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in Exponential Families 

NERI MERHAV, MEMBER, IEEE 

Abstract -The estimation of the model order in exponential families is 
studied. Estimators are sought that achieve high exponential rate of 
decrease in the underestimation probability while keeping the overestima- 
tion probability exponent at a certain prescribed level. It is assumed that a 
given integer is known to upper-bound the true order. 

I. INTRODUCTION 

The problem of estimating the order of a statistical model has 
been studied in the literature of time-series analysis, information 
theory and automatic control. Most of the estimators proposed 
(Akaike [1]-[3], Kayshap [4], Shibata [5]-[8], Rissanen [9]-[12], 
Parzen [13], Hannan [14], Hanna and Quinn [15], Schwarz [16], 
Tong [17], Wax and Kailath [18], Broersen [19], and others) are 
heuristic in character, and no optimality results concerning the 
order estimation error (stronger than consistency) have been 
established. An exception is Schwarz [16] who, in fact, proved the 
optimality of the minimum description length (MDL) principle 
(Rissanen [9]-[12]) in a Bayesian sense. However, it should be 
pointed out that Rissanen’s results are motivated by coding 
applications, as they are not limited to the case where a “true” 
order does exist [12]. (A more detailed discussion about the links 
between the present method and Rissanen’s approach appears in 
[20].) Among other works where it is not assumed that a true 
finite order exists are Shibata [6], [7] in which an infinite order 
autoregressive (AR) process is assumed. In [6] Shibata proposes 
an order estimator that is optimal in the sense of minimizing the 
mean squared error of the estimated predictor. In [7] Shibata 
demonstrates that the same order estimator is also optimal in the 
sense of minimizing the integrated relative spectral squared error. 
In [8] Shibata studies the relationship between consistency of 
model selection and that of parameter estimation. 

This correspondence is an extension of an earlier paper [20] in 
which the estimation of the order of a discrete finite-Markov 
chain was studied. In [20] we derived order esgmators k having 
the smallest underestimation probability Pr(k < k )  among all 
uniyersal estimators for which the overestimation probability 
Pr(k > k )  decays faster than 2-A” for a given value of X > 0, 
where n is the sample size. Here, we use the same performance 
criterion in a more general situation, where the observations 
xl; . . , x, (taking continuous real values) emerge from a source 
of the exponential family. In contrast to Rissanen [9]-[12] and 
Schwm [16], we are able to attain an exponentially fast vanish- 
ing error probability, as we are not using the Bayesian formula- 
tion. 

The outline of the correspondence is as follows. In Section I1 
we formulate the problem. The analysis and main results are 
presented in Section 111. Finally, in Sections IV and V, some 
examples are given for possible applications of the proposed 
method in specific order estimation and hypothesis testing prob- 
lems. 
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11. PROBLEM FORMULATION 
Let x = (x~ ;  . ., x,~)  be a vector of independent identically 

distributed (i.i.d.) real-valued random variables governed by a 
probability distribution from the k-parameter exponential family 
(Koopman- Darmois) 

dpek ( x) = exp [ ek 0 T,( X) - +( e’ ) ]  p ( d x )  (1) 
where 0 denotes the scalar product of two vectors, B k  takes 
values in a bounded open subset 8, of W k ,  for which 
jR exp [ B k  0 T k  ( x ) ] p  ( d x )  < 00, with Tk(  x) a k-dimensional real- 
valued statistic and p( .) is a o-finite measure on Bore1 subsets of 
W. The function + ( e k )  is chosen to normalize (l), namely, 

+ ( e k  = log I_m_ exp 1 e, T&( XI] ( dx). (2) 

+ ( e k )  is called the log moment generating function, as it yields 
the moments of pek by differentiation with respect to ek E 8,. 
Since the x, are i.i.d., clearly, 

The aim of this correspondence is to derive an order estimator I, 
that minimizes the underestimation probability p@k ( k  < k ) ,  uni- 
formly for every O h  E S,, subject to the constraint 

It is assumed that a given positive integer k,  is larger than the 
true order k .  (A similar performance criterion was introduced in 
[201.) 

111. MAIN RESULTS 
We assume the following regularity conditions. 
1) For 1 s j I k,, the parameter space Sj is a bounded open 

subset of 

2) The set of equations: 
1 ”  

n r = l  
v+( e ’ )  = - c TI( X I )  

has a unique solution 6hL E q, for any x E R”, 1 I j I k,. 
3) For any 8, E e,, the Fisher information matrix 

v2+(e’) { a2+(el)/ae; ae,,):.q=, =cove { ~ ’ ( x ) )  

is positive-defifite and bounded. 

