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A Minimax Classification Approach with 
Application to Robust Speech Recognition 

Neri Merhav, Member, IEEE, and Chin-Hui Lee, Member, IEEE 

Abstruct- A minimax approach for robust classification of 
parametric information sources is studied and applied to isolated- 
word speech recognition based on hidden Markov modeling. The 
goal is to reduce the sensitivity of speech recognition systems to a 
possible mismatch between the training and testing conditions. 
To this end, a generalized likelihood ratio test is developed 
and shown to be optimal in the sense of achieving the highest 
asymptotic exponential rate of decay of the error probability 
for the worst-case mismatch situation. The proposed approach 
is compared to the standard approach, where no mismatch is 
assumed, in recognition of noisy speech and in other realistic 
mismatch situations. 

I. INTRODUCTION 
PROBLEM frequently encountered in speech recognition A is mismatch between the underlying spectral character- 

istics associated with the training and testing conditions. This 
mismatch may arise from differences in recording conditions, 
e.g., background, time-varying channel characteristics, insuffi- 
cient training data, speaker identity mismatch, additive noise, 
etc., or from variability in speech style, e.g., rate, intonation, 
accent, stress, etc. The issue of designing speech recognition 
systems that are robust to these types of spectral mismatch has 
been a long standing challenge for many researchers over the 
recent years (see, e.g., [ 11-[36]). In particular, considerable 
effort has been devoted to the important special case of 
mismatch in the level of background noise between the training 
and recognition phases. Generally speaking, there are three 
major different approaches of handling wide-band noise in 
speech recognition systems. 

In one approach the influence of noise is included in a 
statistical model of the speech signal (e.g., hidden Markov 
model (HMM)) and a classification rule that corresponds to 
the probability distribution (PD) of the noisy speech signal 
is applied. Theoretically, this is the most rigorous statistical 
approach because if the maximum a posteriori (MAP) decision 
rule is used, then the classification error rate is minimized [2], 
[27], [29]. The limitation of this method is that it requires 
complete knowledge of the unavailable underlying PD’ s and 
hence these have to be reliably estimated from the training 
data. The performance of this approach depends strongly on 
the availability of a faithful statistical model for the clean 
speech and the noise. 
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Another approach is associated with an estimator of the 
clean speech feature vectors or with a speech enhancement 
system at the receiving front end [9]-[14], [30]. The advantage 
of this approach is that it allows a high degree of flexibility 
as one can select any statistical model for the signal and for 
the noise and any estimation scheme. There are three major 
drawbacks, however, in this approach. First, the estimation 
error is usually not taken into account by the recognizer but 
the estimated vectors are treated as if they were clean. Second, 
some information that is useful for discrimination is lost in 
the estimation process. Finally, similarly to the first approach 
mentioned above, this method relies on a high degree of prior 
knowledge of the statistical characteristics of the noise which 
may not be available in practice. 

The third approach is associated with robust front-end signal 
processing in the sense of reducing the noise sensitivity of 
the feature vectors [ 171-[ 191, [31]-[33]. This includes spectral 
shaping methods [17], [33] which remove the influence of 
noise to some extent and methods based on modeling of 
the auditory system [18], [19], [31], [32]. In the latter, the 
underlying idea is to perform signal processing that simulates 
faithfully the operation of the human ear. It is believed that 
such processing is more robust to noise than that of the 
ordinary feature vectors commonly used. The disadvantages 
of this approach is that first, it is difficult to combine with 
other noise canceling schemes and second, very little is known 
and understood as to why noise sensitivity is reduced by this 
approach and what is the best model for the auditory system. 

As mentioned earlier, the above approaches are all con- 
cerned with robustness of speech recognition systems against 
mismatch caused by additive noise. Additional techniques are 
usually aimed at other specific types of mismatch situations. 
These include stress compensation techniques [21], [341, [351, 
multistyle compensation methods [36], application of robust 
distortion measures [4], [ 171, [23]-[25], and novel represen- 
tations of speech [7], [18]. These methods are summarized 
in [5] along with more details. Finally, another application of 
robust speech recognition is the case of channel mismatch due 
to variability of the transfer function. Some of the techniques 
used in combating additive noise can be used in this case 
as well (robust distortion measures [4], [17], [23]-[251, [331, 
auditory models [18], [19], [31], [32]). Other techniques are 
based on cepstral deconvolution [61], [12], [14], where the 
underlying idea is to subtract the average cepstrum of the 
transfer function. 

A desirable objective is to develop a general robust speech 
recognition system that is capable of handling mismatch in 
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any of the above-mentioned adverse conditions rather than 
a specific condition. In a general mismatch situation the 
spectral distortion, even if small, might be of any form. A 
natural approach for improving robustness in the general case 
is to attempt to minimize the classification error rate for 
the worst case mismatch within some class. This is called 
the minimax approach and it was first introduced by Huber 
(see, e.g., [37]-[39]) for robust statistical inference. In [38] 
a robust version of the likelihood ratio test was developed 
for the two-class classification problem, where the probability 
measures Po and Pl, associated with the two classes, are not 
known accurately. The uncertainty about these measures was 
modeled in [38] nonparametrically by assuming that the true 
underlying measure lies in some neighborhood of either of the 
idealized (or nominal) measures PO and PI. Specifically, this 
neighborhood was assumed to contain all measures of the form 
Q = (1 - &;)Pi + &;Hi, i = 0,1, where 0 5 E ,  < 1 are fixed 
numbers that reflect the degree of uncertainty and H;  are arbi- 
trary probability measures in some class H .  Assuming that the 
neighborhoods surrounding Po and PI do not overlap, Huber 
proposed optimal likelihood ratio tests for the worst-case (least 
favorable) pair of distributions from these neighborhoods. In 
[37, chap. VI] other nonparametric types of neighborhood, 
induced by various measures of distance between PD’s, were 
considered as well. Later, the minimax approach has been 
widely investigated and studied with application to robust 
signal detection as well as in other application areas, e.g., 
parameter estimation, filtering, and coding. (See [40] and 
references therein.) 

