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Abstract- Reliable transmission over a discrete-time memory- 
less channel with a decoding metric that is not necessarily 
matched to the channel (mismatched decoding) is considered. I t  
is assumed that the encoder knows both the true channel and 
the decoding metric. The lower bound on the highest achievable 
rate found by Csiszar and Komer and by Hui for DMC’s, 
hereafter denoted C,,, is shown to bear some interesting infor- 
mation-theoretic meanings. The bound C,<, turns out to be the 
highest achievable rate in the random coding sense, namely, the 
random coding capacity for mismatched decoding. I t  is also 
demonstrated that the €-capacity associated with mismatched 
decoding cannot exceed C,,. New bounds and some properties 
of C,., are established and used to find relations to the general- 
ized mutual information and to the generalized cutoff rate. The 
expression for C,, is extended to a certain class of memoryless 
channels with continuous input and output alphabets, and is 
used to calculate C,,  explicitly for several examples of theoreti- 
cal and practical interest. Finally, it is demonstrated that in 
contrast to the classical matched decoding case, here, under the 
mismatched decoding regime, the highest achievable rate de- 
pends on whether the performance criterion is the bit error rate 
or the message error probability and whether the coding strat- 
egy is deterministic or randomized. 

Zndex Terms-Channel capacity, mismatched decoding, gener- 
alized cutoff rate, generalized mutual information, random cod- 
ing, exponential families, sphere packing. 

I. INTRODUCTION 

HE subject of mismatched decoding has been of T interest since the 1970’s (see, e.g., [151, 1271). A coded 
communication system operates over a discrete-time 
memoryless channel with a sequence transition probabil- 
ity W(y  I x), whereas the decoder employs maximum- 
likelihood (ML) decoding with an additive metric In V ( y  I 
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x). The encoder, in turn, knows both W and V and strives 
to optimize performance in terms of the achievable reli- 
able information rate. This is a realistic model for time- 
varying channels, or when implementation constraints dic- 
tate a given decoding metric. As an example, consider the 
common decoder chip which employs integer metrics [29] 
and is designed for the quantized additive white Gaussian 
channel (AWGN), operating under fading, jamming, or 
noisy phase conditions. Theoretically, one can employ 
universal decoding [ 131, [37]; however, in many applica- 
tions, it is ruled out by complexity considerations. 

The generalized cutoff rate (GCR) has been the com- 
monly used performance measure for such a scenario 
(see, e.g., [15], [27], [29]). It is considered to be a practi- 
cally achievable reliable rate for a discrete memoryless 
channel (DMC) with mismatched decoding, although it 
has been recently shown [25] that the GCR may behave 
very differently from the maximum achievable rate. In [6], 
a similar treatment is presented for a channel with a finite 
memory. In [23], a condition for the strict positivity of the 
GCR was stated. In [21], the Gallager upper bound on the 
average message error probability for DMC’s under the 
random coding regime was employed to account for mis- 
matched decoding, and the generalized mutual informa- 
tion (GMI), which is viewed as an extension of [16], was 
defined. 

In [12] and [20], coding theorems for a mismatched 
DMC were introduced independently. Hui [20] used stan- 
dard random coding and combinatorial considerations as- 
sociated with strong typicality of sequences to obtain a 
single-letter expression for a lower bound on the highest 
achievable rate, It was also conjectured by Hui that this 
lower bound on the mismatched capacity is indeed the 
maximal rate of reliable communication under mis- 
matched conditions, that is, the mismatched capacity. 
Csiszir and Korner [12] established an error exponent for 
random coding with fixed composition codes, and a de- 
coder using an arbitrary decoding rule, by invoking a 
graph decomposition theorem. The lower bounds on mis- 
matched capacity of [12] and [20] coincide, and they are 
designated hereafter as C,,, where the subscript LM 
stands for a lower bound on the mismatched capacity C,. 

While Hui’s conjecture has been reported true for 
binary input channels by Balakirsky [3], it has been re- 
cently refuted in the general case by Csiszir and Narayan 
[14] by Ahlswede et al. [l], and by Lapidoth [241, [251. The 
counterexample described in [14] is based on formulating 
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a zero-error capacity problem as a mismatched decoding 
problem and showing that random coding does not achieve 
the zero-error capacity. The example given in [24], 1251 is 
that of minimum Euclidean distance decoding of the 
additive noise vector Gaussian channel (see Example 6 in 
Section VI below). Csiszir and Narayan [14] have also 
shown that, in general, for any k > 1, one can improve on 
the rate C,, through a random coding argument applied 
to the superalphabet corresponding to k-length input 
blocks. They conjectured that as k -+ x, the rates achiev- 
able by random coding applied to the superchannel ap- 
proach C,. Lapidoth [25] obtained a single-letter lower 
bound on C, which is, in general, tighter than C,,. His 
techniques are based on random product codes. The im- 
proved bound which he has obtained can, of course, be 
applied to the superchannel as well. Interesting connec- 
tions between the erasures-only capacity and the mis- 
matched capacity have been described in 1141 and [l]. 

In this paper, we further study some properties of C,, 
in its single-letter definition. Although it is not the exact 
mismatched capacity in general, we show that it does bear 
some other interesting information-theoretic meanings. 
Specifically, we show in Section I11 that under a random 
coding regime, C,, is not only a lower bound, but also an 
upper bound on the highest achievable rate, and hence it 
is the exact expression of the random coding capacity for 
mismatched decoding. Another feature of C,,, demon- 
strated in Section IV, is that it serves as an upper bound 
on the €-capacity [19], [28], [361 under mismatched decod- 
ing. This means that for an information rate exceeding 
C L M ,  there must be at least one codeword for which the 
size of its decision region is exponentially equivalent to 
the total size of its intersection with decision regions 
corresponding to other codewords. 

In Section V, several novel properties of the lower 
bound on the mismatched capacity are addressed, along 
with some interesting examples. One of the results (re- 
ported also in [21]) is that C,, is never smaller than the 
GMI, which in turn upper bounds the GCR. The former 
inequality indicates that the converse theorem stated in 
[18] for Fischer’s expression [161 does not seem to hold 
since it is never larger than the GMI. 

In Section VI, we extend the achievable rate theorem 
to more general memoryless channels with possibly con- 
tinuous input and output alphabets satisfying certain con- 
ditions. This extension includes as special cases DMC’s, 
Gaussian channels, and the Poisson channel. It also facili- 
tates broadening the scope to certain channels of practical 
interest, and studying more closely their behavior under 
mismatched decoding. Several examples of theoretical and 
practical interest are worked out. 

Finally, in Section VII, we demonstrate that the proper- 
ties of reliable communication under a mismatched de- 
coding regime might be considerably different from their 
well-known counterparts in the classical matched case. 
For example, unlike in the matched case, the coding 
capacity defined with respect to the bit error probability 
might differ from that of the block error probability. 

Another example shows that while under optimal 
(matched) decoding conditions the best random coding 
strategy is deterministic, in the mismatched case, a ran- 
domized encoding mechanism may outperform any deter- 
ministic code. Thus, if the mismatched capacity is defined 
with respect to the bit error probability and/or with 
respect to randomized encoders, it turns out that rates 
higher than C,, and even C, might be achievable. 

11. NOTATION, DEFINITIONS, AND PRELIMINARIES 

Throughout this paper, we adopt the convention that a 
(scalar) random variable is denoted by a capital letter 
(e.g., X I ,  a specific value it may take is denoted by the 
respective lower case letter (XI, and its alphabet is de- 
noted by the respective script letter (2’). As for vectors, a 
boldface capital letter ( X )  will denote an n-dimensional 
random vector (XI,---, X,), a boldface lower case letter 
(x) will denote a specific vector value (xl,.--, x,), and the 
respective superalphabet, which is the nth Cartesian power 
of the single-letter alphabet, will be denoted by the corre- 
sponding script letter with the superscript n (2‘“). The 
cardinality of a set will be denoted by I I, e.g., 121 is the 
size of the alphabet of X .  

