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Abstract

In this paper we review concepts and methods of communication sys-
tems equipped with side information. We focus on the channel coding
problem, where side information is available to the transmitter in either
a causal or non-causal manner, and we also consider the source coding
problem with side information at the receiver.

We first summarize the main results for channels with causal/non-
causal side information and the associated capacity formulas. Next, we
consider specific channel models, such as Costa’s dirty-paper model, the
AWGN channel model with fading and the modulo additive noise chan-
nel. Further, we provide applications to the models considered here, in
particular, we present the watermarking problem and the Gaussian
MIMO broadcast channel. We also consider algorithms for the calcula-
tion of the channel’s capacity, and practical coding schemes for the com-
munication systems explored in this paper. Finally, we study several
related information-theoretic problems and present both the Wyner-
Ziv and the Slepian-Wolf problems. The source coding problems and
the channel coding problems, are presented in a unified version and the
duality between the problems is presented. We also present extensions
for the MAC and broadcast channel models, to the case where they are
controlled by a state process, and consider several hybrid models, e.g.,
joint source-channel coding for the Wyner-Ziv source and the Gel’fand-
Pinsker channel, and the achievable tradeoff between message and state
information rates.
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Introduction

This paper gives an overview of results pertaining to the capacity of a
channel whose conditional output probability distribution depends on
a state process, and where the channel state information (CSI) signal
(also referred to as “side information”) is available at the transmitter
(CSIT) or at the receiver (CSIR) or at both ends. These channels have
been widely studied over the years and they can serve for modeling in a
wide range of problems, depending on some assumptions regarding the
channel state and on the availability and quality (clean or noisy) of the
side information at the transmitter and/or the receiver. For CSI avail-
able at the transmitter, we will distinguish between channels where the
CSIT is causal and channels where it is non-causal. In the causal case,
the transmission, at every time instant, depends only on the past and
present CSI, whereas in the non-causal case, the transmitter knows in
advance the realization of the entire state sequence from the beginning
to the end of the block. The causal CSIT channel model was introduced
in 1958 by Shannon [105], who also found its capacity. The non-causal
CSIT channel model was introduced in 1974 by Kusnetsov and Tys-
bakov [75], and its capacity was found in 1980 by Gel’fand and Pinsker
[56]. Regarding CSIR, we will not distinguish between causal and non-
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causal CSI at the receiver, because the receiver, in this case, waits until
the end of the block anyway, before decoding. Channels with CSIR are
studied in [101], [13], [63].

A crucial element in the solutions of the information theory prob-
lems presented in this work, including the Slepian-Wolf problem [107],
the Wyner-Ziv problem [135], and the Gel’fand-Pinsker problem [56],
is the “binning” concept. A binning scheme divides a set of codewords
into subsets or “bins”, such that the codewords in each bin are as far
apart as possible. These bins are constructed at random and each bin
is assigned to a different message index. When given with a message
to be transmitted in a channel coding scenario, we use only the code-
words from the bin with the same index as our message, and we choose
a codeword which is the closest to (or jointly typical with) the side
information vector. We present this scheme in more details later on.

One interesting example which can be modeled as a channel with
non-causal transmitter CSI, is a computer memory with defective cells
[75], [76], [74], [122], [123], [63], [62]. In this example, the process of
storing to this memory suffers from random errors caused by noise. A
computer memory may also have some cells which are defected, e.g.,
a memory cell whose stored value seems to be fixed regardless of the
input, e.g., the cell is “stuck at one” or “stuck at zero”. The location
and values (“defect information”) of the defective cells may be found
by storing the all-one bit pattern (or the all-zero bit pattern) in the
memory, reading the contents of the memory and comparing it with the
stored pattern. This process may be repeated several times in order to
exclude the effect of random errors. If this process is not repeated, we
can refer to the “defect information” received from this process as a
noisy version of the “defect information”. By knowing in advance the
“defect information”, we can design codes that are more efficient than
the usual error correcting codes. In this example, the “defect informa-
tion” plays the role of the channel states and transmitter’s CSI.