In this paper, we assume a general type of mismatch 
between the training and testing conditions and, therefore, 
adopt the minimax approach. Unlike [37]-[40], however, the 
neighborhoods of the nominal PD’s are defined parametri- 
cally, yielding a formulation similar to that of the parametric 
composite hypotheses testing problem [4 I]. Specifically, the 
mismatch is modeled by allowing the underlying parameter 
vector, associated with the source of each word to be rec- 
ognized, to be in a certain neighborhood of the parameter 
estimated from training utterances of the same word. The 
neighborhood is modeled in the parameter space rather than 
in the space of PD’s for two reasons. First, if the underlying 
source is indeed a member of the parametric family and 
the only uncertainty is associated with the parameter value, 
then one expects that the parametric minimax approach will 
outperform the nonparametric approach as it incorporates more 
prior knowledge about the source. Second, the resulting test 
is relatively simple to implement. 

A generalized likelihood ratio test (GLRT) is derived that 
attains the highest possible asymptotic rate of exponential 
decay of the error probability for the worst-case mismatch 
within the allowed neighborhood. This GLRT, which is similar 
to the test commonly used in parametric composite hypotheses 
testing problems (see, e.g., [41]), suggests that rather than the 
standard approach of comparing likelihood values associated 
with the testing signal for each trained model pointwise, one 
should first maximize the likelihood of this signal within the 
assumed mismatch neighborhood of each trained model, and 
then pick the word yielding the highest maximum. Clearly, 

the GLRT described above depends strongly on the specific 
parametric model being used as well as the topology of the 
neighborhood that models the mismatch, and the main problem 
in applying this methodology to speech recognition, is how 
to choose properly these two ingredients. The principles that 
guided us in choosing these key elements were based on 
theoretical results on one hand, and our wish to keep the 
recognition scheme as simple as possible, on the other. 

Specifically, in [42] it has been proved analytically that if 
the underlying process is Gaussian, then under fairly mild reg- 
ularity conditions, the sample cepstral coefficients are asymp- 
totically uncorrelated and their asymptotic variances are inde- 
pendent of the spectrum of the underlying process. In view 
of this result, cepstral hidden Markov models (HMM’s) with 
diagonal covariance matrices are adopted with a simple model 
of mismatch involving deviations in the cepstral means only. 

As mentioned earlier, the resulting minimax test is easy 
to implement and it does not require any modification in the 
training procedure. Some degree of improvement in perfor- 
mance is usually attained as will be seen later. The minimax 
classification rule is also suitable for operating in fairly general 
mismatch situations because no particular assumptions are 
made as for the origin of the mismatch. Furthermore, it 
can be easily integrated with many other parametric robust 
recognition schemes, thereby combining the advantages of two 
or more methods. For instance, a speech recognition system 
that is designed specifically to handle a mismatch caused 
by additive white noise in the testing phase, is expected to 
perform better (in this particular mismatch situation) than the 
more general approach proposed here, which does not assume 
any prior knowledge on the particular type of mismatch. 
However, a small deviation from the additive white noise 
assumption might cause a “breakdown” in the performance 
of the former system while the latter still performs reasonably 
well. A combination of the two methodologies (see, e.g., [29]) 
is expected to result in an improvement in the additive white 
noise case while still preserving robustness to more general 
mismatch situations. A limitation of the proposed minimax 
approach is that it cannot be extended easily to connected 
speech recognition. 

Experimental results based on isolated word, multispeaker 
recognition of noisy spoken versions of the English digits (with 
clean training data) show that the minimax approach gives 
significant improvement over the standard approach for a wide 
range of signal to noise ratio values. It also turns out that the 
error rate is fairly insensitive to design parameters that quantify 
the size and the shape of the mismatch neighborhood, and thus 
exact knowledge of these parameters is not crucial. A second 
experiment on the English digits, where training and testing 
were performed on two different databases that were recorded 
under completely different conditions (and hence mismatch 
is expected), also shows considerable improvement in the 
proposed approach. However, when the minimax approach has 
been tested on spoken versions of the English E-set letters, no 
significant improvement has been obtained. A simple possible 
reason for this fact is explained in the sequel and conclusions 
are drawn as for the situations in which the minimax approach 
is recommended. 
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The outline of the paper is as follows. In Section I1 the 
problem is formulated and the main result is stated and proved. 
Section I11 discusses the proposed classification rule and its 
relation to previous research. In Section IV, several guidelines 
are suggested as for the choice of the statistical model and 
the type of mismatch neighborhood to be used in speech 
recognition. In Section V, the main numerical procedures are 
described and the experimental results are presented. Finally, 
in Section VI some conclusions are summarized. 

11. PROBLEM FORMULATION AND A THEORETICAL RESULT 

Let { P A ( . ) ,  X E A} be a parametric family of probability 
density functions (PDF’s), where X is a parameter vector, 
A RN is the parameter space, and RN is the N-dimensional 
Euclidean space. For instance, P A ( . )  can be a PDF of a 
Gaussian cepstral HMM where X denotes the set of parameters 
consisting of the initial state probabilities, the state transition 
probabilities, and the means and the variances associated with 
cepstral vectors in each state. Let X i  E A be the parameter 
vector of the ith source, 1 5 i 5 M ,  which will be assumed 
known or given from a training procedure. In isolated-word 
speech recognition applications, X i  denotes the parameter 
vector associated with the ith vocabulary word and M is the 
vocabulary size. Let Ai,  1 5 i 5 M ,  denote nonoverlapping 
subsets of A, where X i  E Ai for all i. The subset Ai will be 
henceforth referred to as the mismatch neighborhood or just 
the neighborhood of Xi .  

Comment: The assumption that X i  are known accurately 
reflects our wish to focus on situations where the estimation 
error of the training phase is relatively small compared to 
deviations due to mismatch between the training and testing 
conditions. An alternative interpretation is that the estimation 
error is included in the mismatch neighborhood model. 

