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Pulse Dropout in Harmonically Mode-Locked Fiber
Lasers
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Abstract—We have studied theoretically and experimentally su-
permode competition in an actively mode-locked Er-fiber laser that
operates in a high harmonic mode. Using an innovative numerical
technique that allows us to properly account for the complex in-
teraction of multiple pulses with the gain media, we could study
the dynamics that leads to supermode competition, pulse dropouts,
and pulse pair generation, and to accurately predict the limits of
the stable operating regime.

Index Terms—Mode-locked lasers, nonlinear optics, optical fiber
lasers, pulsed lasers, solitons.

I. INTRODUCTION

A CTIVELY mode-locked Er-doped fiber lasers are poten-
tially important in high-data-rate optical communication

systems since they can generate pedestal-free picosecond pulses
at a very high repetition rate. These lasers tend to be highly har-
monically mode-locked and are therefore potentially subject to
supermode competition. As a result, pulse energies in the dif-
ferent time slots may be unequal, corresponding to amplitude
fluctuations, dropout, and pulse pair generation.

Analyzing harmonically mode-locked fiber laser systems is
a significant theoretical challenge because the laser cavity can
contain as many as pulses, all of which interact. The di-
rect interaction between pulses is weak in actively mode-locked
lasers due to the mode-locker; however, the pulses all indirectly
interactvia the amplifier. Because of the very slow response
time of the Er-doped amplifier, the pulses all affect the amplifier
saturation, leading in many cases to highly complex dynamics.
Almost all work to date aimed at analyzing these systems studies
isolated pulses and assumes that the gain saturation is deter-
mined by the energy of the pulse divided by the period between
pulses [1]–[3]. In effect, one is assuming that the same pulse is
repeated in every time slot. This approach may be used to esti-
mate limits on the minimum and the maximum pulse duration
that are needed for stable propagation without dropouts [2], [3].
However, it cannot be used to study the dynamics that leads to
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supermode competition, pulse dropouts, and pulse pair gener-
ation, and therefore it does not accurately predict the limits on
the stable operating regime. In principle, one can remove this
difficulty by studying a long string of pulses, but in practice it
is not feasible even computationally to study long strings, and
we have verified that the results slowly converge so that even 24
pulses are not enough to obtain an accurate solution, nor do the
results agree well with experiments.

We introduce an innovative yet simple technique that allows
us to accurately model the amplifier gain and to efficiently study
dynamical effects such as supermode competition. In contrast to
previous theoretical work, where the gain was determined only
by a limited number of pulses, our approach enables us to accu-
rately calculate the gain saturation due to all the cavity pulses,
and we have found out that the gain is one of the most impor-
tant parameters that determine the performance of the laser and
its dynamics. In our simulations, each pulse except one makes
its appropriate contribution to the gain dynamics; so, if there
are pulses in the laser cavity, then the contribution of each
pulse to the frequency-dependent gain dynamics is weighted by
a factor . The one remaining pulse, which we refer to as a
superpulse, makes the remainder of the contribution to the gain
dynamics and represents the average of all the pulses that are
not kept in the computation. This approach converges rapidly
as we increase the number of pulses. We believe that this ap-
proach will be useful in modeling a wide variety of lasers and
storage rings containing many pulses.

In this letter, we apply this approach to modelling supermode
competition—particularly pulse dropout—in fiber lasers. We
modeled the laser dynamics as it passes through four different
operating regimes when the intracavity power increases; three
of these regimes were observed experimentally in a dispersion
managed sigma laser. Dispersion management makes the last
operating regime unobservable both theoretically and experi-
mentally. An excellent quantitative agreement between theory
and experiments was obtained.

II. THEORETICAL MODEL

The laser configuration in the theoretical model, is similar to
that used in the sigma laser [4]. The dispersion map contains
60 m of fiber with ps/nmkm, 26 m of dispersion
compensating fiber with ps/nmkm, 60 m of fiber
with ps/nmkm, and 46 m of fiber with
ps/nmkm. By comparing the theoretical and the experimental
results we found out that the average dispersion of this laser

equals 0.14 ps/nmkm. The modulation frequency was 10
GHz and the average nonlinear coefficient was 2.1 Wkm .
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We calculated the pulse propagation in the fiber by solving
the nonlinear Schrödinger equation using the split-step Fourier
method. The 3-m long erbium-doped fiber amplifier was mod-
eled as an ideal three-level system with a 20-nm bandwidth,
a small-signal gain of 22 dB, and a response time of 100s
that does not depend on the intracavity power. We modeled
the amplifier saturation by solving the Ginzburg–Landau
equation in parallel with the Maxwell–Bloch equations [5]
using the split-step Fourier method. Spontaneous emission was
simulated as white noise that was was integrated along the
whole amplifier. We assume an internal loss of 6 dB at the
mode locker, 1 dB at each of the two ends of the amplifier, and
2 dB due to an output coupler located before the amplifier.

