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Modeling the Saturation Induced by
Broad-Band Pulses Amplified in

an Erbium-Doped Fiber Amplifier
Moshe Horowitz, Curtis R. Menyuk,Fellow, IEEE, and Shay Keren

Abstract—We theoretically study the saturation of a homoge-
neously broadened optical amplifier with a slow response time.
This model approximates well the behavior of the erbium-doped
fiber amplifier (EDFA). When a broad-band pulse propagates
inside such amplifier the saturation is determined by the overlap
between the amplifier gain profile and the pulse spectrum rather
than by the energy of the pulse. This effect may significantly
increase the output power of an EDFA that amplifies broad-band
pulses.

Index Terms—Broad-band amplifiers, nonlinear optics, optical
fiber devices, optical pulses, optical saturation.

I. INTRODUCTION

A N ERBIUM-DOPED fiber amplifier (EDFA) is com-
pact, environmentally stable, and can amplify signals

in the 1.55- m regime where most of the optical commu-
nication systems operate. The propagation of short pulses
in such amplifiers and in lasers is often analyzed using the
Ginzburg–Landau equation [1]–[4]. In modeling the amplifier
it is often assumed that the saturation is determined by the
energy of the pulses [2]–[4]. In this work we show that when
a pulse with a broad spectrum propagates inside a homoge-
neously broadened amplifier with a slow response time, the
saturation is determined by the frequency overlap between the
pulse spectrum and the amplifier gain profile rather than by
the pulse energy. This effect significantly increases the output
power for broad-band pulses since the contribution to the gain
saturation from the frequency components of the pulse that
are far away from the resonant frequency is reduced. We
note that the dependence of the saturation intensity on the
signal frequency has been previously studied for continuous
wave signals, see, e.g., [5], [6]; however, this effect has
not been studied for pulses and since the saturation is a
nonlinear phenomenon, pulses must be studied separately from
continuous waves.
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II. M ATHEMATICAL MODEL

The amplifier in our model is an ideal, three-level system.
We assume that atoms are pumped from the lowest to the
uppermost energy level and then dropped immediately to a
quasistable energy level with a long lifetime on the order of a
ms. Amplification is due to stimulated transitions between the
intermediate and the ground levels. This system is simpler than
a real EDFA but it is useful for analyzing it [3], [7], [8]. The
interaction strength between the atoms and photons is modeled
in this letter using the theoretical gain cross section [2]. The
accuracy of the results for an EDFA might be improved by
using the absorption and gain cross-sections that are measured
experimentally [5], [7]. At low temperatures ( 77 K)
EDFA is inhomogeneously broadened due to the crystalline
electric field that causes Stark-splitting in the energy levels
of the Er atoms [5], [9]. At room temperature, the large
value of the homogeneous linewidth, combined with the fast
relaxation time (compared to the pulse duration) among the
energy levels result in an essentially uniform homogeneous
saturation across the whole gain spectrum [9]. Therefore,
we neglected inhomogeneous effects as is often assumed in
modeling the EDFA [3], [7], [10].

The Maxwell–Bloch equations for an optical amplifier may
be written [2], [3], [5]

(1)

Im (2)

where is the slowly varying amplitude of the polarization,
i.e., c.c. is the position
along the amplifier, is the carrier frequency of the optical
pulse, is the slow varying amplitude of the electric field,is
the dipole moment, is the resonant frequency of the atoms,

is the population inversion density, is the equilibrium
value of the population inversion density, is the polarization
relaxation time, and is the population relaxation time. In
a three-level amplifier, the relaxation time depends on the
pumping [5], so that , where is the pumping
rate and is the rate of the spontaneous emission.

We neglect the change in the population densityduring a
time scale on the order of . In an EDFA, the time constant

is on the order of 100 fs while the saturation energy is on
the order of 100 J. Therefore, we will limit our analysis to
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pulses with a peak power of less than 10W. For such pulses,
(1) can be solved in the frequency domain as shown in [3]

(3)

where is the gain cross section and
is the refractive index of the amplifier.

In an EDFA, the population relaxation time is very long—on
the order of a ms. Assuming that the optical pump is a
continuous wave and that the pulse duration , we can
neglect the effects of pumping and the spontaneous emission
during the pulse duration and obtain an analytical expression
for the depletion of the population density due to the pulse
amplification

(4)

where and are defined as the population densities
before and right after the pulse is amplified and

.
In order to derive (4) we used the Parseval relation

. The
gain coefficient equals , where is the
confinement factor of the fiber. Therefore, the gain line shape
is proportional to .