Another important example for a channel model with transmitter
CSI, is the power constrained Gaussian additive noise channel model
with additive interference which is known non-causally to the trans-
mitter as side information and is statistically independent of the noise.
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In this example, the channel output is given by

Yi = Xi + Si + Zi, i = 1, 2, ..., N, (1.1)

where SN = (S1, ..., SN ) is the i.i.d. side information sequence (the
interference) distributed as SN ∼ N (0, QI) (I being the identity ma-
trix), Q is the side information variance, and ZN = (Z1, ..., ZN ) is the
i.i.d. noise sequence distributed as ZN ∼ N (0, BI), B being the noise
variance. Based on the message to be sent and on the interference sam-
ples S1, ..., SN , the encoder sends a codeword XN = (X1, ...XN ) which
must satisfy the power constraint

1
N

N∑

n=1

E(X2
n) ≤ Γ, (1.2)

where Γ > 0 is a given constant. This channel with non-causal CSIT,
is known as Costa’s channel [34], which has recently received much
attention, as it has been proven useful for modeling in various commu-
nication problems, among them precoding for intersymbol interference
(ISI) channel, digital watermarking, and various broadcasting schemes.
Again, this problem can be divided to the causal and non-causal CSIT
scenarios. When the CSIT is non-causal, this problem is known as
“writing on dirty paper” (WDP), or the “dirty-paper” problem. When
the CSIT is causal, the problem is known as “writing on dirty tape”
(WDT), or the “dirty-tape” problem [15]. The dirty-tape setting is of-
ten used to describe cases where we restrict the encoder to be causal
in order to reduce the implementation complexity compared to dirty-
paper implementation.

Costa showed, for the dirty-paper setting, that the capacity of this
channel is the same as if the interference was not present or, equiva-
lently, if it was also known at the decoder and could be subtracted off,
i.e., the capacity is given by

C =
1
2

log(1 +
Γ
B

). (1.3)

This surprising result is another reason why this problem has received
so much attention.

Yet another interesting example for a channel model with transmit-
ter CSI, is digital watermarking [20]-[24], [31], [38], [44], [45], [46], [79],
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[80], [83], [87], [89], [108], [109]. Digital watermarking is the process of
embedding a message within a host signal to form a composite (water-
marked) signal. The embedding must not cause a noticeable distortion
relative to the host signal. On the other hand, the embedding should
be robust to attacks on the watermarked signal. In some applications,
these attacks are the result of standard signal processing operations. In
other cases they are malicious. The digital watermarking problem can
be modeled as a channel whose conditional output probability depends
on a state process, and where the transmitter has channel state infor-
mation. Here the input power constraint is replaced by a constraint
on the distortion between the channel input and the host signal. This
expresses the requirement that the embedding does not cause a no-
ticeable distortion to the host signal. The dirty-paper problem may
be used to model watermarking in a Gaussian environment. We can
model watermarking as a communication system in which the trans-
mitter, which must satisfy a distortion constraint with regard to the
host signal, sends a watermark message through a noisy channel with
the host signal playing the role of state. The state (the host signal),
is available to the transmitter, and therefore it can be used by the
transmitter as side information, just like in the dirty-paper problem.

The purpose of this paper is to give an overview of the subject of
coding for channels with side information, both from the theoretical
point of view (capacity, fundamental limits, duality with source cod-
ing), and the practical point of view, including coding and decoding
techniques, structures of classes of codes, application aspects, etc.

The outline of this work is as follows. In Section 2, we specify the
notation conventions that will be used and we formalize the model of
a channel with CSIT. Section 3 describes the main theoretical results
pertaining to the capacity of channels with side information. In Section
4, we describe some specific channel models for various problems. In
Section 5, we present several applications for the models which were
presented in the preceding sections. Section 6 presents related prob-
lems which are linked to the problem of coding for a channel with side
information. These problems include source coding dual, which is the
Wyner-Ziv problem, the Gaussian vector broadcast channel and multi-
user channels. In Section 7, we describe algorithms for computation of
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the capacity of channels that were presented in the previous sections, as
well as several coding techniques for these channels. Section 8 concludes
the paper.





2

Notation and Model Formulation

Throughout this paper, scalar random variables will be denoted by cap-
ital letters, their sample values will be denoted by the respective lower
case letters, and their alphabets will be denoted by the respective cal-
ligraphic letters. A similar convention will apply to random vectors
and their sample values, which will be denoted with the same symbols
superscripted by the dimension. Thus, for example, W k will denote a
random k-vector (W1, ..., Wk), and wk = (w1, ..., wk) will be a specific
vector value in Wk, the k-th Cartesian power of W. The notations
wj

i and W j
i , where i and j are integers and i ≤ j, will designate seg-

ments (wi, . . . , wj) and (Wi, . . . , Wj), respectively, where for i = 1, the
subscript will be omitted (as above). For i > j, wj

i (or W j
i ) will be

understood as the null string. Sequences without specifying indices are
denoted by {·}. The cardinality of a set W will be denoted by |W|. The
empty set will be denoted by ∅. R stands for the set of real numbers,
C for the set of complex numbers and R+ for the set of positive reals.

