launching a soliton, an apodization section
is used in the grating entrance in order to decrease the
pulse reflection. In the apodization region, the spatial
step size AZ should be of the order of V,AT. On the other
hand, in the uniform region of the grating, AZ can be of
the order of 100V AT. Hence, the run time in this region
can be decreased by a factor of ~100.
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3. NUMERICAL RESULTS

We will demonstrate the advantages of the OSSM in solv-
ing four different problems. In three of the problems, the
length of the grating is infinite. These problems are the
propagation of a soliton, the collision of two solitons, and
the launching of a soliton. In our simulation, we used a
spatial window with finite width L of the order of tens of
centimeters.

In FBGs, the speed of solitons is sometimes signifi-
cantly lower than the speed of dispersive waves that
propagate in the grating. This is a physical phenomenon.
Dispersive waves are sometimes generated during the in-
teraction of solitons or when launching a soliton. How-

W) =41

where L is the width of the window, and L, is the width of
each absorbing layer. The location of the grating region in
which the fields are of interest is -L,,/2=z=L,/2, where
L, <(L-2L,). In the following examples we required that
L-L,=10W,,, where W,, is the maximum spatial full
width at half-maximum (FWHM) of the propagating
pulses’ intensity.

Another method commonly used to overcome the
boundary reflection problem is to add a perfectly matched
layer (PML) [21]. This method has been applied recently
in FBGs [22]. Although this method reduces the reflection
effects, it requires the solution of an additional propaga-
tion equation in the matched layer. Hence, it is more com-
putationally demanding.

A. Propagation of a Soliton

In the first example, we compared the split-step solution
given in Eq. (6) to the known one-soliton solution that de-
scribes the propagation of a single soliton in an infinite
uniform grating [9]. The coupling coefficient and the non-
linear coefficients of the grating were equal to «
=9000 m~! and I'=5 km~! W-1, respectively. The effective
refractive index in the absence of the grating was equal to
n=1.45. The soliton parameters, as defined in [11], were

(5,0): (0.02,0.12). The input soliton had a spatial FWHM
of Wg=9.72mm and a peak power of 478.8 W. The fre-
quency offset relative to the Bragg frequency of the grat-
ing was equal to 298.46 GHz. We compare the result of
the nonsymmetrized OSSM to the analytical one-soliton
solution given in [9]. To simulate an infinite grating we
used the window function of Eq. (22). The parameters
were chosen as follows: L=40cm, L,=30cm, and L,
=2 cm. We define the relative error between the analytical
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ever, in the simulation, when dispersive waves arrive at
the boundaries of the window, they may be falsely mod-
eled to be backreflected. Also, due to aliasing in the fast
Fourier transform (FFT) operation in Eq. (20), dispersive
waves may be falsely modeled to reenter the opposite side
of the window. In case of infinite gratings, such waves
should simply exit the spatial region in which solitons are
concentrated. Therefore, dispersive waves may be simu-
lated incorrectly.

The simplest way to overcome these problems is, at
each propagation step, to multiply the fields by an absorb-
ing window [18-20]. In our simulations we used this ap-
proach with a window function given by

(22)

one-soliton solution I;(z,#) and the numerical solution
I)(z,t) at time ¢ by

-1

I

where |I;(z,t)|=([|I;(z,0)?d2)2 (i=1,2) and I;(z,?)

=lu; +(z,8)|?+|u; _(z,¢)|%. Figure 1 compares the results ob-
tained using nonsymmetrized OSSM with a spatial step

(23)

size of AZ=V,AT (dashed—dotted curve) and AZ
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Fig. 1. (Color online) Comparison between the intensity calcu-

lated using the explicit one-soliton solution in FBGs [9] (solid
curve) and the numerical solution obtained using nonsymme-
trized OSSM with a spatial step size of AZ=Wg/40 (dashed
curve) and AZ=Wg/2400 (dashed—dotted curve), where Wg
=9.72 mm is the spatial FWHM of the soliton. The temporal step
size was equal in both cases to AT'=Wg/(2400V,) and the result
was calculated after the soliton propagated a distance of 13.5 cm
inside the grating.
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=60V AT (dashed curve).The temporal step size in both
cases was equal to AT=Wg/(2400V,), where Wy is the
spatial FWHM of the soliton. The comparison was per-
formed at t=5.45 ns, which corresponds to a propagation
of the soliton through a distance of 13.5 cm inside the
grating. The relative error was equal to 0.964% for a spa-
tial step size of AZ=V,AT and 0.9641% for a spatial step
size of AZ=60V,AT. The increase of the spatial step size
made it possible to decrease the run time from 6 h into
only 8 min while keeping a similar accuracy.