Clearly, by condition 2) 6hL satisfies 
Denote by ehL(x), the maximum l ike l ihood  estimator of 0’. 

1 ”  
V+(lhL) =; c T ’ ( x , ) .  ( 5 )  

1 = 1  

Let us denote by A : ( O / ) ,  0’ E S, the set of vectors x E W“ for 
which 
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where 11.11, denotes the Euclidean norm in R J .  That is, A:(eJ)  
denotes a “neighborhood” of vectors x whose maximum likeli- 
hood estimators 8hL( x) are close to 0’ (in the sense just defined). 
This can be viewed as an extension to the definition of typical 
sequences [21] in the discrete alphabet case. (See also Rissanen 
[22, appendix A].) 

We first prove an auxiliary lemma. 
Lemma I: For any 8 > 0, there exist E > 0 and n sufficiently 

large, such that the p-measure of A:(O’) is bounded as follows: 

j=1,2;  .., k , .  ( 6 )  

Proof: By condition 3) it follows that 

for any B J  E 0,. Thus, for any 8 > 0, E > 0, and n sufficiently 
large, 

Thus 

I 
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(by the Schwm-Cauchy inequality) 

This completes the proof. 

bound the true order k ,  define the following order estimator: 
Assuming that a given positive integer k ,  is known to upper- 

where dPo(x)  is defined as in (3). Thus 9 involves *the 
Radon-Nikodym derivative computed at 0 = &: i d  0 = OkL. 
Notice that the estimator k* defined in (9) is a straightforward 
extension of the generalized likelihood ratio test (GLRT), which 
is widely used for composite hypotheses. 

The algorithm starts from j =1 and seeks the first integer j ,  
for which ( l / n )  log dP6hL(x) is sufficiently close to 
(l/n)logdP62Jx) (difference less than A); that is, we find the 
integer j ,  for which any increase in the order will not signifi- 
cantly increase the likelihood. 

Notice that, since k* is a stopping rule, the associated compu- 
tational complexity is usually smaller than for other existing 
order estimators (e.g., AIC, BIC, CAT, MDL, FPE, etc.), which 
in turn minimize a certain information criterion IC( j )  over the 
integers 1 I j I k, .  In fact, (9) is asymptotically equivalent to 
min{ j: IC(j)  - IC(k,) < A}, where IC denotes any one of the 
above mentioned information criteria (AIC, BIC, etc.). The fol- 
lowing theorem establishes the optimality of k* in the sense 
defined in Section 11. 

Theorem I :  Assuming conditions 1)-3) are met, we have 

a) 

lim - - log Pek ( k *  > k )  2 A ,  VI I k < k , ,  vek E 0,; 
n + m  [‘ n 1 

b) for any estimator 1 that satisfies (4), every B k  E e,, 1 < k I k ,  
and n sufficiently large, 

P@h(k* < k )  5 PBh(k < k ) .  

Proof: Define 

and the Kullback-Leibler information: 

= (0, - C P J )  o w (  0’) - +(e’) + + ( CP’), 
e’, c p ~  E e,. (11) 

This definition can be extended to the case where the dimensions 
of B and cp are not necessarily equal by padding the lower 
dimension parameter vector with zeros. 

As for part a), if follows by (3), (9, and (11) that K(82L,u,llek) 
= (l/n)log( dPg3$x)/dPoh (x)). Therefore, 

= P@h { K (  d$Lliek) 2 A }  I 9 (12) 

for any E > 0 and n large enough. The last inequality follows 
from a known result from the theory of large deviations for 
exponential families [23, theorem 61, namely 

P@k { K(  dkL,o,leA) 2 A} = n(ko-2)/2e-W A [  1 + on(l)ll 

uniformly in A over the range 

c ~ ~ ~ s u p { ~ :  { e :  K ( e l l e k ) l A }  c@,,}-E 
where CA is a constant not depending on n. This completes the 
proof of part a). 
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To prove b), let L b: an arbitrary order estimator satisfying 
(4). Let Q J =  {XEIP”: k = j } ,  j = l ; . . , k , .  Clearly, {aJ};:, is 
a partition of R”. We also assume that for any B k o  E qko, we have 
A:(eko) G s2, for some 1 I j I k,, and E > 0 sufficiently small. In 
other words, (l/n)X:’=,Tko(x,) is a sufficient statistic for { L?,}),ko,, 
(this assumptiop does not affect the asymptotic exponent associ- 
ated with p@h ( k  < k)) .  