Since the method of types [lo], [13] will be used 
throughout this paper, we next describe some notational 
conventions associated with types. For a given sequence 
x E Z“, 2‘ being a finite alphabet, the empirical probabil- 
ity mass function (EPMF) is the vector p ,  = ( p , ( x ) ,  x E 

2‘) where p , ( x )  = n , ( x > / n ,  n , ( x )  being the number of 
occurrences of the letter x €2‘ in the sequence x. The 
set of all EPMF’s of sequences x in 2”, i.e., rational 
probability mass functions (PMF’s) with denominator n,  
will be denoted by 9,. The type T, of a sequence x is the 
set of all sequences x ’  €2, such that p ,  = p , .  The 
empirical entropy associated with x is the entropy associ- 
ated with its EPMF p, ,  i.e., 

(1) H , ( X )  = - C p,(x)ln p,(x>. 
x €2 

Hereafter, the notations ‘ ‘U ,  b,” and “a, >I b,” mean 
that limn _ _  n-’ log a,/b, is zero and nonnegative, re- 
spectively. For instance, it is well known [13] that IT,I & 

e n H X ( ’ ) .  A somewhat different notion of a type that will be 
used throughout the sequel is that of an €-type w.r.t. a 
memoryless source p = (p(x), x E Z}. We shall denote 
by T , ( p )  the set of all sequences x €2’ such that 
( p , ( x )  - p ( x ) J  < E for every x E 2’. Similar definitions 
and notations will be used for the type of sequences 
y E y” and €-types associated with these sequences, with 
the appropriate substitution of symbols. 

‘, the 
joint EPMF p x y  is the matrix ( p , , ( x ,  y)} ,  E *,) where 
p x y ( x ,  y )  = n X y ( x ,  y ) / n ,  n,,(x,  y )  being the joint count of 
x, = x and y ,  = y along the pair sequence (x, y). The joint 
type TXy is the set of all pairs (x’, y’) with the same joint 
EPMF as (x, y ) .  The empirical joint entropy H,,(X, Y )  
associated with ( x , y )  is the entropy associated with the 
joint EPMF p r y .  A time average of a function of x and y ,  

Similarly, for sequence pairs (x, y )  E P” x 
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e.g., n-’ Cy=, g(x,, y,), will sometimes be viewed as an 
expectation of g ( X , Y )  w.r.t. the joint EPMF p x y ,  and 
hence will be denoted by Ex,g(X,  Y ) .  

The conditional type Txry for a given y is the set of all 
sequences x ’  E Z n  such that (XI, y)  E Txy.  The condi- 
tional PMF p,, is the matrix { p x ,  ,(x I y)Ix T,, 1, where 
p x , , ( x  I y )  is defined as p x y ( x ,  y)/p,(y) if p,(y) > 0, and 
as zero otherwise. The empirical conditional entropy of X 
given Y associated with the pair sequence ( x , y )  is given 
by 

H x l , ( X  I Y )  = H x , ( X , Y )  - H,(Y)  

_ -  - c Pxy(X>Y)lnPxl, (x l y ) .  (2) 
X € P , y € y  

It is well known 1131 that ITx,yl e “ H ~ l v ( X ’ Y ) .  The empiri- 
cal mutual information associated with the pair of se- 
quences (x, y) is defined as the mutual information asso- 
ciated with their joint EPMF p x y  , or, equivalently, 

( 3 )  

A DMC is fully characterized by a transition probability 
matrix (W(y  1 x ) ) ~ ~ ~ , ~ ~ ~ ,  where 2? and y designate fi- 
nite input and output alphabets, respectively. The condi- 
tional probability Pr (Y  = y I X = x) will be denoted by 
W ( y  I x), which for a DMC is given by n:=, W(y,  I x,). 

A rate R block code of size n is a set of M = 
errR equiprobable n-dimensional vectors (codewords), 
x, = (xi;.., x:) E Zn,  1 s i I M to be transmitted 
over the channel. The decoder, upon receiving a vector 
Y = (Y,;.., Y,) E y at the channel output, estimates 
the index i of the transmitted codeword as the one 
that maximizes In V ( y  I x,), henceforth referred to as 
the decoding metric, where V ( y  I x) = n;=, V(y,  I x,), 
and unless specified otherwise, it is not necessary that 
C, E 

V ( y  I x) = 1 for every x E Z. If the decoding met- 
ric I/ is not equivalent to that of the optimal ML decoder 
W in the sense of yielding an identical decision rule, we 
say that the decoder is mismatched. An achievable rate 
for a DMC W and a mismatched decoding metric V is a 
rate R such that for every E > 0, there exists a large 
enough n and a rate R block code of size n such that the 
probability of error when decoding with the metric V is 
less than E .  The capacity of a DMC W with a mismatched 
decoding metric V ,  i.e., the mismatched capacity C, , is the 
supremum of all achievable rates in the above definition. 

Z x y ( X ; Y )  = H x ( X )  - H x , , ( X  I Y ) .  

Now, let 

(4) 

denote the mutual information for some DMC f =  
( f ( y  I XI} with an input PMF p = ( p ( x ) } ,  t z .  Let 

( 5 )  Z’ (X;  Y )  = minZ(X; Y )  
f 

where the minimization is over all channels f satisfying 
p ( x ) f ( y  Ix) 

X €2- 
= p ( x ) W ( y  I x) q ( y ) ,  v y  E y 

X t T  

and (6) 

X t Y y t y  
p ( x ) f ( y  I X I  In V ( y  I XI 

2 p ( x ) ~ ( y  I x ) ln  ~ ( y  I XI -D. 

C,, = max Z f ( X ; Y ) .  (7) 

x € . Z y € y  

Finally, C,, is defined as 

In [20, Theorem 4.11 (see also [12, Lemma 31) it has been 
proved by a random coding argument that C,, is an 
achievable rate for W when the decoding metric is V,  and 
hence serves as a lower bound on the mismatched capac- 
ity. In other words, the average message error probability 
over the ensemble of randomly chosen block codes is 
guaranteed to vanish as n + x provided that R < C,,. 

111. A CONVERSE THEOREM FOR RANDOM CODING 

We next show that C,, is also an upper bound on the 
highest rate for which the random coding error probabil- 
ity still tends to zero, i.e., C,, is the highest achievable 
rate in the random coding sense. The significance of this 
statement will be further emphasized in Section VII, in 
view of some interesting examples for which one can 
derive other coding strategies achieving reliable rates 
higher than C,, or even C,. 

Consider a codebook of e n R  + 1 n-dimensional vectors 
where each vector is generated at random with a memory- 
less PMF p = (p(x), x E 2‘) and independently of all 
other vectors. Let Fe denote the average error probability 
w.r.t. the ensemble of randomly chosen codes. Under 
mismatched decoding, we have the following result. 

Theorem 1: Assume that there exists a channel f that 
satisfies the two constraints of (6) with a strict inequality 
in the second constraint. Then, for any memoqless ran- 
dom coding PMF p ,  R > C,, implies limn 

P 

P, = 1. 
Two comments are in order. 
1) A similar statement, with only minor modifications in 

the proof, can be made for a random coding distribution 
that is uni$om within the type that is most likely under p .  

2) A sufficient condition for the existence of a channel 
f that satisfies the conditions of the theorem is that there 
exist two distinct input letters a, a‘ E 2? and two distinct 
output letters b, b’ E such that p(a) ,  p ( a ’ ) ,  W(b  I a’),  
and W(b’ I a )  are all strictly positive, and at the same time 
V(b I a)V(b’ I a’> > V(b  I a’)V(b‘ I a)  (see Appendix A). 
This sufficient condition is easy to check and fairly mild, 
although it may rule out some channels for which 

The remaining part of this section is devoted to the 
proof of Theorem 1. 

