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Abstract—We demonstrate a tight analysis of an expectation
of a sum of exponents raised to some power, prevalent in, but
not confined to, Gallager’s bounding techniques. We show that
the traditional analysis that uses Jensen’s inequality, although
tight in Gallager’s random coding error exponent, might not
be tight in general. Using the binary symmetric channel as an
example, we show that Rc - the lowest rate at which Gallager’s
bound agrees with the sphere packing bound is the lowest rate
for which Jensen’s inequality is tight for a range of possible
parameters.

I. INTRODUCTION

We demonstrate a tight analysis of expressions of the form

E

 enR∑
m=1

e
nλf(Q̂y,xm )

ρ (1)

where f is any continuous functional of the joint empirical
distribution of (y,xm). These expressions are frequently en-
countered in the analysis of random coding exponents using
Gallager’s techniques [1] (with f replaced by logP (y|xm)).
Other examples where we find such expressions include list
and erasure decoding [2], broadcast channels [3] and universal
decoding [4]. The traditional analysis of these expressions, for
0 ≤ ρ ≤ 1, uses Jensen’s inequality, which allows one to insert
the expectation operator into the square brackets in the above
expression. The resulting expression is much easier to analyze.
However, this comes at the price of uncertainty regarding the
exponential tightness of the bound. Forney [2] showed that in
some cases, bounds on such expressions can be tightened by
introducing another parameter and using it to trade off between
the tightness of Jensen’s inequality and a variant of Hölder’s
inequality (see [2] for details). However, exponential tightness
is still not guaranteed and this refinement results in inequalities
rather than exponential equalities.

In this paper, we use Gallager’s upper bound on the error
probability of a random code to demonstrate a tight analysis
of expressions having the form of (1). It is known that
Gallager’s bound is tight for a random code [5]. We compare
the traditional analysis used by Gallager with an analysis
technique that is inspired by the analysis of the Random
Energy Model (REM) in statistical physics (see [6] and [7], [8]
for a comprehensive survey). It was shown before that these
tools improve on previous results obtained by the standard
analysis technique [9], [4], [10], [11]. Here, our purpose

is to gain some understanding and insights concerning the
conditions under which expressions like (1) can be evaluated
by the, much simpler, traditional analysis while preserving
exponential tightness.

Using this relatively new technique we will show that there
is a critical rate, Rc, pertaining to the number of terms in the
sum of (1), above which Jensen’s inequality, as a lower bound,
will be tight for a range of possible 1 ≥ ρ ≥ ρc(R) ≥ 0. When
the rate is lower than the critical rate, ρc(R) = 1 and Jensen’s
inequality is not tight except for ρ = 1. We show that in
the binary example, our critical rate is the same as Gallager’s
critical rate, i.e the lowest rate for which Gallager’s bound
agrees with the sphere packing bound. −ρc is the slope of
Gallager’s exponent. Motivated by the analysis of the REM,
where there are phase transitions in the system’s behavior as
a function of the parameters, we draw a “phase diagram”
showing regions with different behavior of the exponent of
(1) in the ρ−R plane. This is not directly related to the phase
diagram of the REM. However, the different behavior in the
different regions resembles the behavior of the REM.

The remainder of the paper is organized as follows: In
Section II, we give the formal setting and notation used
throughout the paper. In Section III, we apply the two analysis
approaches for a general channel, and in Section IV, we
specialize the results for the BSC. Finally, we conclude this
work in Section V.

II. PRELIMINARIES

We begin with notation conventions. Capital letters repre-
sent scalar random variables (RVs) and specific realizations
of them are denoted by the corresponding lower case letters.
Random vectors of dimension n will be denoted by bold-
face letters. The expectation operator will be denoted by E{·}.
When we wish to emphasize the dependence of the expectation
on a certain underlying probability distribution, say, Q, we
subscript it by Q. i.e. EQ{·}.