Let z = (z(1), z(2), . . . , z (n ) ) ,  z ( t )  E X, t = 1 , 2 ,  . . . , n, 
be a test sequence where X is the source alphabet which may 
be either a finite set, the real line R, or the q-dimensional 
Euclidean space R*. For instance, in the cepstral HMM 
example mentioned above, X = Rq and x is a sequence 
of q-dimensional cepstral vectors extracted from n successive 
frames of a spoken word to be recognized. It will be assumed 
that the test sequence z is generated by a PDF p ~ ,  where 
X E A, for some integer 1 5 m 5 M ,  where m is an 
unknown random variable. Given 5 and Ai,  1 5 i 5 M ,  the 
classification problem is that of identifying m, the index of 
the neighborhood A, that contains the underlying parameter 
vector A. In other words, we wish to classify z into one out 
of M given sources (words) where the parameter X of the 
source that governs z is allowed to depart from (mismatch) the 
nominal parameter value A,, associated with the true source 
m, but only within the neighborhood A,. A decision rule R 
is a partition of the sample space of all possible test sequences 
X“, into M regions 01, Rz, . . . , such that x is classified 
to the ith source if z E 0%. The worst-case probability of error 
p n ( e ) ,  associated with a decision rule R, is defined as 

where 0; is the complement set of R; and pi is the prior 
probability of the ith source, namely the probability that 
m = i. We seek a decision rule that minimizes the worst-case 
probability of error. 

Unfortunately, the exact minimization of (2.1) is not trivial. 
It is desirable, however, to minimize (2.1) at least asymptot- 
ically as n --+ 00 for two reasons. First, although in practice 
n might not be large, it turns out that good decision rules in 
an asymptotic sense might yield fairly good performance even 
when n is small (see, e.g., [44]). Second, theoretical analysis 
of the error probability can be usually carried out only in the 
asymptotic limit. 

The asymptotic approach that will be adopted here is 
supported by the fact that for many commonly used parametric 
families of PDF’s P A (  .) (e.g., independently identically dis- 
tributed random processes, Markov processes, hidden Markov 
processes) the error probability (2.1) can be made exponen- 
tially small as a function of n. (See, e.g., [44]-1491 and 
references therein). Suppose that for the optimal classification 
rule, p n ( e )  decays exponentially with n, say, p n ( e )  z Ce-Bn 
for some positive constants B and C. Then, clearly this 
optimal rule yields the highest possible exponential rate B = 
B,,,. We will demonstrate a suboptimal classification rule 
that is asymptotically optimal in the sense of yielding an 
error probability with the highest possible decay rate B,,,. 
In other words, for every arbitrarily small E > 0 and all 
sufficiently large n, the error probability associated with our 
rule will be less than C exp ( -(Bmax - E).). One might claim 
that this error probability might be eEn -+ m times larger 
than the minimum above. Note, however, that this factor is 
dominated by the decaying exponential e - B m a x n  and hence 
exponentially insignificant. An alternative formulation of the 
above claim which will be used also in Theorem 1 below is 
that we minimize the limit of 71-1 logpn(e) as n --f 00. 

For simplicity, assume that the Ai is a bounded subset 
of A and confine attention to a sequence of finite grids 
{A:}n21, A: C Ai, 1 5 i 5 M ,  of parameter values where as 
n grows, A: becomes dense in Ai.  We shall state the result of 
asymptotic minimization of p n ( e )  in the above defined sense 
where the A; in (2.1) are replaced by AT. A similar result 
for the continuous subsets hi can be shown from standard 
continuity arguments, however, the proof for this case is 
more involved and it requires stronger regularity conditions 
concerning uniform continuity of PA(.) in A, hence it is less 
general. In the discrete case considered here, on the other hand, 
the proof is fairly simple and general. It also exhibits a realistic 
situation since, in practice, X can be represented with finite 
precision only. 

We assume the following regularity conditions. 
A l )  Ai, 1 5 i 5 M are bounded sets. 
A2) The grid A: c Ai becomes dense in Ai as n tends to 

infinity, i.e., for the Euclidean metric d : A x A + R’, 

lim min d(X, A’) = O 
n + w  A’€,\: 

VX E A;. 

hl 

(2.1) A3) The cardinality 1AY1 of AY is less than elLEn for some 
a = l  positive sequence that tends to zero. 
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The existence of a sequence of grids satisfying both condi- 
tions A2) and A3) can easily be implied from the boundedness 
of Ai and from the fact that it is a subset of a finite dimensional 
space. For example, if the number of grid points grows linearly 
with n in each dimension of R N ,  then (2.2) decays as fast as 

This completes the proof of Theorem 1. 
A slightly weaker but considerably simpler version of the 

above result is that rather than minimizing pn(e)  of (2.1) 
which is a difficult task, we minimize an upper bound on 
p n ( e )  given by 

l / n  and at the same time 1A?1 is proportional to n N ,  which is 
a polynomial resulting in E, = n- lNlogn,  where throughout 
the sequel, logarithms are taken to the base e unless otherwise 

M 

(2.8) 
i=l 

specified. 
which is similar to pn(e) but with the finite grids AY replaced 
by the continuous sets Ai. The minimization of , h ( e )  is 
accomplished by the rule (2.3) where again, AT are substituted 

Our main result is the following. 
Theorem Let = n*(n) be a decision rule defined by 

~ : ( n >  2 {z E X" : pi . m y  p A ( z )  by Ai.- Note that here no regularity conditions are required 
except for integrability of maxAG,ll, p ~ ( x )  as (2.8) is never 
smaller than (2.1). The result, however, is somewhat weaker 
as we are not minimizing the desired error probability but an 
upper bound on the error probability. 

A€.\% 

= 111a.x [pj . ma%ppx(z)]}, 1 5 i 5 M 
1 5 j I M  AEA, 

(2.3) 

where ties broken arbitrarily, and let A: satisfy Al)-A3). 
Then, for any decision rule R = n(n), 111. DISCUSSION 

1 1 
- logpn* ( e )  5 ; logpn(e) + E, 

The proposed decision rule Q* has an easy intuitive interpre- 
tation. Since the underlying parameter under each hypothesis is (2'4) 

where p n ( e )  and p n * ( e )  are defined as in (2.1) but with Ai 
replaced by A: and E, is as in A3). 