Proo$ Fix E > 0, and let T, (p )  and T,(q) denote the 
E-types associated with the input and output marginals, 
respectively. Similarly, fix S > 0, and let T i  = 

((x, y)  : In V ( y  I x) s n( - D  + 6)). The average probabil- 

c,, > 0. 
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ity of correct message decoding can be upper bounded as 
follows: 

1 - Fe = Pr { ~ ( y  I x,) < ~ ( y  I x,) forall j z i }  

- < Pr { ~ ( y  I x,) < V(Y I x,) 

forall j f i , ( x , , y )  E T;,y E T,(q)) 

+ Pr {y E T,'(q)) + Pr {(I,, y)  E [7''Ic}. (8) 

Now, the two last terms on the rightmost side vanish as 
n --f CO by the weak law of large numbers (WLLN), so it 
remains to upper bound the first term, henceforth de- 
noted by A ,  by a vanishing quantity as well. Note that 

A I Pr{lnV(y Ix,) I n ( - D  + 6 )  

for all j z i, y E <(q)}  

= c q(y)[1 - h(Y)l@ (9) 
Y E  Te(4 )  

where My) = CxInY(yIx)>n(-D+S) p ( x ) .  Next, observe 
that 

A s q(y)  exp { -h(y)enR) 
Y E  T S 4 )  

s exp ( -  min h ( y ) e n ~ )  (10) 
Y E  T J 4 )  

where we have used the fact that 1 - (Y I e-" for every 
real a.  To complete the proof, we need to show that for 
every y E T,(q), h(y) is exponentially no smaller than 
e - n l ( X , Y )  when E vanishes, and hence for every R > 

0. To this end, let us further lower bound My). First, note 
that for every y E T,(q), 

Z ' (X;  Y ) ,  A is essentially less than exp { - en (R-" (X ,Y ) )  1 -  

h(y)  = c lTXI-"l . p ( x )  (11) 
T I ,  c{x  In V ( y I x ) > n ( - D  + 6)) 

where we have used the facts that the set {x : In V ( y  I x') 
> n( - D  + 6)) is a union of conditional types {Tx,, ,] ,  and 
that for a given conditional type, all sequences x have the 
same probability. Now, let 

T = { x : l n V ( y  I x ' )  > n ( - D  + 6)) n T , ( p ) ,  (12) 

and note that  for every x E T,(p) ,  p ( x )  2 
exp{-n[H,(X) + ~ ' 1 1  where E '  = E ~ I ~ I ~ ~ I ~ / ~ , , , ~ , , I ,  pmln 
being the smallest letter probability. Therefore, 

M y )  2 c IT,,,I*p(x) 
T,I,iT 

T,I,_IT 
2 max IT,,,l~p(x) 

, max e n [ ~ , , , ( ~ i  Y ) -  i ,~ . e - r 7 ~ ~ ~ ( ~ ) +  1 

= exp [ -n - (min I x , ( X ;  Y )  + E '  + ln)] (13) 

where ln = O(1og n / n )  and the minimum is over all em- 
pirical joint PMF's p x y  of sequence pairs (x, y) such that 

- 
T, ,iT 

x E T .  By definition, these pairs of sequences satisfy the 
following constraints: ( p , ( x )  - p(x)l  < E for every x E 2?, 
Ip,(y) - q(y)l  < E for every y E y ,  and Ex, In V(Y I X I  
> -D + 6. Note that these constraints on the EPMFp,, 
are exactly the same as those of (6), except that the input 
and output marginal PMF's are not exactly p and q, but 
within E close, and the last constraint is similar to the 
inequality of (6) where -D is replaced by - D  + 6. Since 
the subset BE,6 of all joint PMF's m satisfying 
max I; Im(x> - p(x>l < E, max) Im(y) - d y ) I  < 6, 
and E,, In V(Y 1 X )  > -D + 6 ( E ,  being the expecta- 
tion w.r.t. m )  is open and nonempty for some 6 > 0 by the 
assumption of the theorem, and since the set of rational 
joint PMF's with denominator n becomes dense in the 
continuum of PMF's as n + x ,  then the infimum over 
BE,8 of the mutual information induced by m ,  denoted by 
ZA,,(X; Y ) ,  can be approached (from above) by a rational 
PMF with denominator n,  as n + x. Now, since Z ' ( X ;  Y )  
is continuous in p and W (see 114, Lemma 111, 
limE+ IA,,(X; Y )  = ZL(X; Y )  where ZA(X; Y )  is defined 
similarly as Zr8,E(X; Y ) ,  but the infimum being defined 
over a set B, of PMF's m whose marginals are con- 
strained to coincide exactly with p and q, respectively, 
and the third constraint is unchanged. Thus, to complete 
the proof, we need to show that I ; ( X ;  Y )  = 

Z' (X;  Y ) .  Equivalently, we need to show that the function 
R(d) = inf Z(X;  Y )  where the infimum is over the set 
of all joint PMF's m such that m(x)  = p ( x ) ,  m(y> = q ( y ) ,  
and - E ,  In V(Y 1 X) < - d  is continuous at d = D. 
This, in turn, follows from a simple consideration: the 
function R(d) is well defined on the interval [ D  - 6, 
-Epxq  In V(Y 1 X ) ] .  Since, R ( d )  is a convex function (sim- 
ilarly as the rate-distortion function), then it must be 
continuous at least on (D  - 6, -Epx4 In V(Y I X)), and 
hence also at D, which is an inner point of this interval. 

U This completes the proof of Theorem 1. 

IV. SPHERE PACKING ARGUMENTS 
Another notion of capacity is associated with the maxi- 

mum number of disjoint "decoding spheres" that one can 
pack in the space of channel output sequences. This is 
often referred to as the E-capacity [191, [281, [361. In this 
section, it is shown that the €-capacity associated with 
mismatched decoding cannot exceed C,,  . 

Let 

designate decoding "spheres" for a threshold decoder. 
Given that x, is transmitted, the output sequence that 

satisfies the above will be typically found near the surface 
of a "sphere" with a normalized radius d = D where D is 
defined as in (6). 

Lemma 1: If there exist enR  disjoint spheres {So(x,)) in 
T,(q), then R < CL,. 

Proof: Since there are errR codewords and the num- 
ber of types 1Pr4,1 is polynomial, there must be at least one 
type T, that is populated by a number of codewords that 
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is exponentially equivalent to enR.  Thus, without loss of 
generality, we can restrict our attention to fixed compo- 
sition codes, i.e., codes for which all codewords are 
from the same type, characterized by an empirical input 
PMF p = ( p ( x > ,  x E 2‘1. For the spheres {S,(x,)},f~ to 
be disjoint, one must have 

where H ( Y )  = -Cy  E q ( y )  In q ( y )  is the marginal out- 
put entropy, and [ ( E )  is an infinitesimal correction term 
defined as H ’ ( Y )  - N ( Y )  where H ’ ( Y )  is the maximum 
entropy over all measures q’ = {q ’ (y ) ,  y E M }  such that 
Iq‘(y) - q(y)l 5 E for all y E y. Now, since S,(x,) is a 
union of conditional types { T ( y  I x,)}, and since the total 
number of conditional types is polynomial in n,  

where 

Now, let 

Then, it follows from (16) that for (15) to be satisfied, a 
necessary condition is that 

which for D as defined in (6), tends to Z’(X;  Y )  as n + x 

and E + 0 from continuity arguments similar to those of 
Section 111. Again, I ’ ( X ;  Y )  can be maximized by optimiz- 

0 
It is interesting to note that even if R only slightly 

exceeds C,,, not only do the decoding spheres start to 
intersect, but there is at least one codeword for which the 
cardinality of the intersection with other decoding spheres 
is exponentially equivalent to the size of its decoding 
sphere itself. This is stated formally in the next lemma. 

Lemma 2: Let R = C,, + E for some E > 0. Then, for 
at least one codeword x i ,  

ing the input PMF p .  