We consider a memoryless channel with a finite in-
put alphabet X and finite output alphabet Y , given by
P (y|x) =

∏n
i=1 P (yi|xi), (x,y) ∈ Xn × Yn. We are

sending one of M = enR messages where the codewords
x1, . . . ,xM are drawn independently using a distribution
P (x) =

∏n
i=1 P (xi).
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The empirical distribution pertaining to a vector x ∈ Xn
will be denoted by Q̂x and its type class – by Tx. In other
words, Q̂x = {q̂x(a), a ∈ X}, where q̂x(a) = nx(a)/n,
nx(a) being the number of occurrences of the letter a in
x. Similarly, q̂x|y(a|b) = q̂xy(a, b)/q̂y(b) will denote the
empirical conditional probability of X = a given Y = b
(with convention that 0/0 = 0), and Q̂x|y will denote
{q̂x|y(a|b), a ∈ X , b ∈ Y}. Tx|y will denote the conditional
type class of x given y. The expectation w.r.t. the empirical
distribution of (x|y), Q̂xy , will be denoted by EQ̂{·}, i.e., for
a given function f : X ×Y → IR, we define EQ̂{f(X,Y )} as∑

(a,b)∈X×Y q̂xy(a, b)f(a, b), where in this notation, X and
Y are understood to be random variables jointly distributed
according to Q̂xy . The entropy with respect to the empirical
distribution Q̂x will be denoted by HQ̂(X). The underlying
empirical distributions used for calculating both EQ̂ and HQ̂

will be understood from the context or, in case of ambiguity,
will be explicitly given. Finally, the notation an

·= bn means
that 1

n log an
bn
→ 0 as n→∞.

III. GENERAL MEMORYLESS CHANNELS

Gallager’s upper bound on the average probability of error
[1, p. 138] is given by:

PE ≤
∑
y

E
{
P

1
1+ρ (y|Xm)

}
E


 ∑
m′ 6=m

P
1

1+ρ (y|Xm′)

ρ
= e−n(E0(ρ)−ρR), 0 ≤ ρ ≤ 1. (2)

where

E0(ρ) = − log
∑
y

[∑
x

P (x)P (y|x)
1

1+ρ

]1+ρ

(3)

We assume here that P (x) is the maximizing distribution
of E0(ρ,Q). We know [5] that, after minimization over ρ,
this bound is tight for all 0 ≤ R ≤ C, where C is
the channel capacity. While an exponentially tight analysis
of the first expectation of (2) is straightforward, Gallager’s
analysis of the second expectation uses Jensen’s inequality.
Although Jensen’s inequality is generally not exponentially
tight, we know that at least in this case, it is (otherwise
(2) would not be tight). Using a tight analysis technique,
we will gain some insight into the “mechanism” of Jensen’s
inequality and explain why it is tight in this case, and when
is it tight in expressions such as (1). We look at Gallager’s
expression E

[∑
m′ P

1/(1+ρ)(y|x′m)
]ρ

, which resembles (1)
with λ = 1

1+ρ and f(Q̂xy) = logP (y|x′m). In this section,
all calculations will be made for a specific given channel
output, y, with empirical distribution Q̂y . Our first step is to
introduce the type–class enumerator, which counts the number
of codewords that belong to the same conditional type–class,
given the channel output y. We note that all these codewords
contribute the same likelihood to the sum and we have

E

[∑
m′

P 1/(1+ρ)(y|xm′)

]ρ
=

= E

 ∑
Q̂x|y

N(Q̂x|y)en
1

1+ρEQ̂ logP (Y |X)


ρ

(4)

where the inner empirical expectation is taken with respect
to Q̂(x,y) = Q̂x|y(x|y) · Q̂y(y). At this point, we apply
the two different analysis techniques. We start with the tight
approach.