Sources and channels will be denoted generically by the letter P

subscripted by the name of the RV and its conditioning, if applica-
ble, e.g., PU (u) is the probability function of U at the point U = u,
PZ|S(z|s) is the conditional probability of Z = z given S = s, and so on.

9



10 Notation and Model Formulation

Whenever clear from the context, these subscripts will be omitted. A
sequence of finite-dimensional distributions will be denoted by bold let-
ters, for example, Λ = {PW N (wN )}∞N=1. U(a, b) stands for the uniform
distribution on the interval (a, b). Information theoretic quantities like
entropies, divergences, and mutual informations will be denoted fol-
lowing the usual conventions of the information theory literature, e.g.,
H(UN ), I(Zn;W k), D(PY |XS‖PY ), and so on.

We consider the channel depicted in Fig.2.1, whose input, state, and
output, at time index n, are Xn ∈ X , Sn ∈ S and Yn ∈ Y, respectively,
where X ,Y,S are the corresponding alphabets. Unless otherwise speci-
fied, we assume throughout that the channel and state are memoryless,
i.e.,

PY N |XN ,SN (yN |xN , sN ) =
N∏

n=1

PY |X,S(yn|xn, sn). (2.1)

PSN (sN ) =
N∏

n=1

PS(sn). (2.2)

Many variants of this channel model have been studied. In some of
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Fig. 2.1 CSIT channel model.

these variants, the state sequence is generated in a different manner.
The first example is the compound channel, in which the channel state
is fixed during the course of transmission. Another example is the arbi-
trary varying channel (AVC), in which, the states vary arbitrarily from
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symbol to symbol during the transmission (the states are not gener-
ated stochastically, but in an arbitrary deterministic manner). Usually,
in AVC channel models, the state sequence is unknown to the transmit-
ter [77]. Ahlswede [1] analyzed the case where this sequence is known to
the transmitter. Winshtok and Steinberg [134] considered the problem
of joint source channel coding for the arbitrary varying source transmit-
ted over an AVC where the state sequence is known to the transmitter.
This problem combines the model considered by Ahlswede for an AVC
and the problem of an arbitrary varying Wyner-Ziv source. Other ex-
amples include channels in which the state sequence is a more general
stochastic process (e.g., the Gilbert-Elliot channel) or some hybrid sit-
uations like a compound Gilbert-Elliot channel. More details on many
of these channel models can be found in [77].

The channel input may be subjected to a transmission-cost con-
straint

E

{
N∑

i=1

φ(Xi)

}
≤ NΓ, (2.3)

where φ is a given function from X to IR+ and Γ ≥ 0 is a prescribed
constant. In this problem, the transmitter sends a random message M

to the receiver in N uses of the channel. The random message M is
uniformly distributed in M = {1, ..., 2NR}, R being the code rate. The
transmitter is also provided with causal or non-causal CSI.

An (N, 2NR) code consists of the following:
1. A set of N encoding functions fn : M×Sn −→ X , for n = 1, ..., N ,
such that xn = fn(m, sn) and equation (2.3) is satisfied, where m ranges
over M, and sn is the vector of the channel states realizations up to
time n. For the non-causal case, a mapping f : M×SN −→ XN , such
that xN = f(m, sN ), or equivalently, xn = fn(m, sN ), n = 1, ..., N , and
again equation (2.3) is satisfied.
2. A decoding function gn : YN −→M, such that the decoded message
is m̂ = g(yN ).
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The average probability of error is given by

Pe =
1

2NR

2NR∑

m=1

∑

{yN :g(yN ) 6=m}

∑

sN

PSN (sN )PY N |XN ,SN (yN |xN , sN ),

(2.4)
where xN depends on the inputs to the encoder in a manner that de-
pends on whether it is the causal or non-causal case, as described above.

We define an achievable rate and capacity in the following way:

Definition 1. A rate R is said to be achievable if for every ε > 0, there
exists an integer N0 = N0(ε) such that for all N > N0, there exists an
(N, 2NR) code with probability of error Pe ≤ ε.

Definition 2. The capacity is the supremum of all achievable rates.



