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A Comment on "A Rate of Convergence 
Result for a Universal D-Semifaithful Code" 

argument, that the expected compression ratio is less than 

R ( D )  + ( K J  + J + 4)n-1 logn + O(n-'). 

Neri Merhav, Senior Member, IEEE 

Absfract-In the above paper,' Yu and Speed propose a universal 
pointwise D-semifaithfnl code whose expected compression ratio, for 
discrete memoryless sources, approaches the rate-distortion function 
at a rate O(n-'logn). They also conjecture that this is the fastest 
achievable convergence rate for pointwise D-semifaithful codes. In this 
correspondence, we use a simple extension of Kraft's inequality and prove 
that this conjecture is true, at least for the Hamming distortion measure. 

Index Terms-Rate-distortion theory, universal coding, D-semifaithful 
codes, memoryless sources. 

I. INTRODUCTION 
In the above paper, Yu and Speed have considered the follow- 

ing setting of rate-distortion coding: Let A = {1,2, . . .  ,J} and 
B = { 1 ,2 , .  . . , K }  denote the source alphabet and the reproduction 
alphabet, respectively, and let P = {P(l), P ( 2 ) , . . .  , P ( J ) }  denote 
the vector of letter probabilities that characterizes the source. A 
single-letter fidelity criterion is used to measure the distortion between 
a source string Z" = (X~,...,Z~) E d" and its reproduction 
yn = (y~,...,y,) E B", that is 

where d(z ,  y) is assumed finite for every (2, y)  E A x B .  We consider 
a class of variable-length rate-distortion encoder-decoders defined 
as follows. At the encoder, every source string Z" is mapped to 
a variable-length binary codeword of L(z") bits where the length 
function L(.)  is designed such that any stream of codewords is 
uniquely decipherable (UD). The decoder in turn, maps the binary 
codeword into y" E B". The overall encoder-decoder mapping is 
denoted by y" = M ( x n ) .  A code is calledpointwise D-semifaithful 
if for every Z" E A", d , ( z n , M ( z n ) )  5 D.  The goal of designing 
a pointwise D-semifaithful code is, of course, to minimize the 
compression ratio E ( L ( z " ) } / n  for a given distortion level D ,  
namely, to achieve a compression ratio as close as possible to the 
rate-distortion function of the source R( D) .  A universal sequence of 
D-semifaithful codes is independent of the unknown source P and 
yet asymptotically achieves R ( D )  as n + CO. 

In the above paper, Yu and Speed have proposed a universal 
pointwise D-semifaithful coding scheme by partitioning A" into sets 
of typical sequences and covering each typical set by a sphere whose 
normalized radius (with respect to the given distortion measure) is 
D .  The codeword consists of two parts: The first part is the binary 
representation of index of the type and the second is the index of the 
first sequence in the D-sphere whose normalized distance from xn is 
less than or equal to D. It is easy to see that this code falls in the class 
of variable-rate, pointwise D-semifaithful codes described above. It 
has been shown in Theorem 2 of the above paper, by a random coding 

Manuscript received October 16, 1994; revised February 13, 1995. 
The author is with the Department of Electrical Engineering, Tech- 

IEEE Log Number 9412186. 
'B .  Yu and T. P. Speed, IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 

nion-Israel Institute of Technology, Haifa 32000, Israel. 

813-820, May 1993. 

In Section IV of the above paper, Yu and Speed conjecture that 
n-l log n is indeed the best attainable convergence rate and this belief 
stems from a known lower bound on the rate-distortion performance 
(as a function of n) due to Pilc [2]. However, Pilc's lower bound is 
stated for the dual problem, i.e., fixed coding rate and minimum 
expected distortion. Specifically, Pilc has shown that even if the 
source P is known, then for a given fixed rate R, the expected 
distortion is essentially never less than 

D ( R )  + logn/(2nlS(R)I) 

where D ( R )  is the distortion-rate function and s ( R )  is the slope of 
the function R( D )  at the point where the rate is R. Thus by applying 
the rate-distortion function on this expression it is seen that this fixed 
rate R has to be at least as large as as 

R( D )  + i n - '  log n 

so that the expected distortion would be less than D (Corollary 2). 
In this correspondence, we show that the above conjecture of Yu 

and Speed is true at least for the case where A = B and d(., .)  
is the Hamming distortion measure. In other words, we show that 
even if the source is known, the lower bound on the expected rate 
is essentially 

R ( D )  + i n - l l o g n  

under the setting of variable-rate, pointwise D-semifaithful coding 
as studied by Yu and Speed. If, in addition, the letter probabilities 
of the source are unknown, then the coefficient associated with the 
n-l  logn term must be larger. 

It should be noted that Zhang et al. [3] have proved independently 
the above conjecture and its dual distortion rate form for general 
additive distortion measures by using much heavier technical tools 
that are applicable to finite-alphabet sources. The message of the 
present correspondence remains, however, that at least for the widely 
used Hamming distortion measure, the same lower bound can be ob- 
tained in a relatively simple manner, where the main underlying idea 
is in generalizing Kraft's inequality for rate-distortion coding. This 
generalization also enables an analogous derivation for continuous- 
valued sources and difference distortion measures, e.g., the Gaussian 
source and the squared error distortion measure. 

II. THE LOWER BOUND 
We start from an extended version of Kraft's inequality. Suppose 

that A = B and define the subtraction operation z - y, Z, y E A as 
subtraction modulo J. Let d ( . ,  .) be a difference distortion measure, 
that is, d ( z , y )  = p ( ~  - y )  where p is a function from A to 
the nonnegative reals. Let S,(D) denote the set of all sequences 
t" = ( z ~ , . . .  , z,) E A" with the property 

n-l z p ( z , )  I D 

and let IS,(D)l denote the cardinality of S,(D). The following 
is an extension of Kraft's inequality for variable-rate pointwise D -  
semifaithful codes for n-sequences. 