E

[∑
m′

P 1/(1+ρ)(y|xm′)

]ρ

= E

 ∑
Q̂x|y

N(Q̂x|y)en
1

1+ρEQ̂ logP (Y |X)


ρ

·=
∑
Q̂x|y

ENρ(Q̂x|y)en
ρ

1+ρEQ̂ logP (Y |X) (5)

The last step is true since now we have a polynomial number
of elements in the sum and therefore we can distribute ρ
over the summands without loosing exponential tightness (see
[10, Appendix] for a simple proof). In order to analyze the
last expression, we will have to analyze the moments of the
enumerators. To this effect, we note that the probability of
randomly drawing, using P (x), a sequence that will belong
to Tx|y is exponentially en(EQ̂ logP (X)+HQ̂(x|y))). Since we
draw enR codewords independently, we have

EN(Q̂x|y) ·= en(R+EQ̂ logP (X)+HQ̂(x|y)). (6)

We now divide the type–classes according to the sign of the
exponent of the last expression. Define:

GR =
{
Q̂x|y : R+ EQ̂ logP (X) +HQ̂(x|y) > 0

}
(7)

Using the Chernoff bound, it can be shown that for Q̂x|y ∈
GR, the random variable N(Q̂x|y) converges in probability
double exponentially fast to its expectation. For Q̂x|y ∈
GcR, since the expectation vanishes with n, we are un-
likely to find any codewords that belong to the condi-
tional type–class. In this case, the dominant term (other
than Pr{N(Q̂x|y) = 0} which does not contribute to the
expectation) is Pr(N(Q̂x|y) = 1). This serves as intuition
for the following behavior of the moments of the type–class
enumerator (see [4] or [10] for details):

ENρ(Q̂x|y)

·=

{
enρ(R+EQ̂ logP (X)+HQ̂(x|y)) Q̂x|y ∈ GR
en(R+EQ̂ logP (X)+HQ̂(x|y)) Q̂x|y ∈ GcR

(8)

Now define

A(Q)

= ρ

(
R+ EQ logP (X) +HQ(X|Y ) +

1

1 + ρ
EQ logP (Y |X)

)
,

B(Q)

= R+ EQ logP (X) +HQ(X|Y ) +
ρ

1 + ρ
EQ logP (Y |X). (9)



Substituting (8) in (5), and taking into account only the
dominant exponents. we have

E

[∑
m′

P
1

1+ρ (y|x′m)

]ρ
·= enmaxQ∈GR A(Q) + e

nmaxQ∈Gc
R
B(Q)

. (10)

Let s1 = 1
1+ρ , s2 = ρ

1+ρ and define:

Ql
4
= Ql(x|y) =

P (x)P l(y|x)∑
x′ P (x′)P l(y|x′)

. (11)

Let

gR(l) = R+ EQl logP (X) +HQl(X|Y ). (12)

if gR(l) > 0, Ql ∈ GR. It can be shown [4] that gR(l) is
decreasing with l. By a straightforward optimization, we see
that the unconstrained maximizer of A(Q) is Qs1 and the
unconstrained maximizer of B(Q) is Qs2 . As in [4], if the
unconstrained maximizer is outside the constrained optimiza-
tion domain, the maximum is obtained on the boundary of GR.
Using this in the expressions of A(Q), B(Q), we have

max
Q∈GR

A(Q) ={
A(Qs1) Qs1(x|y) ∈ GR
ρ

1+ρEQδ logP (Y |X) Qs1(x|y) ∈ GcR
,

max
Q∈GcR

B(Q) ={ ρ
1+ρEQδ logP (Y |X) Qs2(x|y) ∈ GR
B(Qs2) Qs2(x|y) ∈ GcR

, (13)

where δ solves the equation gR(δ) = 0 (since gR(0) > 0 and
for R < I(X;Y ), gR(1) < 0, δ exists). Taking the dominant
element for each ρ and optimizing over ρ, will give us the
true exponent of the variant of (1) we are analyzing here.
Note that in contrast to the use of Jensen’s inequality, where
ρ is confined to be smaller than 1, here the parameter can take
any non–negative value.