Figure 2 compares the results obtained wusing
different temporal step sizes of AT=Wg/(1600V,),
Wg/(800V,),Wg/(4000V,), and Wg/(200V,). The spatial
step size in all cases was kept constant, AZ=Wg/40. The
comparison was performed after the soliton propagated
through a distance of 13.5 cm inside the grating. The fig-
ure shows that as the temporal step size increases, the er-
ror in the soliton amplitude and in the soliton location in-
creases. Figure 3 shows the global relative error as a
function of the normalized temporal step size, ATV,/Wyg,
after the soliton has propagated through a distance of
13.5 cm inside the grating. The nonsymmetrized OSSM
made it possible to keep in all the calculations a constant
spatial step size of AZ=Wg/40. The figure indicates that
when the propagation of a single soliton is calculated, the
relative error approximately depends on the square of the
temporal step size. Therefore, the global error is of the or-
der of O[(AT)?] rather than an error of the order of
O[(AT)] as one may expect, since we used the nonsymme-
trized split-step method given in Eq. (6). A similar depen-
dence of the error was also found in the next example,
where a two-soliton interaction was studied.

We define the amplitude error or the relative error in
the peak intensity at time ¢ as

600

Power [Watt]

0 L
19 23
z [cm]

Fig. 2. (Color online) Comparison between the intensity of the
explicit one-soliton solution (solid curve) and the numerical solu-
tion that was calculated using nonsymmetrized OSSM with a
temporal step size of AT=Wg/(1600V,) (dashed curve), AT
=Ws/(800V,) (dashed—dotted curve), AT=Wg/(4000V,) (dotted
curve), and AT=Wg/(200V,) (left-pointing triangle marker). The
comparison was performed after the soliton had propagated a
distance of 13.5 cm along the grating. The spatial step size was
equal to AZ=Wg/40.
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Fig. 3. (Color online) Relative error, defined in Eq. (23), between
the explicit one-soliton solution and the numerical results as a
function of the temporal step size, ATV,/Wj, calculated after the
soliton has propagated a distance of 13.5 cm along the grating.
The spatial step size was equal to AZ=Wg/40, where Wy is the
spatial FWHM of the soliton. The solid line is a least-square
mean error linear fit: In(e) =1.9708 In(ATV,/ W) +15.228.

[Py - Py

P, (24)

Eq =

where P;=max,{I;(z,t)} (i=1,2) is the maximum intensity
at time ¢ calculated using the explicit one-soliton solution
(Z=1) [9] and by using the OSSM (i=2). The results were
compared at ¢=5.45ns, where P;=478.8 W. The relative
error in the soliton location at #=5.45 ns is defined by

_1Z1-2)

= , 25
==, (25)
where Z;=[" zI;(z,t)dz/ " I;(z,t)dz (i=1,2) is the first-
order moment of the soliton position at ¢=5.45 ns, and Z;
is the exact soliton location that is equal to 21.54 cm. The
results obtained in Fig. 4 indicate that for a single soliton

100
’A’

&
5
= .
= s
5] 'l
2 37
2 ok

1/3200 1/200

ATVg/WS

Fig. 4. (Color online) Relative error between the explicit one-
soliton solution and the numerical results of the output soliton
amplitude (solid curve) and the output soliton position (dashed
curve) as a function of the temporal step size, AT, calculated af-
ter the soliton has propagated a distance of 13.5 cm along the
grating. The spatial step size was equal to AZ=Wg/40.
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propagation, as the temporal step size decreases, the er-
ror in the soliton location converges more quickly than
the error in its amplitude. A similar behavior of the error
was obtained in all the examples analyzed in this work.
The error in the speed of the soliton is defined by

1 |AZ(¢y) - AZ(ty)]

by = 2 TR (26)
UVg t 92— tl

where t9=5.45ns, ¢1=2.63ns, v=0.12, AZ(t)=Z(t)-Z(¢),
Z(t) is the first-order moment of the soliton position at
time ¢, and Z(¢) is the exact soliton location at time ¢. The
relative errors in the speed were equal to 0.4%, 0.1%, and
0.004% for a temporal step size of AT=W,/(800V,), AT
=W,/(1600V,), and AT=W,/(8000V,), respectively. The
spatial step size was kept constant in all cases, AZ
=W,/40. The results indicate that the error in the soliton
speed is very small. However, this error is accumulated
and it may cause an error in the soliton location, as can be
observed in Fig. 4.