Proof of Theorem I :  For a given decision rule R let 
M n  

Obviously, for every 9, pn(e) 2 pn(e). However, 

M n 

5 enEnpn(e ) .  (2.6) 

Next, observe from (2.5) that minimizing pn(e) is equivalent 
to maximizing 

M ,  

which is clearly attained for R = R* defined in (2.3). (This 
can be shown in a way similar to the proof of optimality of 
the classical maximum a posteriori decision rule). Hence for 
any decision rule R we have 

1 
n 
1 
n 

I - log en',' pn ( e )  

= - logpn(e) + E n .  (2.7) 

not known accurately, a two-step procedure is used. First, esti- 
mate the underlying parameter using the maximum likelihood 
(ML) approach within each neighborhood A, (or AY), i.e., 
compute X, = arg maxAEA, p ~ ( z ) .  Then, apply the maximum 
a posteriori (MAP) decision rule with A, replaced by A,, 1 I 
1 5 M .  Clearly, one can use other estimation approaches for 
the first step, for example, the minimum discrimination in- 
formation (MDI) approach (see, e.g., [50]-[53]). The theorem 
tells us, however, that if the ML approach is chosen, then this 
two-step procedure is asymptotically optimal in a minimax 
sense. 

The decision rule R* is similar to the GLRT which is 
commonly used heuristically in two-class parametric compos- 
ite hypothesis testing problems under the Neyman-Pearson 
formulation, where a uniformly most powerful test (UMPT) 
does not exist [41]. In these situations, if one wishes to test the 
hypothesis HO : X E A0 against the alternative H I  : X E A I ,  a 
decision is made by comparing the generalized likelihood ratio, 
maxAE.i, p ~ ( z ) /  InaxAEA, p x ( z ) ,  to a prescribed threshold. 
More recently, the GLRT was proved an asymptotically opti- 
mal solution in the Neyman-Pearson sense for various more 
specific classification problems: in [54] and [55] for testing 
whether two sequences were drawn from the same source, in 
[56] for testing for randomness and for independence, and in 
[57] and [58] for estimating the order of a statistical model. In 
contrast to our assumption, however, [54]-[58] are concerned 
with situations where the regions of uncertainty A, are nested 
rather than disjoint. 

In [29] a test similar to R* has been applied to recognition 
of clean as well as noisy speech for the special case of gain 
mismatch using hidden Markov models (HMM's), based on 
the intuition described in the first paragraph of this section. 
Specifically, in the case of clean speech, it was assumed in 
[29] that the test sequence 5 is a sequence of vectors xt E 
Rq, t = 1 ,2 ,  . . . , n, drawn from a source p~ which may differ 
from the nominal (training) source p ~ ,  but only in a sequence 
of scaling parameters (gain factors) {s~}:=~ corresponding to 
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the vectors { x ~ } : = ~ .  Namely, the neighborhood A, of A, in 
this case consists of all parameter vectors X which agree with 
A, in all components except for the gain factors. The proposed 
recognition test [29] was to pick the index i that maximizes 
the quantity maxG IGI-lpx: (G-lz), where 2 is represented 

as a qn-dimensional column vector, G = diag(gl1, . . *  , gnl) 
is a (qn) x (qn) diagonal matrix of the gain factors, I is the 
q x q identity matrix, and XL is the vector of all components of 
A, except for the gain factors. Note, however, that in this case 
the dimension of A grows with n as X contains n gain factors 
as components. Since Theorem 1 assumes the dimension N 
of A to be fixed and finite, it does not hold here. The weaker 
version of the Theorem, described at the end of Section 11, 
however, holds for [29]. 

Another interesting special case of R* arises when the sub- 
sets A% form a partition of the parameter space A. In this case, 
R' suggests that upon observing 2, we first calculate the un- 
constrained ML parameter estimate A, = arg InaxxE,l p x ( x ) ,  
provided that it is unique, and then choose the source 1 for 
which A, E A,. More specifically, if Az is defined as the set 
of all parameter vectors X for which d(X,  A,) = min, d(X,  A,) 
for some distance measure d : h x A 4 R f ,  then R*, in this 
case, picks the source z that minimizes d(A,, A t ) ,  namely, the 
nearest neighbor to A,. In this case, since the neighborhoods 
are not isolated from each other, an exponential decay of p n ( e )  
cannot be expected, though Theorem 1 still holds. 

A 

* A  

Iv .  CHOICE OF PARAMETRIC FAMILY AND'MISMATCH 
NEIGHBORHOODS 

So far we have discussed the minimax classification ap- 
proach for a general parametric family of sources { P A ,  X E 
A) with an arbitrary type of mismatch neighborhood Ai. A 
key issue in applying the minimax decision rule proposed 
here to speech recognition, is an appropriate choice of these 
ingredients. In this section, an attempt is made to draw some 
guidelines which may suggest a reasonable choice of the 
parametric family and neighborhood type, and at the same 
time, keep the recognition scheme as simple as possible. 

Consider first a stationary zero-mean Gaussian process { yt } 
with power spectrum density (PSD) S ( w ) ,  and the smoothed 
periodogram [59] for estimating the PSD, i.e., SL(W) = 
x : = - L f i ( ~ ) e j u T ,  where L is a fixed positive integer and 
k ( ~ )  is the empirical autocorrelation given by 

T being the number of observations available. Next define the 
empirical cepstrum { I $ ) ,  T = 0, 1, . . . , as the inverse Fourier 
transform of logSL(w). It is shown in [42] (along with more 
details) that under certain regularity conditions on the PSD 
S ( w ) ,  for every two fixed positive integers k and I ,  

(4.1) 

where Skl  = 1 if k = 1 and Sk1 = 0, otherwise. Equation 
(4.1) tells us that if L is large and T >> L,  then the empirical 
cepstral coefficients are essentially uncorrelated and have same 

variance, which is approximately 1/T, independently of the 
underlying PSD. More commonly [61], the estimated cepstrum 
coefficients {E:) are based on a qth-order AR spectrum 
estimator rather than the smoothed periodogram, i.e., 

where c2 and (61, a p ,  . . . , iip) are estimates of the gain and 
the AR coefficients, respectively, derived from Yule-Walker 
equations [62]. Here a result somewhat weaker than (4.1) 
holds (see [42]): If the underlying process is AR of fixed 
order p ,  then the asymptotic covariance matrix (as T + 

CO) of the first q empirical cepstrum coefficients tends (as 
q -+ x) to the identity matrix in the Hilbert-Schmidt sense 
[63]. In other words, let pkl be the asymptotic covariance 
limT" T . cov(Ez, E ; ) ,  then 4-l xz,l=l lp;, - 6b1l2 -+ 0 
as q -+ m. 

