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Experimental reconstruction of a long-period
grating from its core-to-core transmission spectrum
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We demonstrate, for the first time to our knowledge, reconstruction of the structure of a long-period grating
from its measured core-to-core transmission spectrum intensity. The reconstruction is obtained by writing
an auxiliary grating in cascade to the interrogated grating. Our reconstruction technique is based on using
the Hilbert transform and a phase-retrieval algorithm. Using our method, we have reconstructed the struc-
ture of a uniform long-period grating with a 47% coupling efficiency. © 2005 Optical Society of America

OCIS codes: 050.2770, 290.3200.
The problem of reconstructing the structure of fiber
Bragg gratings (FBGs) has been extensively studied
in the past decade.1,2 Reconstruction techniques of
FBGs have been used for improving the writing pro-
cess of the gratings3 as well as for developing distrib-
uted fiber Bragg sensors.4 In contrast, we are aware
of no methods that have been demonstrated for ex-
perimental reconstruction of long-period gratings
(LPGs) from their transmission spectrum. A recon-
struction technique for LPGs is important for devel-
oping novel distributed fiber sensors and for improv-
ing the writing process of such gratings.

The reconstruction of LPGs is unique when both
the complex core-to-core and the complex core-to-
cladding transmission spectra are known.5 While the
complex core-to-core transmission spectrum can be
measured by applying the same technique used in
FBGs,2 the measurement of the complex core-to-
cladding transmission spectrum can be performed
only outside the fiber and would require complicated
bulk optics. Recently, we have demonstrated a new
theoretical method for extracting the core-to-cladding
transmission spectrum of LPGs from their complex
core-to-core transmission spectrum6 by using a
phase-retrieval algorithm. The method requires writ-
ing an auxiliary grating in cascade to the interro-
gated grating. To obtain a good reconstruction in
practical cases where the measured spectrum con-
tains noise, the length of the auxiliary grating should
be considerably shorter than the length of the inter-
rogated grating, and the complex core-to-core trans-
mission spectrum of the auxiliary grating should be
measured.6

In this Letter we demonstrate, for the first time to
our knowledge, the experimental reconstruction of a
LPG from its core-to-core transmission spectrum. To
simplify the experimental system, we use the Hilbert
transform and limit our measurement to interro-
gated gratings that do not have a high coupling effi-
ciency. In such gratings, only the intensity of the
core-to-core transmission spectrum of the cascaded
structure, rather than the complex core-to-core trans-
mission spectrum, is required for the reconstruction.
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We also use a weak auxiliary grating, which enables
us to reconstruct the interrogated grating without
measuring the core-to-core transmission spectrum of
the auxiliary grating. The reconstruction technique
described in this Letter can also be directly applied to
interrogate strong gratings. However, in this case,
the complex core-to-core transmission spectrum of
the cascaded structure should be measured.

Our experimental system is shown in Fig. 1. The
interrogated grating had a uniform profile with a
length of L2=15 cm, a period of 528 �m, and a maxi-
mum coupling of �47%. The auxiliary grating had a
uniform profile with a length of L1=1.5 cm, a period
of 512 �m, and a maximum coupling of �15%. The
distance between the gratings was approximately Lf
=25 cm. Both gratings in our cascaded structure
were designed to couple between the core mode and
the LP04 cladding mode around the wavelength of
1560 nm. The gratings were written in a hydrogen-
loaded SMF-28 by using the method described in Ref.
7 and were annealed afterward. Because of the an-
nealing process, the core-to-core transmission spec-

Fig. 1. Experimental system used to reconstruct the inter-
rogated grating structure. An auxiliary grating is written

to obtain a unique reconstruction.
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trum of the auxiliary grating could not be accurately
measured.

We denote the core-to-core and core-to-cladding
transmission spectra of the nth grating �n=1,2� by
an�k� and bn�k�, respectively. The core-to-core trans-
mission function of the cascaded structure is given by

atot�k� = a1�k�a2�k�exp�− ikLf� − b1�k�b2
*�k�exp�ikLf�.