be an arbitrary n-tuple. Thus, by (4), for any 
1 I r I k ,  6 > 0, and n sufficiently large, 

e - ( h + 8 ) n  2 max p O r ( k > k )  
e r  E 0, 

Let x’ E U,, 

(by Lemma 1) 

It now follows from (13) that 

U n M:, l s k s k , - l  ( 14) 
j > k  r s k  

(where the superscript c denotes the complement set). Equiva- 
lently, 

Hence 

This completes the proof of Theorem 1. 0 

As mentioned in [20, remark 11, the value of X should be 
chosen sufficiently small to guarantee an exponential decay of 
both overestimation and underestimation probabilities. This is 
different from other existing estimators (AIC, BIC, MDL) where 
the overestimation probability can be shown [20] to decay slower 
than 2-“’ for any E > 0. 

I 

1111 

IV. EXAMPLES 

In  this section the algorithm k* defined in (9) is applied to 
several well-known models. 

A. The Linear Regression Model 
Let 

k 

y, = a,xf+w, ,  i = l ; . -  , n  (17) 
I = 1  

where { w, } are i.i.d. Gaussian zero-mean random variables with 
unknown variance a2 and x,=(xi,xi,...,x,/), j=1,2; . - ,kO 
( k  I k ,  < n) are given linearly independent vectors. Without loss 
of generality, let us assume that the x, are orthonormal, namely 
(l/n)X~=,x,’x/ = a,,, where S,/ is the indicator function for j = 1. 
We are interested in estimating k. In what follows, we first 
demonstrate that this is a special case of the exponential family 
(3). We let a A  = (u1; . ., ak) ,  and y = ( y 1 ; .  ., yn):  

Clearly, (18) agrees with (3), where 

l a  
e h + ,  = (e,,. ..,e,+,) = -- 2 ( 2a2 ’ a2 

and p (  .) is the Lebesgue measure. 
Applying (9) to this case we straightforwardly obtain 

1 

2 
- - log6zo< X 

where 8: is the minimum residual energy of order j given by 

with (3,;. -, ci,) the ML estimators of ( a , ; .  -, u J )  assuming a 
jth-order model. Thus, if 32 is sufficiently close to $io for some 
j ,  the algorithm stops. Notice also that (22) involves a difference 
between empirical entropies of orders j and k,. In fact, this is 
the case in all of the following examples. 

B. The A utoregressive Model 
Although the observations produced by an AR model are not 

independent, the results of Section 111 can be shown to continue 
to hold. In fact, this case is similar to the previous example, 
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where each X I  is replaced by - y l p j ;  we have exponent. Plugging (32) into (31), we get after some algebra, 

L ’ J  \ -  

Here P ( x )  is expressed by m(m - 1) parameters. Therefore, we 
have the exponential form (3) with We now put (24) in the standard exponential form (3) with 

1 1  1 
e’+’= - (  ~ , g R , ( 1 ) ; . . , ~ f L ( k ) )  (25) e,,,, = log 

T “ ’ ( X , , X , - ~ )  = S ( x ,  = U ,  X , - ~ = V )  (35) where R,(i), 1 I I I k ,  is the autocorrelation of the whitening 
filter A ( z )  = l + C f = l a , z - l ,  namely, 

k - r  

J - 0  

for u = l , . . - , m - l  and v=l;..,m,where S ( x , = u ,  X , - ~ = V )  

is the indicator function for x ,  = U jointly with x, - = U. (26) R , ( i )  e a,+,a,, a ,=1 The function +(e) is given by 

and +(e) = -logp(mIm), (36) 

+(O)=-logu’=-log( 1 1 --). 1 (28) 

2 2 261 
Notice that T k  depends now on y,, x+~,. . . ,  ylPk.  The main 
difference with respect to &ample A, is that here y,-, = - X I  are 
not deterministic. However, we use the fact that XYz1 y , - k  y , - , ,  
is approximately independent of k ,  since ignoring the k edge 
observations does not affect the asymptotic result of Theorem 1. 
Again, p( .) is Lebesgue measure. Applying Theorem 1, we obtain 
the same estimator as (22), where now q2 is the empirical 
prediction residual of order j ,  that is, 

1 ”  
”̂ ;‘=, Yf + c ‘,&J 9 (29) 

r = l  i I : ,  l2  
where { 
tained by the Yule- Walker equations. 