Suppose temporarily, that the nominal underlying sources, 
1 5 i 5 M ,  are Gaussian and in the training phase, where 
the parameter A,, of each source is extracted, we observe 
for each i vectors of empirical cepstral coefficients of the 
form t L  = (tf,ii,....?t) (or i'q = ( ? ? , E ; , . . . . E ~ ) ) .  In 
light of (4.1) and the central limit theorem (similar to [60]), 
we wish to model this random vector as a Gaussian vector 
with a parameter A, consisting of a vector of means (which 
depends strongly on the underlying PSD), and the elements of 
a covariance matrix (which is roughly diagonal and depends 
weakly on the PSD). Suppose further that in the testing session, 
one of the Gaussian sources, say vi, generates a sequence 
but its underlying PSD somewhat departs from that of the 
corresponding training source (e.g., due to linear distortions 
and noise) and again, we have access to the empirical cepstral 
coefficients. Since the source is still assumed Gaussian, then 
in view of (4.1), the deviation (mismatch) in the PSD is 
reflected mostly in the cepstral means, while the covariance 
matrix is essentially unaffected. This observation is further 
supported by several experimental studies of mismatch caused 
by noise [4], stress [34], [35], multistyle speech [36], and 
simulations on artificially generated data [64], and it  suggests 
that the model of mismatch neighborhood A, will be confined 
to the means only. An additional motivation for not including 
the cepstral variances in the mismatch model is our wish to 
keep the recognition scheme as simple as possible. We will 
allow, however, different variances for the different cepstral 
components at different states. 

The next step is to define the shape of the mismatch 
neighborhood in the space of cepstral mean vectors. First 
observe that for large L and T the expected value of 2: (or 
of for large enough y) can be well approximated (see [42]) 
by the inverse Fourier transform of the true log spectrum, i.e., 

CT 2 s_: ' ,JdT log S ( W ) .  (4.3) 

Hence, we shall refer to (4.3) as an approximation of the 
cepstral mean. Assume further, that the PSD is given by a 
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rational function of eJw, i.e., 

where [a;( and Ipil, 1 5 i 5 I C ,  are all less than 1, and G is a 
gain factor. It is easy to show, in this case, that for r 2 1, 

l k  
c, = - C(a: - P;'). 

7 .  
2=1 

(4.5) 

Now let S l ( w )  and S2(w) be two distinct rational PSD's of 
the form (4.4) with parameters {(ai,pi)}f=:=, and {(ri, S;)}f==,, 
respectively, and let 0 5 p < 1 denote the maximum modulus: 

(4.6) P = " max{IazI, IPil, IYZI, 16il). 
l<i<k 

with &(U) and 
lows: 

use $ ( t )  rather than tL ( t )  as the former can be calculated 
recursively from the AR parameter estimates [61].) Consider 
cepstral Hh4M's with S states, where the state set is denoted 
by S = { 1 , 2 , . . . , S }  . Let s = {s t , t  = l,...,n},st E S ,  
be an unobserved sequence of states corresponding to x. The 
PDF of x is given by 

S S 

where p ~ ( s )  is the probability of the sequence of states s, and 
p ~ ( z l s )  is the probability of the given output sequence x given 
s. For first-order HMM's we have 

n 

(4.9) 
t=l 

where us*- S t  denotes the transition probability from state s t - l  

at time ( t -  1) to state st at time t ,  and asosl = rSl is the initial 
state probability. For p ~ ( x ( s )  we assume that 

A 
The difference between the cepstra c!') and c?) associated 

;2(w), respectively, is bound above as fol- 
n 

4kp' I -. (4.7) 

This suggests that the mismatch neighborhood in the space 
of cepstral means will be the set of all vectors whose 7th 
component differs from the corresponding nominal value by 
a quantity proportional to ? - l p r  for some 0 5 p < 1. The 
mismatch model (4.7) agrees qualitatively with both analytical 
and experimental results of [4], where the influence of noise 
on cepstral mismatch has been observed. Specifically, it has 
been shown in [4] that the higher order cepstral coefficients 
are less affected by noise than the lower order coefficients. In 
particular, the mismatch decays exponentially with the index of 
the coefficient (see, e.g., [4, eq. (2.19)] which quite resembles 
the model (4.7)). 

In statistical modeling of speech signals, it is common to 
use a set of estimated cepstrum coefficients as a spectrum 
related feature vector. Theoretically, in view of (4. l), this is 
convenient as it allows us to assume a diagonal covariance ma- 
trix. Experimentally, this is supported by previously reported 
studies (e.g., [61], [65]) which show that among different kinds 
of feature vectors: AR parameter set, impulse response, au- 
tocorrelation sequence, area function, and cepstrum function, 
the latter provides the highest recognition accuracy. To handle 
the nonstationarity of speech signals, however, the above- 
described Gaussian cepstrum model is combined with the 
HMM [66], [67]. We next provide a mathematical description 
of the cepstral HMM and define the form of A; in this 
combined model. 