Approximately pulses simultaneously propagate in-
side the laser cavity. It is only possible to model the propagation
of to pulses and we therefore added a superpulse that
represents the pulses that are not simulated individually. The
cavity energy was given by: ,
where is the energy of the superpulse and is the sum
of the energies of the ordinary pulses in the simulation. The ef-
fect of pulse dropout was calculated by including a variable
that equals the fraction of the pulses remaining in the cavity.
The value of was self-consistently determined in our simu-
lation by updating the shape of the superpulse using the ordinary
pulses every 2000 iterations, and we checked that the results are
not sensitive to this choice. The use of the superpulse guaran-
tees that the saturation energy of the amplifier is not strongly
affected by one of the ordinary pulses, so that these pulses can
change their shape and even drop out while others equilibrate
with the right pulse shape. We have carefully validated this ap-
proach by gradually increasing the number of simulated pulses,
and we found that the results typically converge beyond
pulses. Since the superpulse represents pulses and
the response time of the erbium-doped fiber amplifier is slow,
the power density of the amplifer noise for the superpulse was
taken to be smaller by a factor relative to the
ordinary pulses.

III. T HE FOUR REGIMES

When the average power is below 0.5 mW the nonlinear ef-
fect becomes unimportant. Fig. 1(a) shows the numerically cal-
culated pulse train in this first regime; the pulse amplitudes
fluctuate independently, leading to supermodes that also fluc-
tuate. This noisy behavior occurs because there is no nonlinear
feedback so that pulses can change their amplitudes without af-
fecting their durations [6]. The transition between this regime
and the next is caused by the amplified sponataneous emission
noise that limits the coherence time of the laser, as we verified by
eliminating the noise in our simulation. When the typical non-
linear length becomes shorter than the coherence length of the
laser, the laser will operate in the second operating regime.

In the second regime, shown in Fig. 1(b), nonlinear effects be-
come important and decrease the pulse duration from about 4.5
ps to about 3.2 ps. The complex interaction of all the pulses with
the gain medium and the mode-locker leads some pulses to drop
out and others to stabilize with similar shapes and amplitudes.
The dropout occurs since some pulses can decrease their loss in

Fig. 1. Pulse train for an output power of (a)P = 14 �W, (b) 2 mW, (c)32
mW, obtained for a laser with a sigma configuration. Pulse train for an output
power of (d)P = 44 mW obtained for a laser with a uniform dispersion map
with a dispersion coefficientD = 2 ps/nm�km. Six pulses are simulated and
the first pulse is the superpulse. The results displayed here were obtained after
150 000 iterations.

the mode-locker by increasing their energy and decreasing their
duration due to soliton shortening effect. The increase of the
energy of those pulses decreases the amplifier gain due to satu-
ration effects and causes net loss in a roundtrip to other pulses
that will eventually drop. As the intracavity power increases, the
fraction of the time slots that are filled increases; however, the
number of filled slots is not a simple function of the intracavity
power. It also depends on the previous state of the laser, since it
is possible to remove some fraction of the pulses after they have
been established. The others compensate by increasing their en-
ergies and decreasing their duration. Therefore, the transition to
the next operating regime exhibits a bistable behavior.