Proot Suppose, conversely, that (19) is violated for 
all M = e n R  codewords. Then, from Lemma 1 and under 
this assumption, 

e n H  ( Y )  IT,(q)l 
&lH er,R 

2 IS,(x,)l - S,(x,)fl U S,(X/) 
r = l  1 = 1  I 11 

5 e n R .  e n F ( D )  - e - ~ ~ t / 2 .  e r ~ R .  e n F ( D )  

e’ll”(Y)+ 6 1  - en[f f  ( Y ) +  6 / 2 1  
L - e n [ H  ( Y ) +  €1, (20) 

which is a contradiction. 0 
This, however, does not imply that the error probability 

(given that x, is transmitted) is large. To see this, consider 
the joint PMF p:,y that achieves F(D).  Clearly, the condi- 
tional type Tp,* induced by pz,y is exponentially the 
dominant type in the sense of possessing at least a polyno- 
mial fraction of the sequences in S,(x,). Thus, (19) also 
implies that a polynomial fraction of intersects with 
other spheres S,(x,). However, TpT,, is not necessarily 
dominant in the sense of possessing a large probability 
unless p;,, happens to coincide with W as is the case with 
matched decoding where V = W. Nevertheless, for 
binary-input channels operating above C,, , Balakirsky [31 
was able to prove that a nonexponential fraction of output 
sequences that are typical to W fall in a typical sphere 
corresponding to some incorrect codeword, and thus the 
error probability cannot decay exponentially. In other 
words, the maximum rate for which an exponentially 
vanishing error probability is achievable (referred to as 
the E-capacity in [2]) cannot exceed CL,. This still does 
not imply that the capacity, as defined in the usual sense, 
is never larger than C,,; however, it is stated in [31 that 
the proof can be extended so as to obtain the converse 
theorem in the binary input case. 

V. PROPERTIES OF I ’ (X;  Y )  AND EXAMPLES 
In [20], some properties of I ’ ( X ;  Y )  have been investi- 

gated. The most important one (Theorem 4.3.3 therein) is 
that I ’ ( X ;  Y )  is convex (U)  in { m ( x ,  y ) }  = {p (x )W(y  I x)) 
when { p ( x ) }  and {q (y ) }  are held fixed. In this section, we 
study several additional properties of Z‘(X; Y 1. 

Proposition I :  Let f * ( y  1x1 be the channel that mini- 
mizes I ( X ;  Y )  in (5),  and hence its matched capacity is 
C L M .  Then, the mismatched capacity of f * ( y  I x) with a 
decoding metric In V ( y  I x> is also C L M .  

This proposition, whose proof is evident from 120, 
Theorem 4.11, tells us that mismatched decoding with 
In V ( y  I x) does not damage the maximum achievable rate 
(i.e., capacity) of f * ( y  1 x ) .  The following proposition pro- 
vides a lower bound on I ’ ( X ; Y ) ,  and hence another 
lower bound on the mismatched capacity. 

Proposition 2: 

I ’ ( X ; Y )  2 I ( X ; Y )  - p ( x ) W ( y  1x1 
x t Z y € y  
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where I ( X ;  Y )  is the mutual information associated with 
w, 

q * ( y )  = p ( x ) q * ( y  I x ) ,  
X E P  

and where S, {a(x)lxEF, and {b(y)},,y are positive num- 
bers. 

Of course, the tightest lower bound is obtained by 
maximizing the right-hand side of (21) w.r.t. S, {a(x)Ix E z ,  

and {b(y)}, “. This inequality is stronger than the follow- 
ing inequalities (proved in [21]): 

(22) I ’ ( X ;  Y )  2 G M I ( X ;  Y )  2 io 
where 

G M Z ( X ; Y )  P max C p ( x ) W y  I x )  
s2 0 x € P y  Ey 

is the GMI which is based on the Gallager bound [21], 
and k ,  is the GCR [27]. The GMI equals the right-hand 
side of (21) when a(x) = b ( y )  = 1 for all x E Z, y E $L. 
Thus, in [21], the only free parameter for maximization of 
(23) is S. For S = 1, the GMI degenerates to Fischer’s 
expression [161. 

The proof of this proposition relies on exploiting the 
conditions for the f ( y  I x )  of 120, Theorem 4.11 and ap- 
pears in Appendix B, along with the expressions for the 
optimum {a(x) )  and {b(y) ) .  (Note that C,, is invariant if 
instead of V ( y  I x )  one uses V ( y  I x) / [a(x)b(y) l  for arbi- 
trary positive {a(x) l  and { b ( y ) }  [3].) 

It should be noted that the right-hand side of (21) is 
tight under the optimization of {a(x) } ,  { b ( y ) }  (detailed in 
Appendix B), and S (see also [14, Lemma 21). For a DMC, 
the channel f that achieves I ’ ( X ;  Y )  in (5 )  has the exact 
form as { q * ( y  I x ) }  (see [SI ) ,  where Ia(x>), {b(y)} ,  and S 
are defined so as to satisfy the constraints, and where the 
inequality constraint (6) is assumed to hold with equality 
(which is the case when Zr(X;  Y )  > 0). Now, it is easy to 
see that the optimal {a(x) )  and { b ( y ) )  in Appendix B 
happen to satisfy these constraints. Therefore, I ’ ( X ;  Y) is 
actually given by the right-hand side of (21) under a 
further optimization over S. 

A Rate-Distortion Intelpretation: I ‘ ( X ;  Y )  can be viewed 
as a constrained rate distortion function, at a specified 
average distortion level D [defined as in (6)], where the 
distortion measure is d(x, y )  = -In V ( y  I x). This means 
that 

(24) 

The additional constraint is the specification of the output 
marginal q ( y ) ,  V y  E $Y. This is a direct result of the basic 
definition in (S),  (6). 

p ( x ) f ( y  I x ) d ( x , y )  I D .  
X € x ’ y € y  

For the case where the input and the output alphabets 
are such that there is a definition of a subtraction opera- 
tion ( y  - x ) ,  we use the above interpretation to derive 
lower bounds on I’ for d(x, y )  = -In V ( y  I x) = p ( y  - 
x), i.e., for a difference metric corresponding to an addi- 
tive channel. By the data processing theorem for the 
divergence [71, 

9 ( { p ( x ) f ( y  I X I }  I1 { p ( x ) q ( y N )  
2 9 ( { m ( y  -XI) I1 { m , ( y  - X I ) )  (25) 

where m(y - x )  is the PMF of ( y  - x )  that is induced by 
the joint PMF p ( x ) f ( y  I x >  and m,(y  - x )  is the PMF of 
( y  - x )  that is induced by p ( x ) q ( y ) .  The left-hand side of 
the above equation is the mutual information as defined 
in (4), and we are interested in obtaining the minimum 
over f to evaluate I ’ ( X ;  Y ) .  Thus, we examine 

(26) 

where z = y - x ,  under the constraint 

x m ( z ) .  p ( z )  I D (27) 
‘ 

where the constraint that m(y - x )  is induced by a PMF 
m ( x , y )  with fixed input and output marginals, p and q, 
has been relaxed. The solution is readily obtained as 

m ( z )  = C ,  -mI(z)ehP(z)  (28) 

where C ,  is a normalization constant and A is chosen to 
satisfy (27). This further leads to the bound 

I r ( X ;  Y )  2 In C,  + AD. (29) 

This result calls for an extension to channels with continu- 
ous input and output alphabets (see Section VI), where 
the notions of additivity and a difference metric emerge 
naturally. 

The following examples of memoryless channels with 
mismatched decoding are addressed: 

Example 1 -Combined BSC and Erasure Channel: The 
true channel W is depicted in Fig. l(a), and the channel V 
associated with mismatched decoder is specified in Fig. 
l(b). It is a model for error and erasure mismatched 
decoding. Assuming 1 - w, - w 2  > w2 and 1 - U ,  - u 2  
> c 2 ,  one readily finds that I ‘ ( X ;  Y )  = I ( X ;  Y ) .  This is 
commensurate with the insight that the decoder has only 
to count erasures and errors, and the metric is not impor- 
tant as long as it does not inflict confusion of “I” to “0” 
and vice versa. If, on the other hand, 1 - w1 - w 2  > w 2  
while 1 - cil - c2 < u 2 ,  then the channel f that achieves 
Z’(X; Y) is equal to q, and hence Zr(X;  Y )  = 0. 