Let z = { z ( t ) ,  t = 1, .. . , n }  be an observation sequence 
with z ( t )  = ?( t )  E Rq being an empirical cepstral vector 
based on the AR spectrum estimate (e.g., (4.2)) calculated 
from the tth frame (of length T )  of the waveform. (We 

p A ( z ) s )  = n b ( z t l s t )  (4.10) 
t=l 

where b(xtlst) is a probability density function (PDF) of a 
q-dimensional Gaussian vector with uncorrelated components, 
{z l ( t ) } ,  given by 

1-1 

(4.1 I )  
The parameter set of the cepstral HMM is X = ( r , A , p , C ) ,  
where R = { r a } , A  = {uap} ,p  = {p l (a ) } ,  and C = 
{ ~ T ( a ) } , a , p  E S,1 = 1 , 2 , . . . , q ,  and X E A. We shall 
assume a Eefr-to-right HMM [66, p. 2661 for which a,p 
vanishes for all P < a and ,B > a + 1, namely, only the 
self transition and a transition to the next state are allowed. 
Clearly, once the last state a = S is visited, the process will 
remain in this state. 

Following (4.1) and (4.7), the neighborhood A; of the 
parameter X i  4 { ~ ( 2 )  , A ( i ) ,  ,u(;), associated with the ith 
source, will be defined as 

A; = {(R, A ,  p, C) : R = T ( ; ) ,  A = A(z) ,  C = 

A 

Ipi(a) - ,uii)(cx)l 5 C1-'pZ,o E S,1 = 1,2,...,q} (4.12) 

for some constants C > 0 and 0 5 p < 1. We assume 
R = ~ ( 2 )  and A = A(i )  for two reasons. First, the likelihood 
function (x) is relatively insensitive to these components, 
and second, to simplify the computation. As we shall see in the 
next section, the constrained maximization maxXEA, p~ (x), 
needed to implement the decision rule R', is relatively easy 
to perform in this case. 

v. NUMERICAL PROCEDURES AND EXPERIMENTAL RESULTS 

In the first part of this section, the main numerical pro- 
cedures of preprocessing, training and testing are described. 
The preprocessing and training procedures are conventional 
and are brought here for the sake of completeness only. A 
reader familiar with these procedures may skip directly to 

' 1  
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the description of the testing procedure, which includes the 
particular modification to the minimax classification rule. In 
the second part, speech recognition results are provided. 

A. Numerical Procedures 

Pre-emphasis, windowing, AR parameter estimation, and 
cepstrum analysis of the speech signal are applied to obtain 
the observation sequences associated with the training and 
testing utterances. Specifically, the speech signal is first pre- 
emphasized using a filter of the form p(,) = 1 - QZ- ' ,  

and then, successive waveform frames of length T ,  shifted 
D samples from each other, are multiplied by the generalized 
Hanning window: 

W ( T )  = p - (1 - @)COS (F), . r = O , l , . . . , T - l  . 

(5.1) 
For each frame 1 5 t $ n,, first, a vector of empirical autocor- 
relation coefficients {Rt (T)}",=, is calculated as described in 
Section IV. Then, using the Yule-Walker equations [62], a vec- 
tor of AR parameter estimates &(t)  = ( iL~(t) ,  &( t ) ,  . . . . t iq( t ) )  
is derived. Finally, the AR cepstrum ~ ( t )  = ?( t )  is calculated 
from &( t ) ,  as described earlier using the well-known recursive 
formula [61]: 

(5.2) 

In the training phase, the parameter X i  associated with 
each source is estimated from a given training sequence, 
yi = ( y ; ( l ) , . . ~ , y ; ( n ; ) ) , y ; ( ~ )  E Rq, t  = 1,...,ni, (or a set 
of such training sequences), generated from the ith source, 
namely, a training utterance of the ith vocabulary word. To 
this end, the maximum-likelihood approach is adopted, that is, 
we wish to find a parameter value X i  that maximizes p~ (yi). In 
practice, the maximization of the likelihood function is approx- 
imated by the segmental K-means algorithm [68], [69]. For 
a given observation sequence, say, y = (y ( l ) ,  . . . ~ y(n)),  this 
algorithm performs local joint maximization of px(y, s) over 
the state sequence s and the parameter A. This maximization of 
px(y, s) by the segmental K-means algorithm, rather than of 
px(y) by the Baum algorithm [70]-[72] is numerically easier 
and results in similar X estimates provided that the empirical 
cepstrum is calculated from relatively long waveform frames 
[73]. The segmental K-means algorithm performs alternate 
maximization of px(y,s),  once over the state sequences s 
for a given X E A using the Viterbi algorithm. and then 

over X for the resulting most likely state sequence s* using 
reestimation formulas similar to those of the Baum algorithm. 
Specifically, following (4.8)-(4.1 I), we wish to minimize for 
a given s = s* the quantity, (5.3), shown at the bottom 
of the page, where K = 0 . 5 n q l o g 2 ~  and n(n,,b) is the 
number of transitions from state Q to state p that appear 
in s. It is easy to see that (5.3) is minimized if we choose 
rs1 = 1, aa,o = n ( ~ ,  @ ) M a ) ,  4.1 being Eo n(a, D), and, 

(5.4a) 

This iterative algorithm was shown [69] to converge to a local 
maximum under certain regularity conditions. For left-to-right 
HMM's considered here, initial model estimates are obtained 
from uniform segmentation of y into S intervals and estimating 

from the crth segment, Q E S .  Here T and A are initially 
estimated from the state sequence defined by this segmen- 
tation. The initial matrix A is, therefore, left-right and this 
structure is preserved in each iteration of the segmental K -  
means algorithm (see [66, eq. (44)l). 

In the testing phase, a similar iterative algorithm is used. 
To approximate A, = arg InaxxE,i2, p ~ ( z ) ,  we initialize with 
A, which was obtained in the training procedure (consider this 
as the nominal parameter value), and in each iteration, we 
first decode s* using the Viterbi algorithm, and then minimize 
(5.3) (with y replaced by rc) over the (p l (a ) } ,  subject to the 
constraints lpl(a) - pl("(aC)l 5 ~ ~ - l p l , c y  E S,I 5 I 5 q .  
Since the rc1 ( t )  are assumed uncorrelated, this constrained min- 
imization is carried out for each component pl(a) individually. 
Furthermore, since (5.3) is a convex function of each pl(cr), 
the minimization over this variable can be performed by first, 
computing the unconstrained minimizing mean component 
jIl(a) similarly to (5.4a), and then checking whether its value 
falls in the interval I = [ p ; ' ) ( a )  - C l - l p l ,  p;')(a) + CZ-lp ' ] :  
If this condition is met, then the cepstral mean component 
j$')(a), associated with it (as defined in Section 111), agrees 
with jIl(a). Otherwise, I ;~ " (a )  is the endpoint of I which is 
closest to jIl(a). The remaining components forming 1, are 
left unchanged, following (4.12). 