Since the small error in the soliton location usually
does not have a significant physical meaning, one may in-
crease the temporal step size and ignore the very small
error in the soliton speed. However, the inaccuracy in the
soliton location may significantly affect the error, as de-
fined in Eq. (23).

The result shown in Fig. 1 indicated that, using the
nonsymmetrized OSSM, we can increase the spatial step
size AZ beyond VAT without a significant increase in the
error. We have also checked the possibility of improving
the result’s accuracy by using the Richardson extrapola-
tion [15,23]. This method was previously used to decrease
the simulation run time when solving the NLS equation
[15]. The Richardson extrapolation is based on propagat-
ing the solution in the time domain using a fine resolution
AT and a coarse resolution 2AT.

Since the global error that was obtained in Fig. 3 was of
the order of O[(AT)?], we have implemented the Richard-
son extrapolation, assuming a local error of the order of
O[(AT)3]. After performing the Richardson extrapolation,
the local error is expected to be of the order of O[(AT)4].
We have verified that if we implement the Richardson ex-
trapolation using coefficients that correspond to a local er-
ror of O[(AT)2] or O[ATT], the global error only increases
compared to that obtained without using the extrapola-
tion. Assuming a local error of the order of O[(AT)?], the
Richardson extrapolation is implemented using the con-
nection [23]

u,(z,t +2A7) = (8/7)u’;(z,t + 2AT) — (UT)ul(z,t + 2AT)
+O[(AT)*], (27)

where u’;(z,t) and u(z,t) are the solutions using the fine
and the coarse resolution, respectively. By using the Rich-
ardson extrapolation with a fine temporal step size of
AT=Wg/(6400V,) and a spatial step size of AZ=Wg/40,
we obtained a relative error of 0.02% compared to an er-
ror of 0.13% that was obtained without using the Richard-
son extrapolation for a temporal step size of AT
=Wg/(6400V,). Therefore, the Richardson extrapolation
improves the accuracy compared to that obtained using
the fine resolution. However, the Richardson extrapola-
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tion also increased the run time to 18 min compared to a
run time of 10 min that was obtained using the solution
with the fine resolution. Similar results were obtained for
a fine resolution of Wg/(1600V,) and for a spatial step size
AZ=Wg/40. The Richardson extrapolation enabled us in
this case to reduce the error from 2.17% to 1.2%, while the
run time increased from 7.5 to 11.5 min. We could also de-
crease the error to 0.96% without using the Richardson
extrapolation by decreasing the temporal step size to AT
=Ws/(2400V,). The run time in this case was equal to
14 min. The results obtained indicate that the use of the
Richardson extrapolation enables one to only slightly de-
crease the run time, while the use of the OSSM with a
large spatial step size enables one to significantly de-
crease the run time without a significant increase in the
result error, as shown in Fig. 1. We would also like to note
that the Richardson extrapolation made it possible to in-
crease the result’s accuracy only when the fine temporal
step size was lower than AT'=Wg/(1600Vy).

B. Collision of Two Solitons
In the second example, we study the collision of two soli-
tons in an infinite uniform grating with a coupling coeffi-
cient k=9000 m~!. The nonlinear coefficient was equal to
I'=5km™! W~! and the effective refractive index in the ab-
sence of the grating was equal to n=1.45. To simulate in-
finite grating, we used the window function of Eq. (22).
The parameters were chosen as follows: L=105cm, L,
=85 cm, and L,=5 cm. The soliton parameters, as defined
in [11], were (8;,v1)=(0.022,0.1), (85,v9)=(0.02,0.12). At
t=0, the spatial separation and the phase differences be-
tween the solitons’ peaks were 6 cm and O rad, respec-
tively. The input solitons had a spatial FWHM of 8.86 and
9.72mm. The peak power of the two input solitons and
their frequency offset relative to the Bragg frequency
were equal to 582W, 478.8W, 297.78 GHz, and
298.46 GHz, respectively.