Example 2-Binary Input, 4-ary Output, Symmetric Chan- 
nel: The true channel W is depicted in Fig. 2(a), and the 
channel V associated with the mismatched decoder is 
presented in Fig. 2(b). Assuming that w, > w2, the mis- 
matched metric V turns the channel into a useless one (in 
the sense that Z‘(X; Y )  = 0) if both the relations 

c2 > L ’ ~  and ( c 2 / o l )  > ( u ~ ~ / c ~ ) ( ~ ~ ~ ~ ~ ) ’ ( ~ ~ ~ ’ ~ ~ )  
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( h )  

Fig. I .  A combined BSC and erasure channel. (a) True channel W .  (b) 
Channel V corresponding to mismatched decoder. 

hold. Otherwise, the channel f that achieves Z ‘ ( X ; Y )  is 
symmetric and satisfies 

(30) 

where fo = f(0 I 0>, fl = f ( l  I O), and 

f o  + f 3  = W O  + w3, fl + f 2  = w, + w2 

where A 2 0 is chosen to satisfy the inequality constraint 
(6) with equality. 

One notes the structure of the above expression, which 
is readily generalized to the general binary- input, M-ary 
output symmetric channel (see [3]). From the form of 
f * ( y  I x) in this case, and the formula for the GMI(X;  Y), 
one concludes the following result. 

Proposition 3: For a binary-inpnt, output symmetric 
channel with a correspondingly symmetric decoding met- 
ric, GMZ(X; Y) = Z’(X; Y). 

1959 

vo 
(b)  

Fig. 2. A binary-input, 4-ary output symmetric channel. (a) True chan- 
nel W. (b) Channel V corresponding to mismatched decoder. 

VI. EXTENSION TO CONTINUOUS ALPHABET 
CHANNELS 

Theorem 4.1 of [20] is extended here to a wider class of 
memoryless channels where the input and output alpha- 
bets X and may be finite, countable (like in the 
Poisson channel [4]), or uncountable. Several examples 
will be discussed later. 

Consider a memoryless channel characterized by the 
single-letter conditional probability density function (pdf) 
W ( y  I x ) ,  x E 29, y E y, where 2? and designate the 
input and the output alphabets, respectively. Hereafter, 
the integral sign will be used as a generic symbol, where 
for the finite and countable alphabet case, it should be 
understood as a summation. Let p ( x ) ,  x €2 denote 
the single-letter marginal of a memoryless channel input 
pdf (i.e., a random coding pdf), and let q(y) ,  y E Y  
denote the induced output marginal pdf, i.e., q ( y )  = 

Let +(x), x E X denote a k-dimensional vector func- 
tion ( $ ~ ~ ( x ) ; . - ,  +,(x)) such that for every component j ,  
E+,(X) 2 dx . p ( x ) + , ( x )  is finite and the WLLN 
holds, i.e., Pr {ln-’C:= +,(X,) - E+,(X)l 2 E )  tends to 

/I p(x>W(y I x) dx. 
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zero for e v e q  E > 0, where the probability is w.r.t. the 
n-fold power of p .  Similarly, let $(y), y E $/ denote an 
1-dimensional vector function ( I,!J~(~),..., $ / ( y ) )  having fi- 
nite expectations and satisfying the WLLN w.r.t. q. Next, 
define the parametric family of joint pdfs, 

p e ( x , y )  = expta  * +(x) + b .  $ ( y )  

+c In V ( y  I x) - K ( 8 ) ]  (31) 

where a = ( a , ; . . , ~ , )  is a k-dimensional parameter vec- 
tor, b = (b,,..., b,) is an /-dimensional parameter vector, 
a . +(XI and b .  $ ( y )  are the inner products, c is a scalar, 
0 is the ( k  + I + 1)-dimensional concatenated vector 
(a, b, c), and is a normalization constant, where 0 
takes on values in an open bounded subset 0 of the set 

+c  In V ( y  I x)] < x . (32) I 
To establish the achievability result, we need some addi- 
tional definitions. Let 

and 

M Y )  A -1 d y . q ( y ) l n q ( y )  (34) 
Y 

denote the input differential entropy and the output dif- 
ferential entropy, respectively. Similarly, let 

where E, denotes expectation w.r.t. p,. We shall make 
the following assumptions throughout this section. 

Al: There exists a positive number 6 such that for 
every - 6  < y < 6 ,  

A2: The input differential entropy h ( X )  is finite and 
n- '  In p ( X )  + h ( X )  in probability w.r.t. p. Similarly, h ( Y )  
is finite and n-' In p(Y) + h ( Y )  in probability w.r.t. q. 
Finally, D A -E In V(Y 1 X ) ,  where E denotes expecta- 
tion w.r.t. p X W is finite and n-' In V(Y I X )  --f -D in 
probability w.r.t. p X W. 

A3: The set B = ( 0  E 0 : E,+(X)  = E + ( X ) ,  E ,$(Y)  
= E$(Y), E, In V(Y I X )  2 -D} is nonempty. 

It is easy to see that for every 8 E B ,  we have 

h , ( X ; Y )  = K ( 0 )  - a.E+(X) - b.E$(Y) 

- cE, In V(Y I X I .  (36) 

Now, let 
Z ' ( X ;  Y )  = h ( X )  + h ( Y )  - suph,(X,Y) 

O t B  

A 2  - D  
= h ( X )  + h ( Y )  + inf sup 

[ U '  . E 4 ( X )  + b' . E $ ( Y )  + c ' A  - K ( 8 ' ) I  
(37) 

where 8' = (a ' ,  b ' ,  c'). The following theorem is an ex- 
tension of [12, Lemma 31 and [20, Theorem 4.11 to general 
memoryless channels. 

Theorem 2: Assume that conditions A1-A3 are met. 
Then, €or the memoryless channel W and the decoding 
metric V,  every rate below Z'(X; Y )  is achievable. 

The proof appears in Appendix C. 
Note that Z'(X; Y )  is a nondecreasing function of k 

and 1; that is, if one adds more input and output moment 
constraints, the bound improves. If the vector functions + 
and $ are chosen appropriately, then in the limit as k and 
1 tend to infinity, these moment constraints may pose 
constraints on the marginals of ,U, to be very close, in 
some sense, to p and q, respectively. For instance, if 
x'= = R and if the components of # and $ are indica- 
tor functions of nonoverlapping narrow intervals whose 
union covers R, then the equality constraints of B are 
interpreted as a requirement that the quantized versions 
of the marginals of p agree with the corresponding quan- 
tized versions of p and q,  respectively. 

Another observation that should be made is that if the 
inequality constraint of B is satisfied with equality (as is 
the case when Z' (X;  Y )  > 01, then Z' (X;  Y )  can be inter- 
preted as the infimum of I ( X ; Y )  over 011 joint pdfs 
p(x, y )  whose marginals satisfy the moment constraints 
and E, In V(Y I X) 2 -D, and not only all pdfs  from the 
parametric form of pO. This is true because the 
minimum-achieving pdf subject to moment equality con- 
straints associated with +(x), $ ( y ) ,  and In V ( y  I x) has 
the form of p, (see also Proposition 2 and the comments 
thereafter). If, in addition, the input pdf is from the 
exponential family [26] 

(35 )  
where CY E R k  and e - K i ( a )  is a normalization constant, 
and if the output marginal pdf s associated with both 
p x W and pe are from the exponential family 

(39) 

where, similarly, p E R' and e - K 1 ( p )  is the normalization 
constant, then Z ' ( X ;  Y )  may be interpreted as the infi- 
mum of Z ( X ; Y )  over all joint pdfs p(x ,  y )  whose 
marginals entirely coincide with p and q, respectively, and 
E, In V(Y I X) = -D. This is true because €or exponen- 
tial families, the expectations of the sufficient statistics # 
and $ dictate the parameter values. Finally, C,, can be 
now defined as the supremum of Z' (X;  Y )  over all input 
pdfs p in a certain class. 