3

Fundamental Results

3.1 Causal Side Information

The causal side information case was first investigated by Shannon [105]
in 1958. Shannon showed that the capacity of the channel, depicted in
Fig. 2.1, is equal to the capacity of an ordinary discrete memoryless
channel (DMC), with the same output alphabet and an input alphabet
of size |X ||S|. The input letters of the new channel consist of all map-
pings from S to X . Any coded communication system for the equivalent
channel, without side information, can be translated into a coded com-
munication system for the original channel with the same probability
of error. The equivalent channel and its relation to the original channel
are depicted in Fig. 3.1.

The equivalent channel input variable is denoted by T , and is called
“strategy”. Every input letter t of this channel is a particular function
from the state alphabet S to the input alphabet X of the original
channel (i.e., t : S → X ). The alphabet of T , which will be denoted
by T , consists of all |X ||S| distinct functions from the state set to the
input alphabet. To achieve capacity, it is enough to use at most |Y| of
them, which is the number of output letters (see [36] Section 8.3). The

13
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Fig. 3.1 Shannon’s Equivalent channel.

“device” shown in Fig. 3.1 takes Tn and Sn as the inputs and produces
Xn = Tn(Sn) for a function Tn and state Sn. The equivalent channel
is characterized by a set of conditional output probability functions
{PY |T (y|t) : t ∈ T , y ∈ Y} such that

PY N |T N (yN |tN ) =
N∏

n=1

PY |T (yn|tn), (3.1)

where
PY |T (y|t) =

∑

s∈S
PS(s)PY |X,S(y|t(s), s). (3.2)

Shannon used strategies in which the input to the channel depends
only on the current state of the channel and not on previous states.
He showed that using only this type of strategies, the capacity of the
equivalent channel is equal to the capacity of the original channel. The
capacity of this channel is therefore the capacity of the equivalent DMC

C = max
PT (·)

I(T ; Y ), (3.3)

where PT (·) is a probability distribution of T , which is independent of
the state S and the maximization is taken over all joint distributions
satisfying

PT,S,X,Y (t, s, x, y) = PS(s)PT (t)δ(x, t(s))PY |X,S(y|x, s), (3.4)
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where δ(x, t(s)) = 1 for x = t(s), and δ(x, t(s)) = 0 otherwise.
In order to prove the equivalence of the two channels, we first note

that from (3.2), it can easily be seen that each code for the equivalent
channel can be translated to a code for the original channel with the
same probability of error. The translation of codes consists merely of
using the input xn = tn(sn) for a function tn and state sn. Next, we
prove that the rate of the original channel cannot be larger than the
capacity of the equivalent channel, thus establishing the converse part
of (3.3). Letting Tn = (M,Sn−1), and C being given by (3.3), we can
write:

NR−H(M |Y N ) = H(M)−H(M |Y N )

= I(M ; Y N )

=
N∑

n=1

I(M ;Yn|Y n−1)

≤
N∑

n=1

I(M,Y n−1; Yn)

≤
N∑

n=1

I(M, Sn−1; Yn)

=
N∑

n=1

I(Tn; Yn)

≤ NC, (3.5)

where the second inequality follows from the data processing inequality
using the Markov chain (M, Y n−1) −→ (M, Sn−1) −→ Yn and the
last inequality follows since Tn is independent of Sn. If the message is
recovered reliably, then H(M |Y N ) must be small (Fano’s inequality).
Thus, the rate R cannot be larger than C.

The capacity in equation (3.3) is expressed in terms of strategies.
This might pose some conceptual and practical problems for code con-
struction, especially for large |S|. Large alphabets make the implemen-
tation of the encoder and decoder more difficult.

The encoder, in this problem, is able to produce the channel input
Xn, when given with Tn = (M,Sn−1) and Sn, as one should expect in
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a causal CSIT model.
Shannon’s capacity formula can be extended [6] to the case where

the alphabets X ,Y,S are the real line and where the transmitter is
subjected to an average power constraint

E {φ(X)} ≤ Γ, (3.6)

and the capacity is given by

C = sup
PT (·):E{φ(T (S))}≤Γ

I(T ; Y ), (3.7)

where the expectation is relative to the product distribution
PS,T (s, t) = PS(s)PT (t), t ∈ T , s ∈ S. In this case, the supremum
in (3.7) is over all the distributions PT (·) of the continuous functions
t : S −→ X , where the alphabets X ,S are the real line.