TI 

t=1 
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Lemma 1: For any pointwise D-semifaithful code for n-sequences 

Proofi Let us denote by C, the collection of all reproduction 
vectors {M(x" ) , z "  E A"}. Also, since L ( z " )  depends only on 
the codeword of x", which in turn, is related to yn by a one-to-one 
correspondence (with no loss in optimality), we shall also denote the 
length function by L(y") with a slight abuse of notation. We then 
have 

where the inequality follows from the obvious facts that all sequences 
that are mapped to the same y" have the same codeword length 
and that for a pointwise D-semifaithful code no more than IS, (D)  1 
sequences can be mapped to the same codeword, for if this were not 
the case then at least one source sequence would have been mapped 
to a reproduction vector yn with distortion strictly larger than D. 

of the J- 1 erroneous symbols can replace the correct source symbol. 
Our next step is to show that this sum is upper-bounded, within a 
constant that depends only on J and D ,  by the last term provided that 
D < 1/2; namely, the number of sequences in the interior of S, (D)  
is within a constant factor, the same as the number of sequences on 
the surface. Finally, we shall estimate the last summand by Stirling's 
formula. 

The first goal can be achieved by bounding the above summation 
by a geometric series. Let us denote the Zth term in this summation 
by cy!. Then 

Z 1 - cyl-1 ---.- 
c y ~  n - Z + l  J-1 

n D  1 <-.- 
- n - n D  J - 1  

a = B < 1  D - - 
(1 - D ) ( J  - 1)  

where the first inequality is obtained by omitting the +1 term in the 
denominator and by using the fact that Z/(n - 1 )  is monotonically 
increasing with 1. Since we have shown that ai--1 5 Bar, and 
hence by iterating, 5 P3cyir we can now bound IS,(D)l in 
the following manner: 

Finally, since y" is assumed uniquely decipherable from the stream n D  
of codewords, then the ordinary version of Kraft's inequality must Is,(D)l = Eaa-i 
be satisfied with respect to the set of all y n  in C,, that is I=O 

(3) 

This completes the proof of the Lemma. 
The above Lemma tells us that the best one can expect from 

a length function of a pointwise D-semifaithful code is that 
2-Lcz")/lSn(D)l would be a probability measure, namely 

for some probability measure &(.). The first term can be optimized 
by an appropriate design of a code, while the second depends only 
on the distortion measure p and the distortion level D. Specifically, if 
P is known then Q = P minimizes the expectation of the right-hand 
side and we get 

m 

Assuming that D is strictly positive, we now apply Stirling's formula, 
n! M (n/e)n*, and get 

1 
2 log ISn(D)l 5 n D  log (J - 1) + nh(D)  - - logn + O( 1) (10) 

where 

where H is the entropy of the source defined as and the 0 ( 1 )  term absorbs the constant term associated with P and 
the one associated with the Stirling approximation. By substituting 

J the right-hand side of (10) into (5) and normalizing by n,  we get 
H = - P ( j )  log P ( j ) .  (6) 

j = 1  1 logn 1 
E { L ( z " ) }  2 H -  D l o g ( J - l ) - h ( D ) + - .  -+O(-) (11) 

2 n  It remains, therefore, to provide a tight upper bound on log IS, (D) 1. 
We shall henceforth assume the Hamming distortion measure, i.e., 
p ( z )  = 0 if z = 0 and p ( z )  = 1 otherwise. The exact expression for 
IS,(D)l (assuming that n D  is integer) is the following: 

where the first three terms form the rate-distortion function of the 
Source with respect to the Hamming distortion [I]. 

Remark: The above technique can be generalized to other differ- 
ence distortion measures. In the general case, the leading term of the 

where the Zth term in this summation is the number of sequences Z" 

for which p(zn) = I :  For each value of Z there are n!/[Z!(n - l ) ! ]  
combinations of error positions, and in each one of them, every one 

which is the Shannon lower bound [l] of the rate-distortion function, 
and the convergence rate term stems from the difference between the 
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log-cardinality of S, (D) and the quantity 

max H ( 2 ) .  

is the volume of the n-dimensional Euclidean sphere with radius 
m. It is easy to check that the difference between the normalized 
log-volume of this sphere and the maximum entropy of 2 subject 
to the second moment constraint E Z 2  5 D (which is given by 
$ log (27reD)) behaves like 1.5n-’ log n. 

Z : E p (  Z )  <D 

Thus this technique is useful whenever the Shannon lower bound is 
tight. As another example, consider a Gaussian memoryless source 
and the squared error distortion measure p ( z )  = z 2 .  In this case, the 
extended Kraft inequality of Lemma 1 is as follows: 

ACKNOWLEDGMENT 

Useful discussions with M. Feder are acknowledged. 

REFERENCES 

[ I ]  T. Berger, Rate Distortion Theory: A Mathematical Basis for Data 
Compression. 

[2] R. J. Pilc, ‘The transition distortion of a source as a function of the 
encoding block length,” Bell Sysr. Tech. J. ,  vol. 47, pp. 827-885, 1968. 

[3] 2. Zhang, E. Yang, and V. K. Wei, “The redundancy of source coding 
with a fidelity criterion,” preprint, 1994. 

dxn . 2 - L ( ” ” )  5 Vol{S,(D)} (12) 

Englewood Cliffs, NJ: F’rentice-Hall, 197 1. 
where 

VOI {s , (D))  = 2 ( ~ ~ ~ ) ~ / ~ / [ ~ r ( ~ / z ) ]  
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