It is easy to see that these conditions, as well as condi- 
tions Al-A3, are met for DMC's with memoryless inputs 
(as detailed in Appendix D), and therefore [20, Theorem 

p ( x )  = exp{ar. +(XI - KI(ar ) )  

q ( y )  = exp { p . * ( y >  - KY( P I }  
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( 

4.11 is obtained as a special case. Similarly, it is not 
difficult to verify that these conditions hold as well for 
Gaussian channels fed by Gaussian inputs, where the 
decoding metric is a possibly mismatched Euclidean met- 
ric. 

We next discuss several examples that we believe pro- 
vide some additional insight on the more general expres- 
sion of C,  M .  

Example 3-A Continuous Additiue Noise Channel with a 
Euclidean Decoding Metric: Here, the channel model is 
y ,  =x, + w, where (w,) is an i.i.d. noise source with a 
symmetric marginal pdf around the origin. For any noise 
pdf that corresponds to a channel W that satisfies the 
above conditions, it is readily shown that for the Eu- 
clidean decoding, Z’(X; Y )  > 0 as long as l ( X ;  Y )  > 0. 
Moreover, it is easy to show that for a Gaussian code- 
book, GMI(X;  Y )  coincides with the capacity of the addi- 
tive white Gaussian channel with the same noise power. 
In fact, it has been shown by Thomas and Hughes [32] 
that the Gaussian capacity is achievable with a Gaussian 
codebook and Euclidean distance decoding for any 
bounded energy interference (see also [ill). Lapidoth [25] 
has recently shown that irrespective of the noise pdf, no 
rate above the Gaussian capacity can be achieved using 
random coding according to the Gaussian distribution in 
conjunction with a minimum Euclidean distance decoder. 

Example 4-An A WGN Channel with an Unknown Sig- 
nal Leuel: The channel model is y, = ax, + w,, where {w,} 
is a zero-mean Gaussian white noise with variance g2,  

{x,} are zero-mean Gaussian memoryless inputs with vari- 
ance r:, and a > 0 is an unknown constant. The mis- 
matched decoder performs ML decoding based on a = 1. 
Following the formulation of a memoryless channel as 
above, one finds that 

(41) 37 
1 0 1  I -(mod2371 

2 

(40) 

regardless of the value of a. This is the expected result, 
since if one uses codewords having a constant energy 
(namely, Cy=, x: = E ,  for all i), then there is no differ- 
ence between the matched and mismatched ML metrics 
in this case; and it is known that capacity is achievable in 
the matched case using constant-energy codewords [30]. 
Note that in this case, it is readily shown that GMI(X ,  Y )  
I Z(X;  Y ) ,  and the difference between these quantities 
increases as the value of the parameter a decreases (be- 
low l). 

Example 5-A Two-Dimensional A WGN Channel with a 
Phase Offset: Here, the channel input is a two-dimen- 
sional, zero-mean Gaussian random vector, with variance 
of a: per dimension. A circular-complex additive Gauss- 
ian noise with a variance of U’ in each of its statistically 
independent dimensions accompanies the signal. The mis- 
match, in this case, stems from an (unknown) phase offset 
w (modeling, for example, inaccurate phase training). 
Equivalently, instead of the matched ML metric Cy=, 118 
- x,lI2, the mismatched decoder uses C:=llIy, - elwx,lI . 

~ 

1Yhl 

The minimization leading to Z’(X;  Y )  has been carried 
out, and after some algebraic manipulations, omitted here 
for the sake of brevity, one obtains 

Z ’ ( X ; Y )  = 

This expression shows an attenuation of cos’ w for the 
desired in-phase signal, and an excess noise of the cross- 
quadrature interference term a -  sin’ w. Thus, the famil- 
iar behavior of uncoded communications in the presence 
of a phase error w is duplicated here as well. In view of 
the fact that the phase offset is fixed throughout the 
message interval, one might wonder whether this is indeed 
the highest achievable rate. This question will be ad- 
dressed, among others, in the next section. 

Example 6-The Vector Memolyless Gaussian Channel: 
Here, the so-called vector (or block) memoryless Gaussian 
channel [17] is analyzed, where the mismatched decoder is 
unaware of the noise autocorrelation matrix within each 
block and employs the common squared Euclidean dis- 
tance metric. It is shown that the matched capacity can be 
achieved, as outlined below. 

According to this model, a K-dimensional vector chan- 
nel (column vectors are used throughout) has output 
vector y,, at discrete time i, given by 

Y, = x, + w, (42) 

where the input vector at time i is designated by x,, and 
the additive Gaussian noise vector w, has possibly corre- 
lated components, although vectorwise w, and w, (i # j )  
are statistically independent and identically distributed. 
Suppose $,, i E I,..., K is an orthonormal basis for the 
( K  x K )  covariance matrix r = E(wwr) of the noise sam- 
ples (of each block) where superscript T denotes the 
transpose. That is, l- = WTAY where is the K X K 
orthonormal matrix specified by the column {I),) and A 
the associated diagonal eigenvalue matrix. The input vec- 
tors, constrained by an average power limitation, are 
formed (at the transmitter) by the well-known method 181, 
[22], [33], [34] of projecting the input symbols on T, that 
is, 

K 

XL = c a,,@, (43) 
I =  1 

where {aL,} are the inputs of the j th  virtual orthogonal 
subchannel, and have their energies determined according 
to the “water-pouring’’ principle [81, [171, [22l, [331, 1341. 
Note that the above projection is power conserving, as 

K 

E [ X ;  .x , ]  = a:,. 
I =  1 
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A codeword, in this scheme, is composed of N uses [that 
is, i E l , . . . ,N in (42)] of the vector channel. The code 
employed is a product of K independent subcodes (one 
for each subchannel), where the subcode for the j th  
channel is {uIj , . . - ,  a N J .  

The optimal (matched) receiver correlates the received 
vector xi with each of the {lc(,) vectors to obtain a separa- 
tion of the vector channel to K independent scalar Gauss- 
ian (sub) channels [221, [33], [34]. It then performs ML 
decoding according to the metric 

where the minimization is carried over all the a sequences 
in the codebook and since a product code is employed the 
minimization is done for each subchannel j = 1,2;.., K 
separately. The observables y,, are given by projecting y, 
on the orthonormal basis {$,}, that is, y,, = (y,, (c;), and 
clearly, 

N 

Y, = c Y,,$. 
J = 1  

The mismatched receiver adheres to the Euclidean-dis- 
tance decoding, and is assumed to lack the knowledge of 
the set {$}, but does possess the set of possible x,, 
i = 1,2;.., N vectors, and also the mapping from the 
codewords { x i )  i = l;.., N to the corresponding user mes- 
sages. 

Thus, the mismatched decoder performs the metric 

where the minimization in the expression above is carried 
out over all the legitimate codewords {x,)E ,. By Parseval's 
Theorem, m' is equivalent to 

N K  . .  _. 

m' = min lyij - uij12 

where the minimization is (virtually) performed over the 
set of legitimate a sequences. As the code employed over 
the channel is a product code, the virtual m' above is 
equivalent to m", where 

which is exactly the matched metric [see (4411. 
Since the (matched) capacity of this channel can be 

achieved by a product code [71, [81, [221, [331, [341 as 
employed in this example, this capacity also remains un- 
changed in case of the Euclidean distance mismatched 
decoder. In contrast, Lapidoth [241 has shown recently 
that for the vector Gaussian channel considered here, 
classical random coding techniques fail to assess the true 
mismatched capacity, that is, C,, for this case is not a 
tight bound. This serves as another counterexample to 

Hui's conjecture, which is practically encountered more 
frequently than the counterexample of [14] and [l]. 

The vector Gaussian channel considered in this exam- 
ple can serve as a model for decoding a pulse amplitude 
modulated (PAM) sequence in the presence of colored 
noise, assuming that the autocorrelation sequence of the 
noise samples has a finite support, and that appropriate 
guard times are used in the transmission. 