Figure 5 shows the interaction calculated using the
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t [nsec]

75
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Fig. 5. (Color online) Collision between two solitons calculated
using nonsymmetrized OSSM shown in (a) a three-dimensional
plot and in (b) a two-dimensional plot. The simulation param-
eters were AZ=Wg/80, V,AT=Wg/800, where Wg=8.86 mm is
the spatial FWHM of the shorter soliton. The peak power of the
two input solitons and their frequency offset relative to the local
Bragg frequency are equal to 582 W, 478.8 W, 297.78 GHz, and
298.46 GHz, respectively.
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nonsymmetrized OSSM given in Eq. (13) for a spatial step
size AZ=Wg/80 and a temporal step size AT=Wg/800V,,
where Wg=8.86 mm is the spatial FWHM of the shorter
soliton.

We have studied the convergence of the solution as a
function of the temporal step size as performed in the pre-
vious example. Figure 6 compares the output intensity ob-
tained at the end of the interaction at t=25.52 ns using
different temporal step sizes of AT'=Wg/(8000V,) (solid
curve), AT=Wg/(1600V,) (dashed—dotted curve), and AT
=Wg/(800V,) (dashed curve), where Wg=8.86 mm is the
input spatial FWHM width of the shorter soliton. The
spatial step size was equal in all the calculations to AZ
=Wg/40. The figure indicates that when the temporal
step size is equal to AT=Wg/(800V,), the error is mainly
caused due to a slight shift in the soliton locations. The
run time in this case is equal to 1 h compared to a run
time of 10h wusing a temporal step size of AT
=Wg/(8000V,). Since the small shift in the solitons loca-
tion usually does not have a physical significance one may
use the larger temporal step size in order to decrease the
run time.

Figure 7 compares the intensity of the two solitons af-
ter the interaction calculated using the nonsymmetrized
OSSM given in Eq. (13) (dashed curve) with the results of
the symmetrized OSSM given in Eq. (17) (solid curve).
The spatial and the temporal step sizes were equal to
AZ=Wg/800 and AT=Wg/(800V,), respectively. At the
end of the interaction at #=25.52 ns, the relative error be-
tween the results was equal only to €=0.007%. Thus, we
ascertained that the relative error between the nonsym-
metrized OSSM and the symmetrized OSSM is very
small. This result was also verified for all the other ex-
amples given in this manuscript. Since the relative error
between the two implementations is very low, we used the
nonsymmetrized OSSM throughout the manuscript.

The nonsymmetrized OSSM makes it possible to in-
crease the spatial step size and hence to significantly re-
duce the run time without a significant increase in error.
To verify that the spatial step size AZ may be significantly
increased compared to V,AT without a significant in-
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Fig. 6. (Color online) Intensity of the two solitons after their in-
teraction calculated at ¢=25.52ns. The spatial step size was
equal to AZ=Wg/40 and the temporal step size was equal to
AT=Wg/(8000V,) (solid curve), AT=Wg/(1600V,) (dashed—dotted
curve), and AT=Wg/(800V,) (dashed curve).
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Fig. 7. (Color online) Intensity of two solitons, calculated at the
end of their interaction at ¢=25.52ns, by using symmetrized
OSSM (solid curve) and by using nonsymmetrized OSSM
(dashed curve). The spatial and temporal resolution are AZ
=Ws/800 and AT'=Wg/(800V,), respectively. The solitons’ param-
eters are the same as in Fig. 5.

crease in the error, we have analyzed the soliton interac-
tion using a spatial step size AZ=10V,AT. The temporal
step size AT=Wg/(800V,) was the same as that used in
Fig. 7. Figure 8 compares the pulse intensity obtained us-
ing the higher spatial step size, AZ=10VgAT (solid
curve), to that obtained using the lower spatial step size,
AZ=VgAT (dashed curve). The relative error at the end of
the interaction at t=25.52 ns was equal to €=0.49%. By
increasing the spatial step size AZ by a factor of 10, the
run time decreased from 12 to 2 h without a significant in-
crease in the error. The main reason that the time reduc-
tion that was obtained is less than the ratio between the
two step sizes is that in the case when AZ # VgAT, the
spatial shift operation is implemented using FFT instead
of just shifting an array and adding zeros.