From the computational point of view, the complexity of 
the testing algorithm is essentially equivalent to that of the 
standard algorithm (which just computes p ~ ,  ( r c ) ) ,  multiplied 
by the number of iterations required for convergence of the 
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TABLE I 
RECOGNITION RESULTS FOR NOISY SPEECH 

SNR Standard Minimax C n 

5 64.50 f 13.25 88.25 f 9.50 5 0.8 
10 i8 .75  f 8.50 93..50 f 4.75 4 0.8 
15 87.25 f 6.25 95.50 f 2.50 4 0.8 
20 95.25 f 2.75 97.2.5 f 2.00 3 0.8 
30 99.00 f 2.00 99..50 f 1.50 1 0.8 

As can be seen, the minimax decision rule introduces 
considerable improvement, especially at low SNR values, 
where the degree of mismatch between the noisy testing data 
and the clean training data is relatively high. Note that the 
mismatch shape parameter p in Table I is insensitive to the 
SNR, while the mismatch size parameter C decreases with the 
SNR, as high SNR values correspond to a small amount of 
mismatch. 

3c 99.75 f 0.25 100.00 f 0.00 1 0.8 Strictly speaking, the performance of the proposed rule 
depends on the appropriate choice of p and C, which in 

above described procedure. Fortunately, as we shall see in the 
next part of this section, the convergence is reasonably fast 
in most situations. 

B. Experimental Results 

A simple special case of a mismatch situation is encountered 
when the testing signal is corrupted by additive white Gaussian 
noise, while the training data are clean. To examine the 
performance of the minimax decision rule R', it was first 
compared to the standard rule which assumes no mismatch 
(namely, where Ai includes X i  only), in multi-speaker isolated- 
word recognition of spoken versions of the M = 10 English 
digits, recorded from 4 different speakers: 2 males, 2 females, 
through a telephone handset and sampled at 6.667 kHz. 
For each speaker and each digit, 5 training utterances and 
10 testing utterances were used. While the training proce- 
dure was performed on clean data, in the testing phase, 
computer-generated Gaussian white noise, with various levels 
of intensity, was added to the original waveform prior to the 
preprocessing. The signal-to-noise ratio (SNR) was defined in 
a segmental manner, that is, if the clean signal s ( t )  contains 
n frames of length T ,  and the noise power is 02 then, 

SNR = A - 1 TL 10 log,, - Et 
n t = l  TO:. (5 .5 )  

where Et is the sum of squares of the T waveform samples 
in the tth frame. 

Several design parameters were first experimentally opti- 
mized in order to obtain the best recognition accuracy in 
the standard classification approach without noise: the frame 
length T ,  the frame shift D ,  the cepstrum vector dimension 
q, the number of states S ,  the pre-emphasis filter coefficient 
a,  and the window shape parameter /3. The best values for 
this experiment were found to be T = D = 200, q = 12. S = 
8,a = 0.95, and /? = 0.5. 

Table I compares, for several SNR values in decibels 
(first column), the recognition accuracy in % of the standard 
decision rule (second column) to that of the minimax approach 
(third column) for the best mismatch neighborhood parameter 
values: C in the range [ l ,  81 (fourth column), and p in 
the range [O, 11 (fifth column). Each average score is given 
along with an uncertainty term (that follows the ''*" sign) 
which is the empirical 90% confidence interval of the average 
scores associated with the individual digits, i.e., the smallest 
symmetric interval around the average score that includes 9 
out of the 10 scores for each one of the digits. 

turn depends on the unknown amount of mismatch. It turns 
out, however, that the performance is fairly insensitive to 
these parameters in a reasonably wide range. This means that 
exact knowledge of p and C is not crucial, as considerable 
improvement (though not optimal) can be accomplished for 
any pair ( p ,  C) in a fairly large domain. This is demonstrated 
in Table I1 which presents average recognition accuracy of the 
minimax rule as a function of p and C for SNR = 10 dB, 
which corresponds to the second line in Table I. A similar 
behavior was observed for other values of the SNR as well. 
Note also that the best values of p and C are not highly 
sensitive to the SNR. However, these can be always tuned 
online to best adjust to the environmental conditions. This 
exhibits an alternative to a dithering technique [28] which 
has been used to train models in moderate noise levels and 
worked fairly well in a wide range of SNR values. Of course, 
when there is no mismatch between the training and testing 
conditions performance usually improves. However, while in 
[28] is suitable for the special case of additive noise, here the 
technique is more general. 

As for the computational aspect of the choice of p and 
C, it turns out as one might expect, that the number of 
iterations needed for convergence of the iterative algorithm 
for approximating maxAEA, p ~ ( x )  in the testing procedure (see 
Section V-A), grows with p and C. The number of iterations 
ranged between 1 and 5 in the domain of p and C considered 
here. 

Not surprisingly, the minimax classification rule is not 
comparable in performance to recognition schemes that are 
designed specifically to deal with noisy speech and utilize prior 
knowledge about the nature of the noise. To demonstrate the 
price paid for not using this prior knowledge, a comparison 
with the gain-adapted scheme of [29] showed a loss of about 
5 dB in the minimax approach. This means that with the 
scheme of [29] similar recognition scores as in Table I are 
obtained when the SNR is 5 dB lower. It should be kept 
in mind, however, that the minimax rule is meant to be 
applicable in more general mismatch situations where the 
mismatch characteristics are unknown. It is interesting to note, 
however, that as explained in Section 111, the gain-adapted 
recognizer [29] combines a noise-robust approach with the 
minimax methodology and hence, outperforms both systems 
for mismatch situations caused by additive noise. This supports 
our belief that the minimax approach has even higher potential 
when integrated with existing schemes. 