Beyond 2.5 mW, we enter the third regime in which all the
time slots can be filled, as shown in Fig. 1(c). This power
boundary is in good agreement with the power limit calculated
using Lyapunov's method for studying the stability of Gaussian
pulses assuming that all the pulses have the same amplitude
and shape [8]. For hyperbolic-secant pulses that propagate in a
cavity with low loss, Lyapunov's method gives the same result
as obtained using soliton pertubation theory [2]. When all time
slots are filled the equilibrium pulse characteristics may be de-
termined by the conventional analysis [1]; however, including
the gain dynamics allows us to calculate the low-frequency
noise components due to the amplifier gain, and to analyze
dynamical effects, such as the ability of the laser to recover
when a pulse is removed due to changes in the enviromental
conditions. When the average poweris below 5 mW, some
pulses may be removed, as in the second regime; however,
above this power level, the system will quickly restore pulses
that are removed. Clearly, this regime is the optimal regime in
which to operate a laser. By contrast, fiber storage rings which
are in many ways analogous to lasers [7], should not work in
this regime. The approach described in this paper should allow
the user to determine the fraction of pulses that may be safely
removed from a storage ring with fixed intracavity power.

In some harmonically mode-locked laser configurations, a
fourth operating regime exists in which more than one pulse oc-
cupies a single time slot. In the sigma laser we did not observe
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this regime either theoretically or experimentally, because this
laser uses a strong dispersion management scheme, making the
last regime unobservable. We did, however, observe this regime
theoretically in a laser with a uniform dispersion map with a
dispersion coefficient of ps/nmkm. When the pulse du-
ration equals 1.4 ps and the laser performance is optimal, the
output power in the uniform dispersion laser and in the sigma
laser are the same. Fig. 1(d) indicates that when mW,
some of the time slots develop pulse pairs. The pulse pairs are
energetically favourable since they have a narrower bandwidth
and lower loss due to the amplifier filtering and nonlinear ef-
fects. The energy in a pulse pair is about 1.7 times larger than in
a single pulse, and therefore one cannot assume that the energy
is equally split between the time slots as assumed in the con-
ventional approach. In previous work, Kärtneret al. [3] found
a limit on the minimum pulse duration due to the competition
between the pulses and the continuum. In our laser the lower
pulse duration is limited by the generation of pulse pair. The dif-
ference between the limits occurs, at least in part, because our
laser operates in a high harmonic mode so that a small excess
of energy in several pulses may accumulate in a single pulse to
form a pulse pair rather than a continuum around each pulse.

IV. EXPERIMENTAL RESULTS

The laser studied experimentally is an actively mode-locked
soliton sigma laser [4], which acts much like a polariza-
tion-maintaining ring laser. The laser is dispersion-compen-
sated. When the laser is mode-locked at 10 GHz, approximately
10 pulses circulate in its 192-m cavity. The laser's output as a
function of the average cavity power is presented in Fig. 2
as a series of sampling oscilloscope density contour plots.
Three distinct regimes of operation are observed, and the figure
presents pairs of plots from near the cavity power boundaries
of each regime.

At the lowest optical powers, corresponding to the first
regime defined in the previous section, the laser produces noisy
pulses with durations at the laser's Kuizenga-Siegman limit [9]
of 4.5 ps or longer, as shown in Fig. 2(a). Whenrises above
0.5 mW, the laser begins to produce a combination of solitons
with 3.3-ps durations [Fig. 2(b)] and dropouts. Asincreases
the proportion of dropouts decreases and the pulse duration
decreases smoothly to 2.6 ps.

When exceeds 5.5 mW the pulse duration jumps to 3.3
ps and the laser generates an uninterrupted stream of pulses,
as Fig. 2(c) demonstrates, corresponding to the third regime.
The lower power limit of the stable operating regime is in
good agreement with the theoretical minimum power needed
for the laser to recover from random pulse dropouts5 mW.
As increases to its maximum value of 34 mW, the pulse
duration decreases smoothly to 1.4 ps and the production
of a dropout-free stream of pulses is maintained. The forces
suppressing dropouts are substantial; we have observed pulse
dropout ratios below in bit-error-rate measurements
with this laser [10]. The amplitude noise becomes smaller as

Fig. 2. Sampling oscilloscope density contour plots of the pulses generated by
the sigma laser. The three sections of the figure represent the first three operating
regimes as a function of the average intracavity powerP .

increases, indicating that the available optical power is more
uniformly distributed at higher pulse energies.

The fourth regime, that of multiple soliton production in some
time slots, was not observed in the sigma laser since the laser
cavity is strongly dispersion-managed and, at higher pulse ener-
gies, the pulse duration decreases very slowly with incremental
increases in the pulse energy [10]–[12]; dropout-free pulse pro-
duction is observed over a power range of more than a factor
of 6. The role of dispersion management in stabilizing the laser
will be addressed in another publication [13].
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