�1�

In our experiment, we measure the intensity spec-
trum �atot�k��2 and use it to reconstruct the interro-
gated grating. The core-to-core and the core-to-
cladding transmission spectra of the nth grating �n
=1,2� can be represented in the following form6:

an�k� = exp�− ikLn� + �
−Ln

Ln

�n���exp�ik��d�,

bn�k� = �
−Ln

Ln

�n���exp�ik��d�, �2�

where Ln is the length of the nth grating. Equations
(2) show that the functions an�k� and bn�k� �n=1,2�
have finite support in the time domain. Therefore,
the Fourier transform of the two elements in Eq. (1),
a1�k�a2�k�exp�−ikLf� and b1�k�b2

*�k�exp�ikLf� have fi-
nite support that do not overlap when the following
condition is fulfilled:

Lf � �L1 + L2�. �3�

Since Lf in our experiment was chosen to fulfill the
condition in inequality (3), the functions a1�k�a2�k�
and b1�k�b2�k�* could be extracted from the function
atot�k� by filtering in the time domain.

In our analysis we use the preservation of power
relation:

�an�k��2 + �bn�k��2 = 1, �4�

which can be justified from the measured data. Using
the Cauchy–Schwartz inequality and Eq. (4), for n
=1,2 we obtain

�a1�k�a2�k�� + �b1�k�b2�k�� � �an�k��2 + �bn�k��2 = 1.

�5�

For our measured data, the function �a1�k�a2�k��
+ �b1�k�b2�k�� had an oscillatory behavior. The value of
the local maxima of the function varied between
0.957 and 0.991 for the frequency regime where the
coupling of the interrogated grating was significant
and approached 1 outside this regime. This result in-
dicates that the upper bound for the losses changes
between 1–0.991=0.9% and 1–0.957=4.3%.

Using Eq. (4), we obtain the result that the func-
tion �b1�k��2+ �b2�k��2 can be calculated from the ele-

ments in the function atot�k�:
�b1�k��2 + �b2�k��2 = 1 − �a1�k�a2�k��2 + �b1�k�b2�k��2.

�6�

The extracted functions �b1�k��2+ �b2�k��2 and
b1�k�b2

*�k� uniquely define the functions b1�k� and
b2�k� as proved in Ref. 8. To extract the functions
b1�k� and b2�k�, we first calculate the amplitude of
the function b1�k�+b2�k�exp�ikLf�. Then we use the
separated hybrid input–output (SHIO) phase-
retrieval algorithm9 to uniquely extract the phase of
the function b1�k�+b2�k�exp�ikLf� from its amplitude,
as described in Ref. 6. The SHIO algorithm allows ex-
traction of the phase of a spectral function from its
amplitude by using the support constraints of the
Fourier transform of the function. The idea behind
the SHIO algorithm is to find the optimal phase of
the spectral function, which minimizes the energy
outside the region where the Fourier transform of the
function exists.9 After using the SHIO algorithm, we
calculate the functions b1�k� and b2�k� by filtering the
function b1�k�+b2�k�exp�ikLf� in the time domain.
Then, the function �a1�k�� is calculated from the func-
tions b1�k� by using Eq. (4).

The function a�k� of a LPG is a minimum phase-
shift function if it is not equal to zero in the upper
half of the complex plane of k.10 For a minimum
phase-shift function a�k�, the phase of the function
can be reconstructed from its amplitude by using the
Hilbert transform. We define the function a�k ,z� as
the amplitude of the core mode, where a�k�=a�k ,z
=L�. When z is small enough, the function a�k ,z� is a
minimum phase-shift function.11 Since the function
a�k ,z� is a continuous function of z, a sufficient con-
dition that ensures that the function a�k� is a mini-
mum phase-shift function is