Another situation where mismatch might be expected, oc- 
curs when the training data and the testing data are from 
different databases. In our second experiment, we examined 

T 
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~~~ ~ 

A-Training, B-Testing 
P 1 2 3 

0.0 88.90 88.90 88.90 
0.1 89.40 89.70 89.90 
0.2 89.80 89.80 90.40 
0.3 90.00 90.50 91.20 
0.4 90.00 91.50 91.30 
0.5 90.30 91.20 90.80 
0.6 91.20 91.20 90.40 
0.7 91.30 91.10 90.70 
0.8 91.70 91.30 90.70 
0.9 91.70 91.80 91.00 
1.0 92.70 92.20 89.70 

TABLE I1 
RECOGNITION ACCURACY AS A FUNCTION OF p AND C AT SNR = 10 dB - 

B-Training, A-Testing 

1 2 3 
97.00 97.00 97.00 
97.50 97.75 98.00 
97.75 98.00 98.25 
98.00 98.25 98.00 
98.00 98.00 98.00 
98.25 98.50 98.50 

98.50 98.50 98.50 
98.50 98.50 98.75 

98.50 98.75 98.00 

98.50 98.25 98.00 

99.00 98.00 97.00 

L 

2 3 4 5 6 7 8 P 1 

0.1 81.25 81.75 82.50 82.75 83.50 83.50 83.50 84.50 

81.75 83.00 83.50 84.25 86.00 87.00 88.50 89.75 

82.25 83.50 84.75 86.50 88.75 90.00 90.75 91.25 

83.00 84.25 86.25 89.25 91.00 91.50 92.00 92.25 

83.25 85.50 88.75 90.50 9 1.75 92.25 92.50 92.25 

83.75 86.75 89.75 91.75 92.50 93.00 92.75 92.50 

83.50 88.50 91.00 92.50 93.25 93.00 92.75 9 1.75 

85.50 90.25 92.25 92.25 91.50 91.00 88.50 88.25 

86.75 90.50 92.00 89.00 85.75 81.00 76.75 72.50 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

84.25 89.75 92.00 93.50 92.25 92.00 91.25 90.75 

TABLE I11 
RECGGNITION ACCURACY FOR TWO DIFFERENT DATABASES 

C 

the minimax decision rule and compared to the standard 
approach in recognition of the English digits, using one 
database for training and another database, recorded under 
completely different conditions, for testing. Database A was 
the same as in the first experiment described above. Database 
B included one utterance of each digit from 100 different 
speakers, 50 males and 50 females, recorded from a telephone 
line and sampled at 6.667 kHz. The design parameters for 
both databases in this case were T = 300, D = 100,q = 
1 2 , s  = 8,a = 0.95, and p = 0.54. Table 111 presents the 
performance of the minimax rule as a function of p and G, 
when the training part of database A serves for training and 
the testing part of database B is used for testing (left part), 
and vice versa (right part). 

Note that in both situations the highest improvement intro- 
duced by the minimax approach is attained for p = C = 1. 
When A is the training database and B is the testing database, 
the highest recognition accuracy of the minimax rule is 92.7% 
while the standard scheme ( p  = 0) attains 88.9%. When 
the roles of the databases are interchanged, the maximum 
improvement is from 97% to 99%. The ranges of recognition 
scores in these two situations is different, apparently because 
database B is larger, and hence when serves for training it  
yields more reliable parameter estimates { X i } .  Again, observe 
that the sensitivity of the error rate to p and C is fairly 

weak and for most choices of these parameters some degree 
of improvement is obtained. The confidence intervals of the 
scores ranged between 1.10 to 1 S O  in the left part and between 
1.75 to 2.50 in the right part. The reason for smaller confidence 
intervals in the former case is that the testing database is 
relatively large. 

An attempt has been made to examine the minimax scheme 
in recognition of spoken versions of the English E-set letters, 
~l , l c l , l~ , le l , lg l , lp l , l~ , l v l ,  and 121, using an experiment simi- 
lar to the latter. Unfortunately, in this case, no significant 
improvement over the standard scheme has been observed. 
A possible explanation for this is that since the E-set words 
are highly confusable and their discrimination is weak even 
without mismatch, the associated parameter vectors { X i }  lie 
very close to each other. Consequently, even for very small 
values of p and C some of the neighborhoods Ai may overlap, 
in which case the minimax rule breaks down. In view of this, it 
is recommended to apply the minimax scheme in situations of 
reasonably strong discrimination among the nominal sources. 

VI. CONCLUSION 

A parametric minimax approach for robust speech recog- 
nition has been developed which attains the best asymptotic 
performance for the worst case mismatch between the training 
and testing conditions. An attempt has been made to cover a 
class of mismatch situations as wide and general as possible. 
Experimentally, the proposed scheme introduces consider- 
able reduction of the error rate over the standard nonrobust 
scheme. The algorithm is relatively simple to implement, it 
does not involve any modifications in the training procedure, 
and its performance is quite insensitive to design parameters 
that characterize the shape and the size of the uncertainty 
neighborhoods. It can be also easily integrated with many 
existing parametric isolated-word speech recognition schemes. 
A limitation of this approach appears to be its inability to 
reduce significantly the error rate, when the discrimination 
among the nominal sources is weak. 

A possible direction of further research is improving the 
topology of the mismatch neighborhoods, which appears to 
be crucial for successful operation of the parametric mini- 
max approach proposed here. In particular, a comprehensive 
comparative study of various shapes and topologies of the 
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mismatch neighborhood model might be interesting. Another 
interesting direction is to include the cepstral variances in 
the adaptation due to mismatch. This will make the scheme 
slightly more complicated but it is useful to examine whether 
it buys any significant improvement in performance. Finally, 
it should be examined whether performance can be gained by 
a developing a robust version of the training algorithm. These 
issues are currently under investigation. 
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