If, instead of the above tight analysis, Jensen’s inequality
was used we would have:

E

[∑
m′

P
1

1+ρ (y|x′m)

]ρ

= E

 ∑
Q̂x|y

N(Q̂x|y)en
1

1+ρEQ̂ logP (Y |X)


ρ

≤

 ∑
Q̂x|y

EN(Q̂x|y)en
1

1+ρEQ̂ logP (Y |X)


ρ

(ρ ≤ 1)

·=

 ∑
Q̂x|y

en(R+EQ̂ logP (X)+HQ̂(x|y))en
1

1+ρEQ̂ logP (Y |X)


ρ

·= e
nρmaxQ̂x|y (R+EQ̂ logP (X)+HQ̂(x|y)+n 1

1+ρEQ̂ logP (Y |X))

= enmaxQ A(Q). (14)

Note that here, we seek the global maximum of A(Q) in
contrast to the constrained maximization in (10). Also, in
contrast to (10), which is exponentially tight, here we have an
inequality as a result of Jensen’s inequality. Comparing (10)
and (14), we conclude that Jensen’s inequality is exponentially
tight whenever

max
Q

A(Q) = max{max
Q∈GR

A(Q), max
Q∈GcR

B(Q)}. (15)

Remarks:
1. Observe that

max
Q

A(Q) ≥ max{max
Q∈GR

A(Q), max
Q∈GcR

B(Q)} (16)

whenever 0 ≤ ρ ≤ 1. This of course, is not surprising since
Jensen’s inequality can not be tighter than our exponentially
tight analysis. However, to see this analytically, observe that
if the global maximizer of A(Q) is in GR, Since s1 > s2
(ρ < 1) and gR(l) is decreasing with l, if Qs1 ∈ GR then
Qs2 ∈ GR. Since Qs1 is the global optimizer and not Qδ ,
maxQA(Q) ≥ maxQ∈GcR B(Q). If Qs1 is not in GR, then
there are two cases we need to verify: Qs2 ∈ GR or Qs2 ∈ GcR.
When Qs2 ∈ GR, since the maximizer of A(Q) is Qs1 and not
Qδ , maxQA(Q) > maxQ∈GcR B(Q). When Qs2 ∈ GcR, note
that A(Qs2) ≥ B(Qs2) since 0 ≤ ρ ≤ 1 and both expressions
are negative. Since A(Qs1) ≥ A(Qs2) we have maxQA(Q) >
maxQ∈GcR B(Q) for this case as well.

2. ρ = 1 is a special case where maxQA(Q) =
maxQB(Q). This implies the trivial fact that Jensen’s inequal-
ity is tight for ρ = 1.

3. If there exists R, smaller than the channel capacity for
which gR( 1

2 ) > 0, then there exists Rc, such that for all 0 ≤
R < Rc, Jensen’s inequality is not tight as an upper bound
for all ρ except ρ = 1, To see this, observe that for R = 0,
gR(l) ≤ 0 and GR is empty. Also, the global maximizer of
A(Q), Qs1 , maximizes gR(l) for ρ = 1 (s1 = 1

2 ). Since there
is a rate for which gR( 1

2 ) > 0 and g0( 1
2 ) ≤ 0, there is a Rc

such that for all R ≤ Rc, gR( 1
2 ) < 0. Since for such R and

all 0 ≤ ρ < 1, the constrained optimizer of A(Q) belongs to
GcR we have

max
Q

A(Q) > max{max
Q∈GR

A(Q), max
Q∈GcR

B(Q)}, (17)

meaning that Jensen’s inequality is not tight for this range.
4. For large enough ρ, Jensen’s inequality is tight for all

R > 0 (possibly as a lower bound). This is true since
for large enough ρ, Qs1 ∈ GR. If for this ρ, Qs2 ∈ GR
then maxQA(Q) = maxQ∈GR A(Q) > maxQ∈GcR B(Q) for
reasons explained in the first remark. If Qs2 ∈ GcR, (meaning
ρ > 1) then A(Qs1) ≥ B(Qs2) and therefore Jensen’s
inequality is a tight lower bound (note however, that while this
is true for expressions having the form of (1), in the context
of Gallager’s bound, this is meaningless since Gallager starts
with a lower bound on the indicator function of false decoding
[1]).