min
k,z

�a�k,z�� � 0. �7�

In our case, the auxiliary grating was designed to
have a maximum coupling of only 15%, and, there-
fore, its core-to-core transmission function a1�k� is a
minimum phase-shift function. In addition, since our
interrogated grating had a moderate coupling effi-
ciency ��47% �, the maximum coupling across the
cascaded structure did not exceed 80%, and thus the
cascaded structure also fulfilled the minimum phase-
shift condition given in inequality (7). Therefore, we
could calculate the phase of the core-to-core trans-
mission function atot�k� from its amplitude without
measuring it directly. However, when the cascaded
structure does not fulfill the minimum phase-shift
condition, the phase of the function atot�k� should be
measured. After extracting the phase of the function
a1�k�, we use the function a1�k� to calculate the phase
of the function a2�k� from the known product
a1�k�a2�k�. The functions a2�k� and b2�k� are then
used to reconstruct the grating structure by using a
layer-peeling algorithm.5

The intensity of the core-to-core transmission spec-
trum of the cascaded structure was measured in the
wavelength region 1510–1610 nm with a resolution

of 5 pm and is shown in Fig. 2. For each point of the
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spectrum, the wavenumber detuning k=���neff�	� /	
−�neff�	c� /	c� should be calculated, where �neff�	� is
the difference in the effective refractive indices of the
core mode and the LP04 cladding mode at the wave-
length 	, and 	c�1558 nm is the central wavelength
of the interrogated grating. Numerical simulations
show that the dependence of �neff�	� on the wave-
length 	 is approximately linear over the 100 nm
bandwidth: �neff�	�=�neff�	c�+C�	−	c�. Thus, the
wavenumber detuning can be approximated by

k �
�

	c
	�neff�	c�

	c
− C
�	c − 	�. �8�

The effective refractive index difference at the cen-
tral wavelength of the grating was calculated from
the resonance condition: �neff�	c�=	c /
=2.95�10−3,
where 
 is the period of the interrogated grating. The
constant C was then extrapolated from Eq. (8) by re-
quiring that the reconstructed grating would have a
length of 15 cm. We obtained from the measured data

−6

Fig. 3. (a) Amplitude and (b) phase of the coupling coeffi-
cient of the interrogated grating, reconstructed by using a
layer-peeling algorithm (solid curve) and Born approxima-
tion (dashed curve).

Fig. 2. Intensity of the core-to-core transmission spectrum
of the cascaded structure �atot�	��2, measured with a band-
width of 100 nm and a spectral resolution of 5 pm.
that C=−1.2�10 �1/nm�. For comparison, we cal-
culated the value of C numerically for a SMF-28 by
using the IFO-Gratings software by Optiwave and
obtained C=−1.19�10−6 �1/nm�. If the constant C is
neglected, a 35% error is obtained in estimating the
length of the reconstructed grating.

Figure 3(a) shows the amplitude of the recon-
structed coupling coefficient obtained by using the
Born approximation6 (dashed curve) and by the
layer-peeling algorithm5 (solid curve). The figure
shows that the Born approximation did not yield a
uniform profile, while the layer-peeling algorithm
gave a uniform profile with only 5% divergence from
uniformity. Figure 3(b) shows the phase obtained by
the two reconstruction methods. The figure shows
that the phase of the coupling coefficient is relatively
constant with less than 0.3 rad change along the
whole grating.

The resolution of the reconstruction �z is deter-
mined by the wavenumber bandwidth of the spec-
trum, denoted BW: �z=� /BW. In our experiment the
wavenumber bandwidth was equal to 620 m−1

�100 nm�, and the spatial resolution was 5 mm—�10
grating periods. The maximal length of the cascaded
structure that could be theoretically interrogated by
our system is given by � / �2�k�, where �k is the
wavenumber resolution. For our wavelength resolu-
tion, �k=0.031 m−1 ��	=5 pm�, the maximum inter-
rogated length is �50 m.
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