The conclusion also holds for the case where the noise 
process does not have an autocorrelation function of 
finite support, but rather posses an autocorrelation func- 
tion which decays with time such that the noise entropy is 
finite (that is, the integral of the related log spectrum is 
defined and finite). This can be shown by invoking the 
arguments which are used in the well-known treatments 
of the matched decoder with stationary, correlated inputs 
and sample-independent additive Gaussian noise [8], [221, 
WI .  

The analogy to the standard intersymbol interference 
(IS11 Gaussian channels treated in [81, [221, [33], [341 is 
established by examining a block (K-component) channel, 
and orthogonalizing the noise by a linear information 
lossless operation which yields an equivalent block-IS1 
channel with independent Gaussian noise samples. The 
result follows by taking K --f E ,  and under the mild re- 
strictions specified above, the effect of the intervector 
dependence on the capacity monotonically vanishes [8], 
[221, [341 as K 4 =. 

Lapidoth [24] has recently extended the above results to 
a class of IS1 channels with i.i.d. Gaussian noise, where 
the receiver ignores the intersymbol interference and sim- 
ply chooses the codeword which is of least Euclidean 
distance from the received sequence. 

VII. DISCUSSION: OTHER NOTIONS 
OF MISMATCHED CAPACITY 

So far, we have considered only deterministic encoders 
and the message error probability criterion. Another un- 
derlying assumption is that the transmitter is aware of the 
mismatch, for otherwise, the meaning of the maximization 
in C,, = max,, Z'(X; Y )  is questionable, at least for cases 
where the maximizing input assignment { p ( x ) }  depends 
on the mismatch; also, recall that the achievable rate 
depends on both W and I/. In this section, a few examples 
are examined in which coding strategies motivated by the 
nature of the mismatch are employed. It is shown that the 
properties of achievable rates in the mismatched decoding 
regime might differ considerably from those of the classi- 
cal matched one. 

First, we focus on capacity w.r.t. the bit error probabil- 
ity as opposed to the one defined w.r.t. the block error 
probability. Consider a clean BSC [i.e., w ,  = w2 = 0 in 
Fig. l(a)], while the decoder assumes u1 = 0 and u 2  > 0.5 
[Fig. l(b)]. It is easy to check that, here, C,, = 0 [20], and 
hence also C, = 0 [14]. However, suppose a variant of 
differential encoding as presented in Table I is employed. 
The first transmitted symbol is equal to the first informa- 
tion bit, and thereon the transmitted symbol changes from 
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TABLE 11 
A RANDOMIZED CODE FOR TI1E BSC 

“0” to “1” or vice versa if the information bit is a “1”; 
otherwise, the symbol transmitted is identical to the previ- 
ous one. The receiver performs the inverse mapping to 
the transmitter’s, after the operation of channel ML de- 
coding. Even if there is a confusion of l’s to 0’s (and vice 
versa) in the decoder, the receiver will be able to recover 
the transmitted bits reliably except for the first bit (which 
will always be wrong in this case). Thus, the message 
(block) error probability tends to unity while the bit error 
probability goes to zero as n + a. Observe, though, that 
the latter does not have an exponential behavior; rather, 
it goes to zero as fast as l /n .  For any w2 < 0.5, a positive 
rate less than C is achievable w.r.t. the bit error probabil- 
ity by using asymptotically large codewords. Similar argu- 
ments can be applied to the complex Gaussian channel 
with a phase offset of rr/2 (Example 5 of Section VI) 
when the same differential-type code is used. 

For the latter channel, note that we ruled out the 
possibility that the transmitter shifts the transmitted sym- 
bol phases (in order to compensate for the phase offset) 
while the decoder is unaware of this operation; for in this 
case, the codeword to transmitted signal mapping is not 
identical to the receiver mapping (of received signal to 
received codeword). Another class of interesting mis- 
matched problems emerges when the transmitter is al- 
lowed to change its strategy to mitigate the receiver’s 
mismatch degradation. In the above example, it is clear 
that by deshifting the phase, the transmitter absolutely 
compensates for this mismatch. It is readily seen that for 
a general DMC, the transmitter may introduce any sup- 
plementary DMC in tandem in an effort to maximize the 
overall achievable rate, although it is clear that the 
matched capacity cannot be increased with this strategy. It 
readily follows that maximizing C,, over all input permu- 
tations (that is, the supplementary DMC is the noiseless 
permuting channel) is also an achievable rate. The argu- 
ment extends to multiletter interpretations. 

Next, it will be shown that some forms of randomized 
encoding-decoding strategies are capable of achieving 
rates higher than C,, w.r.t. block error probability. Let 
us reconsider the clean BSC with the mismatched decoder 
that assumes U ,  = 0 and u2 > 0.5, and suppose that a 

randomized strategy, as outlined in Table 11, is employed. 
This means, for example, that the two-bit message “00” is 
transmitted by randomly choosing between either x, 
= “000” or x2 = “111 .” The receiver, being fully aware of 
this strategy, uses a metric In[iV(y I x,) + i V ( y  I x , ) l .  
Clearly, one is able to communicate reliably employing 
this method, with a rate of 2/3 bits per channel use, while 
C,, = C, = 0. Moreover, by creating codewords of 
length n using the same idea, it is possible to achieve a 
rate of ( n  - l)/n bits per channel use. As a side remark, 
a decoder that uses the metric In V ( y  I x) and then per- 
forms the inverse mapping, after the decision on a se- 
quence (e.g., “000” --f “00,” “111” + “OO”), would be infe- 
rior to the decoder described above, but will still be able 
to cope with the mismatch. Again, for w ,  = 0 and 0 < w 2  
< 0.5, rates close to the capacity are achievable by using 
sufficiently long codewords based on the above method. 

Such a randomized strategy can be adapted to the 
complex Gaussian channel with a phase offset (Example 5 
above) in the following manner. For any (complex) input 
vector x, the transmitter selects among four options x, 

, xeJn, xe /3n/2 .  The receiver has the reversed table xe/n 1 2  

in tandem to the decoder. Clearly, one can achieve reli- 
able communications with rate R > 0, for any phase off- 
set, while Z‘ (X;  Y )  (and hence, C,.,,) become negligibly 
small for w in the vicinity of ~ / 2 .  Recall that strictly 
employing random coding would not achieve a reliable 
rate larger than C,,,,. 

In the above example, subtle mappings between the 
information source and the encoder (as well as between 
the decoder and the receiving destination) were allowed 
to improve the achievable rates for a given channel, 
encoder, and a given metric. One may further argue that 
another class of cases is established when the communica- 
tion engineer optimizes over all modulation/coding op- 
tions under a given mismatched channel. As an example, 
for a channel with a possibly large phase offset, one may 
use noncoherent communication. It is well known that 
such a scheme can achieve the matched Shannon capacity 
asymptotically as n + = in the presence of a random 
phase [9]. As another example, for a mismatched binary 
input/output channel, use the common differential en- 
coding/decoding mechanism. In these cases, one may 
degrade the performance of a matched channel in some 
sense (e.g., the exponential behavior of P,), but gain 
considerably in a “worse case” mismatched channel. One 
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may also consider the case of time-varying channels, where 
one may optimize the worst case l’(A’; Y ) .  (Recall the 
idea of optimizing the decoder metric for a class of 
unknown channels [311.) These cases hint at the connec- 
tion of our subject to the analysis of compound and 
arbitrarily varying channels [131, [351 as is further elabo- 
rated in [141. 

The above examples demonstrate another interesting 
fact for mismatched channels: “data processing”-type ar- 
guments [17] do not necessarily hold. Consider the BSC 
with w 2  < 0.5 and a decoder using u2 > 0.5 on which a 
randomized encoding mechanism is employed: the fact 
that the actual transmitted sequence is not disclosed to 
the receiver actually improves the performance in this 
case. 

Returning t o  the common case of deterministic en- 
coder/decoder mapping strategies, the mismatched ca- 
pacity C, has not yet been determined, and it has been 
conjectured in [14] that for a DMC, it equals the limit as 
k + of CL,, which is defined as C,, but w.r.t. k-letter 
alphabet extensions of the channel and the mismatched 
metric. 