5. In the R − ρ plane, there are three regions defined
by maxQ∈GR A(Q) > maxQ∈GcR B(Q), maxQ∈GR A(Q) <



maxQ∈GcR B(Q), maxQ∈GR A(Q) = maxQ∈GcR B(Q). Denote
these regions by I, II, III respectively. For R < Rc (if Rc
exists), we will have a transition line between regions I and
II. Along this transition line, there is a discontinuity in the
exponent (observe that the exponent is B(Q) on the inner
boundary of region II and ρB(Q) on the outer boundary).
This is analogous to phase transitions found when analyzing
the REM in statistical physics. For a given R < Rc, the best
exponential bound will be given by reaching the transition line
from region II (see Fig.2 in the next section for a concrete
example). It is important to note that although the transition
line for any R < Rc, is above ρ = 1, this does not contradict
the known fact that Gallager’s bound is tight. Note that here
we only analyzed the second expectation of (2). When taking
the first expectation into account, the optimal ρ for R < Rc
is luckily ρ = 1, both in Gallager’s analysis and in the
tight analysis shown here, meaning that Gallager’s analysis
technique is indeed tight in this case.

Note that all of the above was true for a specific channel
output sequence y. It is easy to show that the dependence is
not on the specific output but rather on the type–class of the
output. Tight bounds on expressions of the form of (1) will be
given by taking Ty with the highest exponent for each rate.

In the next section we specialize the results of this section
for the BSC. In the BSC with uniform random coding, the
expressions for A(Q), B(Q) do not depend on the channel
output and therefore are much easier to analyze.

IV. THE BINARY SYMMETRIC CHANNEL

We will specialize the results of the previous section for the
BSC. Let p < 1

2 , β = log 1−p
p , δ = d

n .

E

[∑
m′

P
1

1+ρ (y|x′m)

]ρ

= (1− p)n
ρ

1+ρE

[
n∑
d=0

N(d)e−d
1

1+ρβ

]ρ
·= (1− p)n

ρ
1+ρ

n∑
d=0

ENρ(d)e−dβ
ρ

1+ρ

·= (1− p)n
ρ

1+ρ
∑
δ

ENρ(δ)e−nδβ
ρ

1+ρ . (18)

In this case, the type-class enumerators of the previous section
become distance enumerators, counting the number of code-
words with distance d from the channel output.

The exponent of EN(δ) is sketched in Fig.1, where we see
that we have two regions. For δGV (R) ≤ δ ≤ 1 − δGV (R),
where δGV (R) solves R+ h(δ)− log(2) = 0 and h(x) is the
binary entropy of x, we expect to find an exponential number
of codewords with normalized distance δ. For rates outside
this region, we are not expected to find any codewords. These
two regions correspond to type-classes belonging to GR and
those that do not in the previous section. Let

GR = {δ : R+ h(δ)− log(2) > 0} (19)
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Fig. 1. The exponent of the expectation of the distance enumerator.

Now,

ENρ(δ) =
{
enρ(R+h(δ)−log(2)) δ ∈ GR
en(R+h(δ)−log(2)) δ ∈ GcR

(20)

Continuing (18):

E

[∑
m′

P 1/(1+ρ)(y|x′m)

]ρ
=

·= (1− p)n
ρ

1+ρ

[ ∑
δ∈GR

enρ(R+h(δ)−log(2)−δβ 1
1+ρ )

+
∑
δ∈GcR

en(R+h(δ)−log(2)−δβ ρ
1+ρ )

]
·= (1− p)n

1
1+ρ

[
enρ(R−log(2)+maxδ∈GR h(δ)−δβ

1
1+ρ )

+ e
n(R−log(2)+maxδ∈Gc

R
h(δ)−δβ ρ

1+ρ )

]
·= (1− p)n

1
1+ρ

[
enmaxδ∈GR A(δ) + e

nmaxδ∈Gc
R
B(δ)

]
(21)

Let δ∗A, δ
∗
B be the maximizers of the first and second sums in

(21) respectively. We have:

δ∗A =
p

1
1+ρ

p
1

1+ρ + (1− p)
1

1+ρ

δ∗B =
p

ρ
1+ρ

p
ρ

1+ρ + (1− p)
ρ

1+ρ
. (22)

For 0 ≤ ρ ≤ 1, δ∗A ≤ δ∗B and

p ≤ δ∗A ≤
√
p

√
p+
√

1− p
√
p

√
p+
√

1− p
≤ δ∗B ≤

1
2
. (23)

As ρ → ∞ (possible in the tight analysis technique), the
boundaries of δ∗A and δ∗B are the same. Using this we have



for A(δ), B(δ):

max
δ∈GR

A(δ){
ρ
(
R+ h(δ∗A)− log(2)− β 1

1+ρδ
∗
A

)
δ∗A > δGV (R)

−β ρ
1+ρδGV δ∗A < δGV (R)

,

max
δ∈GcR

B(δ)

=
{ −β ρ

1+ρδGV δ∗B > δGV (R)
R+ h(δ∗B)− log(2)− β ρ

1+ρδ
∗
B δ∗B < δGV (R) .

(24)

The relations between maxδ A(δ), maxδ∈GR A(δ),
maxδ∈GcR B(δ) changes when R > Rc or R < Rc, where
Rc = log(2) − h(

√
p

√
p+
√

1−p ) is the critical rate (the minimal
R for which Gallager’s bound agrees with the sphere packing
bound). Since there is no dependence here on the channel
output, y, Rc corresponds to the critical rate of comment 3
of the previous section. When R > Rc, δGV (R) ≤

√
p

√
p+
√

1−p .
Hence for some ρ0 > 0, δA = δGV (R) and the global
maximizer of A(δ) is in GR for all ρ > ρ0. This means that
Jensen’s inequality is tight for all ρ > ρ0. When R < Rc,
δGV (R) >

√
p

√
p+
√

1−p . Hence, the global maximizer of A(Q)
is always in GcR and maxδ∈GcR B(δ) ≥ maxδ∈GR A(δ). The
global maximum of A(δ) for 0 < ρ < 1 is strictly larger than
maxδ∈GcR B(δ), thus Jensen’s inequality is not tight in all this
range. maxδ A(δ) and maxδ∈GcR B(δ) agree only in the two
points in which Jensen’s inequality is trivial, i.e ρ = 0 and
ρ = 1.

II

I

III

Fig. 2. Regions with different behavior of the exponent in the R− ρ plane.

In Fig.2 we plot the relationship between maxδ∈GR A(δ)
and maxδ∈GcR B(δ) in the R − ρ as explained in remark
5 of the previous section. in the white region (I) of Fig.2
maxδ A(δ) = maxδ∈GR A(δ) > maxδ∈GcR B(δ) meaning that
Jensen’s inequality is tight (both as an upper and a lower

bound, depending on whether ρ > 1 or ρ < 1). In the
region marked by diagonal lines (II) we have maxδ∈GR A(δ) <
maxδ∈GcR B(δ) and in the region marked by horizontal lines
(III) we have maxδ∈GR A(δ) = maxδ∈GcR B(δ). In regions
II and III, Jensen’s inequality is not tight. As explained in
Remark 5, the reason Gallager’s bound is tight is that, luckily,
when taking into account the exponents of (1−p)n

1
1+ρ and the

first expectation, the overall maximizing parameter is ρ = 1
which is also the maximizer of Gallager’s bound and a point
at which Jensen’s inequality is tight.

V. CONCLUSION

We demonstrated a tight analysis of expressions having the
form of (1), using Gallager’s bound as an example. We showed
that analysis through Jensen’s inequality might not tight in
some regions of both the number of terms in the sum of (1)
(the rate) and the parameters. Although in Gallager’s case the
analysis is indeed tight, there are cases where it is not, as
demonstrated in [4], [10]. The analysis we showed here may
serve as a yardstick for examining the tightness in every given
specific problem (with a specific f in (1)) of this type.
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