We calculated the average speed of each soliton after
the interaction as a function of the temporal step size.
The average speed is defined as (v;)=[Z;(t9)-Z;(t1)]1/ (¢t
—t1), where i=1,2, t;=22.1ns, t3=25.5ns, Z;(¢;) is the lo-
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Fig. 8. (Color online) Intensity of two solitons after their inter-

action, calculated at t=25.52 ns using nonsymmetrized OSSM for
a spatial step size of AZ=Wg/800 (solid curve) and AZ=Wg/80
(dashed curve). The temporal step size was equal to AT
=Ws/(800V,) in both cases.



Z. Toroker and M. Horowitz

cation of the ith soliton at ¢=¢;, and Z;(¢5) is the location
of ith soliton at t=¢5. The spatial step size was equal to
AZ=W,/40. Using a temporal step size AT=W,/800V, the
speed of the first soliton (i=1) was equal to 0.1196V, and
the speed of the second soliton was equal to 0.0997Vg. Us-
ing a temporal step size AT=W,/1600V,, the speeds of the
two solitons were 0.1199V, and 0.0999V,. Using a tempo-
ral step size of AT=W,/8000V,, the speeds of the two soli-
tons were equal to 0.12V, and 0.0999V,. Therefore, as ob-
tained in the simulation of a single soliton, the error in
the solitons’ velocity is very small.

We compared the results after the interaction at ¢
=25.52 ns using different widths of the window function.
The temporal and the spatial step sizes were equal to
AT=W,/1600V, and AZ=W,/40, respectively. The widths
of the window function were changed between 105 to
155 cm. The width of the absorbing layer was equal to
L,=5cm. The solution for different window widths was
compared to that obtained using a window of 155 cm. The
relative errors obtained for window widths of L =135, 125,
115, and 105cm were equal to £=0.0033%, 0.0038%,
0.0034%, and 0.0053%, respectively. Therefore, a window
with a length of L=105 cm, as used in Figs. 5-8, is suffi-
cient for obtaining an accurate result.

C. Bistability

In the next example we use the nonsymmetrized OSSM
for analyzing a device with bistable behavior. The ana-
lyzed device had the same parameters as given in [3]. The
grating had a length of L=1m, a nonlinear coefficient of
I'=0.1m~! W-!, and a coupling coefficient of k=5 m~1. The
input wave was a continuous-wave signal with a detuning
parameter that was equal to 6=4.75 m™!. The boundary
conditions were equal to u_(z=L,#)=0, u,(z=0,¢)=A. The
solution was first calculated for an amplitude A that was
increased between 0 to 2 \W in steps of 0.01 yW. Then,
the solution was calculated again for an amplitude A that
was decreased to 0 in steps of 0.01 V’W.

Figure 9 shows the device transmissivity as a function
of the incoming amplitude. The device was analyzed using
a spatial step size AZ=0.002m (solid curve) and AZ
=0.008 m (dashed curve). The temporal step size was
equal to AT'=0.002/V,s. The figure shows that the in-
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Fig. 9. (Color online) Transmissivity versus the incoming am-
plitude of a bistable device formed by a uniform FBG.
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crease in the spatial step size AZ did not add a significant
error. The relative error between the two results was
equal to 1%. However, the increase in the spatial step size
by a factor of 4 enabled the reduction of run time from 18
to 6.4 h. We note that in [3] a similar bistable curve was
obtained using a direct numerical integration of the
NLCME.

D. Launching of a Soliton

In the last example, we use the nonsymmetrized OSSM
for analyzing the launching of a gap soliton. The grating
consists of an apodization region that is used to efficiently
launch the soliton in a uniform region where the soliton
propagates. The apodization segment had a quarter-
period sine profile with a length L;=2 cm. The uniform
grating section had a length L,=26 cm and an amplitude
k=9000m~!. The nonlinear coefficient was equal to I'
=5 W-1km™!, and the effective refractive index in the ab-
sence of the grating was equal to n=1.45. The boundary
condition was wu,(z2=0,t)= \ﬁ sech[(¢-3T)/0.5499T],
where T(=640ps. The incident pulse had a spatial
FWHM of 13.24 cm, a peak power of 34 W, and a detuning
parameter that was equal to 6=9031m™!. In this ex-
ample, the grating is half infinite and the parameters of
the window function were chosen as follows: L=40 cm,
L,=30cm, and L,=2cm. The spatial and the temporal
step sizes in the apodized region were equal to AZ
=0.005 mm and AT'=0.005 mm/V, s, respectively.