APPENDIX A 
Let E > 0 and 6 > 0 satisfy ~ p ( a )  = Sp(a’) .  Let f be identi- 

cal to W ,  except for the entries corresponding to a ,  a ’ ,  b, and b’, 
where f ( b  I a )  = W ( b  I a )  + E ,  f (b’  1 a ’ )  = W(b’ I a ’ )  + 6 ,  f ( b  
I U ’ )  = W(b I a ’ )  - 6, and f (b ’  I a )  = W(b‘ I a )  - E ,  and where 
6 and E are chosen sufficiently small so that all the entries of f 
remain in [O, I]. Now, 

- p ( a > c  In V(b’ I a )  - p ( a ’ ) 6  In V ( b  I a ’ )  

= p(a)E[ln V ( b  I a )  + In V(b‘  I a ’ )  

which is positive by the assumption on the positivity of the 
expression in the brackets. Similarly, it is easy to see that the 
above f satisfies the output marginality constraint of (6). 

APPENDIX B 
Proof of Proposition 2 

w.r.t. the channel and the mismatched metric (61, one has 
Using the conditions on the transition probability matrix f 

for any S 2 0 and a(x), b ( x )  nonnegative functions (absolutely 
continuous w.r.t. V ( y  1 XI). Let 

multiply and divide the argument of the logarithm on the left- 
hand side of (B.l) by f(y 1 x) ,  and the right-hand side of (B.l) by 
W ( y  I x) to obtain 

where H(Y  1 X )  and H‘(Y 1 X) designate the conditional en- 
tropies for the channels with W(y  I x) and f (y  I x ) ,  respectively. 
One readily realizes (see, e.g., the proof of Theorem 4.3.6 in [7]) 
that the second term on the left-hand side of (B.2) is lower 
bounded by 

where q , ( y )  = C,,.p(x)q,(y 1x1. 
From (B.2) and (B.3), the relation (21) follows immediately. 

To optimize this lower bound on I ’ ( X ;  Y ) ,  let b ( y )  = 

[E,, V s ( y  1 x ) / a ( x ) ] / q ( y ) ,  and the optimum { a ( x ) )  is ob- 
tained as a ( x )  = [E, ? V s ( y  I x ) ] / b ( y ) .  By standard optimiza- 
tion methods, it is realized that {q , ( y  1 x) }  with the above 
optimized parameters achieves I ’ ( X ;  Y )  whenever it is positive. 
See also [3] and [141. 

APPENDIX C 
I. Proof of Theorem 2 

The proof involves a technique similar to that of [20], where 
rather than upper bounding cardinalities of sets of typical 
finite-alphabet sequences by combinatorial techniques, we bound 
columes of types of continuous alphabet sequences using proba- 
bilistic arguments. For the sake of completeness, the pertinent 
results of [12] and [20] will be rederived here. 

Consider a randomly chosen codebook, where each codeword 
x,  ET^ is drawn independently from p ( x )  = I-I:=, p ( x , )  with 
the requirement that it will be typical, i.e., it falls in €-type: 

T,X(p) = x EP : - - I n p ( x )  - h ( X )  < E, ( I I  

In other words, if a randomly drawn codeword x happens to be 
atypical, we randomly select a new codeword, check whether it is 
typical, and so on, until it turns out to be typical. Note that the 
overall probability of x being a codeword is 

where by the WLLN, 6 > 0 can be made arbitrarily small for 
every E > 0 provided that n is sufficiently large. Consider next 
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an auxiliary threshold decoder which decodes x, as the transmit- 
ted message if and only if the received y falls in the €-type of 
the output sequences, 

and x i  is the only message that together with y falls in the set 

otherwise, an error is declared. Let P, denote the probability of 
error associated with the ML decoder that assumes a channel V,  
and let P, denote the probability of error associated with-the 
auxiliary threshold decoder defined above. Then, clearly, P, is 
never smaller than P, because whenever the threshold decoder 
does not reject, its output is identical to that of the mismatched 
decoder under consideration. Hence, it is sufficient to over- 
bound p,. From symmetry of the random coding mechanism, it 
is clear that the conditional error probability given that message 
i has been transmitted is the same for all 1 I i I M ,  and hence 
equal to the overall error probability. Thus, 

where we have used the union bound and the WLLN for the two 
terms after (a) (Assumption A2), and where the third term after 
(a) results because, for the random coding scheme x , ( j  # i) and 
the received vector y ,  given x, is transmitted, are independent. 
Thus, the proof will be complete if we show that the integral in 
the last term is exponentially less than 

Let C be an arbitrarily large number, and define the sets 
G = ((x, y )  : Iln V ( y  I x)l I C . n), E = C n T,' n(T,"(p) x 
T,Y(q)), and 

The last term on the right-hand side of (C.5) can be over- 
bounded as follows: 

5 / E d r d Y p ( x ) q ( y )  + j d x d y p ( x ) q ( y ) .  (C.7) 
GC 

It is shown in Section I1 of this Appendix that under Assumption 
A l ,  if C is chosen sufficiently large, 

for all large n,  and hence this term has a vanishingly small 
contribution in (C.7). As for the first term on the right-hand side 
of (C.7), the integration domain which is a subset of C can be 
covered by less than N = ~ C / E  sets {T,( AI)): ,, corresponding 
to a sufficiently dense grid of numbers A, E [ - C, C ] .  Therefore, 
this term can be overbounded as follows: 

where we have used the fact x and y are typical in the integra- 
tion domain. It is shown in Section 111 of this Appendix, invoking 
a technique similar to [lo, Theorem 9.2.21, that 

for some constant L > 0, where $A) = info, f i ( O ' ,  A), 

f i ( O ' , A )  " K ( O ' )  - u ' . E + ( X )  - b ' . E @ ( Y )  - - ' A ,  

and 8' = ( U ' ,  b ' ,  c ' ) .  Thus, 

where 6 = ( L  + 2 ) ~  + n - '  In(2C/e). Thus, for R < Z ' ( X ; Y )  
- 6, the average probability of error tends to zero. Finally, by 
letting n -+ t.c~, e + 0 (and hence also 6 + O), one readily sees 
that every rate below I ' ( X ;  Y )  is achievable by random coding 
w.r.t. p .  This completes the proof of Theorem 2. 

II. Proof of (C.8) 

G' = {(x, y)  : In V ( y  I x) I - Cn). Since 
Let us partition G" into G:= {(x, y ) :  In V ( y  I x) 2 Cn) and 

= k d y p ( x ) q ( y )  + j k d y p ( x ) q ( y ) ,  (C.12) 
G' 

it is sufficient to show that each one of the terms on the 
right-hand side of (C.12) can be made exponentially less than 
e - n K  for a sufficiently large C. Let y > 0 be sufficiently small 
such that Assumption A2 holds. Then, by the Chernoff bound, 

It is now readily seen that by choosing C larger than y P 1 { R  + 
In [lz jv dxdy  . p ( x ) q ( y ) V Y ( y  I x)]), the probability of G: un- 
der the product measure p X q can be made exponentially less 
than e - n R .  A similar argument holds for GY with y < 0 and C 
replaced by - C. This completes the proof of (C.8). 
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Since this holds for every O r ,  the tightest upper bound is ob- 
tained by minimizing the right-hand side of ((2.15) over @. Since 
0 is assumed a bounded set, then < < L E  for some constant L ,  
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h(O’,  A) which yields h(A), i.e., 
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APPENDIX D 
We first show that a memoryless source is from an exponen- 
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The output pdf q induced by a discrete memoryless source p 
and a DMC W is again memoryless, and hence also a source 
from an exponential family. Any joint PMF of the form corre- 
sponding to F~ is again a memoryless source for pair letters. 
Assumption A1 holds trivially whenever V ( y  I x )  is bounded. 
Assumption A2 holds as well as by the WLLN for memoryless 
processes. The se: B corresponds to the constraints in (6). The 
minimization of h ( 0 ’ ,  A) over 0 ’  for a given h yields the joint 
empirical entropy H J X ,  Y )  because it is equivalent to ML 
estimation for the exponential family 
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