C. The Discrete Markov Source 

are the jth-order ML estimators of {a,}/=l ob- 

Consider a discrete-alphabet Markov source of order k ,  that is, 

P( X J X r : )  = P(  X,Ix:I:) .  ( 30) 

and p (  .) is the counting measure. The estimator k* for this case 
can be shown [20] to be 

k* = min{ j :  H, ( x) - Hko( x) < A }  , (37) 

where H, (x) is the j th order empirical conditional entropy of x. 
Notice that again, as in the previous examples, the estimator k* 
involves differences between empirical entropies. 

v. APPLICAnONS TO COMPOSITE BINARY 
HYPOTHESIS TESTING 

Several well-known binary hypothesis testing problems can be 
formalized in the present framework. In these cases, we have only 
two hypotheses concerning the order of a statistical model. Our 
performance criterion will now coincide with the regular 
Neyman-Pearson criterion. 

A .  Testing for Independence 
Suppose we are given n i.i.d. observed pairs ( x l ,  y l ) ,  

( x 2 ,  y2) ,  . . . , (x , ,  , y, ,)  of random variables and it is desired to test 
the null hypothesis H,: x and y are statistically independent, 
against the alternative H,: x and y are dependent. Consider two 
examples: 

1 )  The Gaussian Model: Let x - N(0,  u2), y - N(0 ,  u2) and 
Suppose it is desired to estimate the order k.  The vector x::; will 
be referred to as the state s,. This problem was studied in detail 

exponential family, we concentrate on the first-order case for 
simplicity . - 

1 
2 TU H,: dP,( x, y ) / d x d y  = 7 exp 

in [20]. 
To demonstrate that the Markovian source is a member of the HI : dPo(X7 J’)/dXdY 

1- 1 - 
2TU2(1 - p y 2  Let X =  {1,2;. ., m }  be the output alphabet of the source; 

then 
n m m  

where p (  ulv)  is the transition probability from U E X to U E X ,  
and n ( U, U) is the number of such transitions in the sequence x. 
The sufficient statistics { n ( u ,  U)} are redundant since they sat- 
isfy: 

m m 

n ( u , v >  = n ( v , u ) k l .  (32) 
u = l  u = l  

Notice that under hypothesis H, we have only one free parame- 
ter €J1 = - 1/2u2, k =1, while under HI we have two free param- 
eters ( k  = 2): e2 = (-  1/2u2(1 - p2)ll2, p/u2(l - p2)lI2) The 
“estimator” k* in this case turns out to be the following test. 
Reject H, iff 

1 1 
-log->A 
2 1-p 

where 

The term f 1 can be ignored as it does not affect the asymptotic That is, the optimal test compares 161 to a certain threshold. 

(39) 
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2) A Discrete Memoryless Model: Let x and y be random 
variables taking values in finite alphabets X and Y of sizes a and 
8, respectively. It is desired to test 

Ho : P( x ,  y )  = 9( x) P( y) (independence) 

against 

H1: P ( x , y )  # P ( X ) P ( Y ) .  
Clearly, under H, we have k = (a - 1)(8 - 1) free parameters, 
whereas under HI we have k = ab - 1 parameters. The resulting 
test rejects H ,  iff 

i( x; y )  > x (40) 
where f( x ;  y )  is the empirical mutual information between x and 
y. This test is optimal in the Neyman-Pearson sense. A similar 
result was presented by Gutman [24]. 

B. Testing for Equal Distributions 

Suppose we are given two sequences of i.i.d. random variables 
x l , .  . . , x ,  and y, ,  . . . , y,  and wish to decide whether or not these 
two sequences were emitted from the same source. Consider three 
simple examples. 

I) The Gaussian Model: Let xi - N(pl, a2) and y, - N ( p 2 ,  U’); 
suppose we are testing H,: p1 = p2 = p ,  against the alternative 
H I :  p1 # p2 .  Under H,, we have k = 2 free parameters 

while under Hl there are k = 3 parameters 

The resulting test will reject H, iff 

with 

1 

n + m  
6; = - 

and 

1 

n + m  
($2 = - 

where 

1 1 

2 2 
- log&; -- log&? > x 

n m 

i = l  j = l  

l m  nT + m j  

m i = l  n + m  
j k - c y ; ,  i=- 

That is, the variance is estimated under H, and under H,, 
respectively. If the estimates are sufficiently close, then we decide 
in favor of H,. 

2) The One-sided Exponential Model: Suppose that now x ,  and 
y, are distributed as follows: 

dP,( x ) / d x  = ( u e ~ ~ ” ~  x 2 0  
x < o  

We want to decide whether a = b or a f b under the 
Neyman-Pearson criterion. Here we test 8’ = a against 8’ = 

(a, b ) .  By (9) we reject H, iff 

n m 

n + m  n + m  
log2 - - log? - - 1 0 g y > x ,  (44) 

where E, y, and i are defined as in example B-1. Again, the test 
statistic is a difference between empirical entropies. This result 
might be applicable to optical detection, where each observation 
denotes the difference in the time of arrivals of two successive 
photons. One of the sequences, say x, can be used as the training 
sequence, if the dark current parameter a(a < b) is unknown, 
while the other plays the role of the test sequence to determine 
whether or not an optical signal is present. 