In the uniform region, the spatial and the temporal
step size were equal to AZ=1mm and AT
=0.005 mm/V, s, respectively. We have started the simu-
lation with a spatial and a temporal step size of AZ
=0.005 mm and AT'=0.005mm/V,s, respectively. To in-
crease the spatial step size AZ in the uniform region of
the grating, we have tracked the location of the signal
peak along the propagation. When the location of the
peak intensity was 30 mm inside the uniform grating sec-
tion, the spatial step size was increased to 1 mm and the
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Fig. 10. (Color online) Output intensity after launching an in-
put hyperbolic-secant pulse through an apodization section and
19 cm of uniform grating. The solid curve gives the result calcu-
lated using a uniform spatial step size with AZ=V,AT
=0.005 mm, and the dashed curve gives the result obtained using
nonsymmetrized OSSM with a nonuniform spatial step size with
AZ=V,AT=0.005mm in the apodized grating region and AZ
=1mm, V,AT=0.005mm in the uniform region.
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Fig. 11. (Color online) Peak power as a function of the propaga-
tion duration obtained by using a uniform spatial step size (solid
curve) and by using nonsymmetrized OSSM with a nonuniform
spatial step size (dashed curve). The simulation parameters are
the same as used in Fig. 10.

temporal step size was kept constant, AT
=0.005 mm/V, s. The results were compared to those ob-
tained using constant spatial and temporal step sizes of
AZ=0.005mm and AT=0.005mm/V,s, respectively, as
used in [14]. Figure 10 shows a comparison between the
pulse intensities at £=12.91 ns, which corresponds to a
propagation of 19 cm in the uniform grating region. Fig-
ure 11 compares the peak intensity as a function of time
of the two solutions. The relative error in the peak inten-
sity at £=12.91 ns between the solution with the uniform
spatial step size and the solution with the varying spatial
step size was equal to €,=0.1%.

The control of the spatial resolution along the grating
made it possible to decrease the run time from 604 to
178 min. In the uniform grating section, the run time was
decreased by a factor of ~100 from 393 to 4 min. The spa-
tial step size could be significantly increased inside the
uniform grating section without affecting the error, since
the change in the pulse shape in that region is slow. In the
apodization section, the input pulse significantly changes
until it becomes a soliton, and therefore the spatial step
size should be kept small.

We would like to note that the first, the second, and the
last examples given in this section run on an X4100 AMD
64X processor with 8 Gbytes of memory. The third ex-
ample runs on a PC-Pentium IV with a 1.8 GHz dual-core
processor and 1 Gbyte of memory. All the examples were
implemented using MATLAB software.

4. CONCLUSION

In conclusion, we have demonstrated and studied the per-
formance of an optimized split-step method (OSSM) for
solving the nonlinear coupled-mode equations that are
used to model nonlinear pulse propagation in FBGs. We
have used the method to numerically analyze a single
soliton propagation, two solitons’ interaction, bistable be-
havior, and a soliton launching in FBGs. Unlike in the nu-
merical methods that were previously demonstrated, the
OSSM does not require a direct connection between the

Z. Toroker and M. Horowitz

temporal and the spatial step size. Therefore, the spatial
step size may be significantly increased without affecting
the accuracy of the result. Hence, we could decrease in
some problems the run time by a factor of up to 100. To
implement the method, a generalized solution for solving
the nonlinear operator in the split-step procedure was de-
veloped. We have found that the use of nonsymmetrized
OSSM is enough to obtain accurate results with a short
run time. The spatial step size can be dynamically con-
trolled along the grating. The maximum spatial step size
is obtained in grating regions where the change in the
propagating pulses is relatively slow, as occurred, for ex-
ample, during a soliton propagation. When analyzing the
propagation of a pulse using nonsymmetrized OSSM, the
main error is obtained in the location of the propagating
pulse and not in the pulse amplitude. Since a small shift
in the pulse location usually does not have a significant
physical meaning, one may increase the temporal step
size and ignore the very small error in the pulse speed.
The Richardson extrapolation was used to slightly de-
crease the run time.
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