Equation (4) indicates that the saturation of the amplifier is
determined by the overlap of the pulse spectrum and the gain
profile that is proportional to , and not by the energy
of the pulse as assumed in previous work such as in [3].
Therefore, chirp or phase distortion in the pulse will affect
the saturation of the amplifier. This result can be intuitively
understood by considering the frequency dependence of the
interaction between photons and atoms. Different frequency
components of the pulse interact differently with the atoms.
The components whose frequencies are far away from the
resonant frequency experience less small-signal gain; however,
those components do not strongly saturate the amplifier since
they interact less strongly with the atoms.

In a case that a train of similar pulses is put inside the
amplifier, we can obtain an analytical expression for the
steady-state population density. Assuming that is the
spectrum of a single pulse in the train,is the repetition time
of the pulse train, and and are the population densities
before and after the pulse arrives, defined after (4), the increase
in the population density between pulses can be obtained
from (2), yielding . In
steady-state the depletion of the population density due to the
pulse amplification is equal to the increase of the population
density due to the pumping. In most EDFA applications,

and so that the
population depletion due to a single pulse is small. Using
these assumptions we can simplify the expression for the
steady-state population density

(5)

Fig. 1. Normalized output power versus normalized input power when the
saturation depends on the pulse spectrum (solid line) and when the saturation
depends on the pulse energy (dashed line). The bandwidth of the amplifier
equals 20 nm and the small-signal gain is 25 dB. The input pulse has the
spectrum of a hyperbolic-secant pulse with a FWHM of 30 nm.

Equation (5) shows again that the saturation is determined
by the overlap of the pulse spectrum and the gain profile and
not by the energy of the pulses.

III. RESULTS AND DISCUSSION

In order to compare the results from the conventional
saturation model and the results from the model described in
this letter, we calculated the output power of the amplifier by
numerically integrating the propagation equation

where the gain coefficient was calculated using
(5). In the calculation of the saturation we took into account
the frequency dependence of in our model and assumed
that does not depend on the frequency for the conventional
model. The full-width at half-maximum (FWHM) of the
gain coefficient was 20 nm and the small-signal gain was

dB, where is the amplifier length. A spontaneous
emission noise factor was included in our model.
We assume that the carrier frequency,, equals the resonant
frequency, . We neglect dispersion and nonlinear effects in
the amplifier. This neglect is valid when the amplified pulse
is stretched before the amplifier in order to avoid nonlinear
distortion, see, e.g., [11], or when the amplified pulse has a
noise-like structure with a very broad spectrum and a long
duration [12], [13].

Fig. 1 shows the normalized output power as a function
of the normalized input power obtained (solid line) from (5)
and (dashed line) from the conventional saturation model.
The normalized powers were calculated using the connection

where the saturation power is
defined as . The pulse spectrum had a full
width at half maximum of 30 nm, and the spectrum shape
was equal to that of a hyperbolic-secant pulse. The results
indicate that the frequency dependence of the saturation in
our model significantly increases the output power. Fig. 2
shows the dependence of the output power on the full width at
half maximum of the pulse spectrum. The input pulse energy
was kept constant at the different pulse durations. The figure
indicates that when the spectral width of the pulse is broad
the output power is significantly higher than expected when
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Fig. 2. Power gain versus the FWHM when the saturation depends on the
pulse spectrum (solid line) and when the saturation depends on the pulse
energy (dashed line). The input pulse energy does not depend on the spectral
width. The bandwidth of the amplifier equals 20 nm andPin=Ps = 1:4.

only the pulse energy determines the amplifier saturation. This
effect occurs because the frequency dependence of the small-
signal gain decreases the output power; however the decrease
is partially cancelled by the reduction of the saturation effect.
The difference between the models becomes more significant
when the width of the pulse spectrum is similar to the amplifier
bandwidth or when the center frequency of the pulse is
different from the resonant frequency.

IV. CONCLUSION

We have demonstrated theoretically that the saturation of
homogeneously broadened amplifiers with a slow response
time is determined by the overlap between the pulse spectrum
and the gain profile. This effect significantly increases the
output power for broad-band pulses. The increase of the power
is expected to be important in generating and amplifying

broad-band pulses and particularly in two-color mode-locked
lasers [14] and in the noise-like mode of operation [12], [13].
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