3) The Discrete Memoryless Model: Let x and y be random 
variables as in A-2, where X= Y, 1x1 =a; suppose we want to 
decide whether x and y were emitted from the same memoryless 
source. Under H,, we have k = a - 1 free parameters, while 
under H,, there are as many as k = 2( a - 1 )  parameters. The 
resulting test would reject H, iff 

m ,  
( I+  ;) ri( q) - ri( x) - - H (  y )  > x (45) 

where &(x) and l?( ?I) denote the empirical entropies of x and 
y, respectively, and H ( q )  denotes the empirical entropy of the 
concatenation of x and y. A similar result was derived by 
Gutman [25]. 
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Quantum Communication with Coherent States 

C. BENDJABALLAH AND M. CHARBIT 

Abstract -Quantum communication is studied under the cutoff rate 
criterion for transmission of M coherent states of real amplitude ( M =  
2,.**, 7). Comparison with other measurement operators of interest, such 
as the number and the quasi-classical operators, is made. The effect of 
quantization of the decision level on the cutoff rate is also considered. 

I. INTRODUCTION 
Recent technical advances in stable monomode light sources 

and photon detectors, e.g., semiconductor lasers and avalanche 
photodiodes, have increased interest in the study of systems for 
the transmission of information using photon counting tech- 
niques. It has been shown that these techniques perform better 
than the usual ones [l], particularly in applications to optical 
space [2]. This has stimulated important work among communi- 
cation and information researchers to establish analytical results 
that describe the best mode of transmission of the message, and 
also to calculate the fundamental limits on the performance of 
such systems. 

These limits are also important for some aspects of the theory 
because of various links between the quantum theory of informa- 
tion and the theory of measurement in quantum mechanics. For 
example, the generalization of the uncertainty relations via quan- 
turn entropy [3], [4] is of great importance in both domains. On 
the other hand, the experimental interest of these fundamental 
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limits is also evident since, when building practical receivers, a 
comparison of the performance attained by the device in opera- 
tion with that of the ideal system is necessary. For this purpose 
one of the criteria widely used to characterize the performance is 
the channel capacity [5 ] .  

Although important progress in the mathematical theory of the 
quantum communication channel has been made in recent years, 
mainly through the work of Davies [6], Holevo [7], [8], and 
Helstrom [9], there are still several questions to be studied. One 
of these is the calculation of the quantum channel capacity from 
the mutual information 
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The function E( P, ,) is the usual entropy 

with 

e, = Pr(output digit jldigit i sent) = q, tr(O,R,) = q,p, ,  (1.3) 

and where p , ,  is the transition probability between input density 
operator (0 , )  of prior probability q, and output measurement 
operator (It,). 

Applying Shannon’s relation directly, we define the channel 
capacity as 

Note that, because of the nonlinearity of the logarithmic function 
appearing in (1.2), the methods used in quantum detection theory 
[9] are not applicable to maximizing I{(O,),(It,)}. Some rigorous 
results of general interest have been established but concern only 
a few special situations [lo]-[14]. Nevertheless, the channel ca- 
pacity is not the only criterion of performance, and as already 
observed by Wozencraft and Jacobs [15] and later by Massey 
[16], the cutoff rate is also meaningful. This parameter deter- 
mines a range of rates where reliable transmission of information 
is possible and also provides an insight into the modulation 
complexity when there is an error probability. In this sense the 
cutoff rate criterion is more informative than the channel capac- 
ity. The purpose of this correspondence is to derive some new 
results in the quantum theory of the cutoff rate. 

In Section I1 basic relations of the usual equations of the 
optimal detection operator and the cutoff rate are recalled. 
Quantum definitions of these quantities are given, and the prob- 
lem of optimizing them is formulated. Such optimization re- 
quires, as usual, constraints on the prior probabilities of the input 
states. Also, although algebraic calculations are straightforward, 
they become involved for M >  5 so that only a limited input 
alphabet can be simply analyzed. There are several particular 
channels for which a complete study is possible for any value of 
M. One of these is considered in Appendix 111. Approximate 
expressions for large M are also available. However, since the 
optimization is often difficult, it is shown in Section I1 that upper 
bounds are very useful. These bounds are found in Section I11 for 
input coherent states and are briefly compared in Section IV with 
those derived from semiclassical operators [15]-[17], [23], [24]. 
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