Shannon’s results have been used to compute the capacity of a dis-
crete modulo-additive noise channel [50] with causal side information
at the transmitter, which represents a specific channel whose capacity
was determined using (3.3). These results were also used to bound the
capacity for the dirty-tape problem [48], which is the causal counter-
part of the dirty-paper problem. These problems will be discussed in
Section 4.

Shannon’s model was extended by Salehi [101] to the case where the
transmitter has access to one noisy version of the state information,
Wn, and the receiver has access to another version, Vn. We will see
later that this model is not really more general than Shannon’s model.
This communication system is depicted in Fig. 3.2.

Denote by W and V the alphabets of Wn and Vn, respectively, and
let T be the set of all |X ||W| possible functions from W to X . The
variables Tn, Sn,Wn, Vn and Yn, n = 1, ..., N , take values according to
the joint distribution

PT,S,W,V,Y (t, s, w, v, y) = PT (t)PS,W,V (s, w, v)PY |X,S(y|x = t(w), s),
(3.8)

for some arbitrary distribution PT (t), where T is independent of W

and V . The capacity of the channel is given by

C = max I(T ; Y |V ), (3.9)
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Fig. 3.2 Transmitter and receiver side information channel model.

where the maximum is taken over all joint probability distributions as
in (3.8).

Salehi proved his capacity formula (3.9) directly in [101]. Caire and
Shamai [13] showed that this result follows from Shannon’s result for
the capacity of a channel with perfect causal transmitter side informa-
tion by a simple argument: They considered the receiver side informa-
tion {Vn} as an additional channel output in an equivalent channel.
For this channel, the conditional probability distribution of the output
(Y, V ) is given by

P ′
Y,V |X,W (y, v|x, w) =

∑
s

PY,V |X,W,S(y, v|x,w, s)PS|X,W (s|x,w)

=
∑

s

PY |X,S(y|x, s)PS,W,V (s, w, v)/PW (w),

(3.10)

and PW (w) =
∑

s,v PS,V,W (s, v, w).
This equivalent channel is clearly of the type studied by Shannon,

with causal transmitter side information and no receiver side informa-
tion. The capacity of this channel is therefore C = maxPT (t) I(T ;Y, V ).
But since V is independent of T we have I(T ;V ) = 0, so that (3.9) fol-
lows immediately. It follows then that, as argued earlier, Salehi’s model
is not really more general than Shannon’s original model.

The capacity of this channel is expressed in terms of strategies. We
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mentioned earlier that this might pose some conceptual and practical
problems for code construction, especially for large |W|, that will re-
quire very large codebooks. Caire and Shamai [13] found a special case
in which the capacity can be expressed without using strategies. In this
case, the CSIT is a deterministic function of the CSIR. Let Wn = g(Vn),
where g(·) is a deterministic function from V to W. Then, the channel
capacity is given by

C =
∑

w∈W
p(w) max

p(x|w)
I(X; Y |V, W = w). (3.11)

This capacity can be achieved by a multiplexed multiple codebook
scheme. For each value of w ∈ W, a codebook of length (p(w) −
δ)N , where δ is a small positive number, and rate slightly less than
I(X;Y |V,w) is generated i.i.d. according to the probability distribu-
tion p(x|w). For the message m, a set of |W| codewords is selected, one
for each codebook. At time index n, if Wn = w, the transmitter sends
the first not yet transmitted symbol of the w-th codeword. Then the
codewords are multiplexed according to the transmitter side informa-
tion sequence WN . If g(·) is deterministic, the receiver can demultiplex
the received sequence before decoding since it can perfectly recover WN

from V N . After demultiplexing, the |W| codewords are independently
decoded. The case where Wn is a deterministic function of Vn, can de-
scribe a scenario in which the transmitter’s side information is obtained
via an error-free low rate causal feedback channel from the receiver to
the transmitter. Heegard and El Gamal [63] studied a related problem,
in which the CSIT and CSIR are subject to rate constraints Re and
Rd, respectively. We will examine this problem is Subsection 3.2.

A special case of Caire and Shamai’s result, is the case where the side
information available to the encoder is equal to the side information
available to the decoder, i.e., Wn = Vn. We will then denote this as
Zn, i.e., Wn , Vn = Zn. In this special case, T denotes the set of all
possible functions from Z to X . The capacity in this case is given by

C = max I(X; Y |Z), (3.12)

where the maximum is taken over all joint probability distributions of
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the form

PS,Z,X,Y (s, z, x, y) = PS,Z(s, z)PX|Z(x|z)PY |X,S(y|x, s). (3.13)

The case where the same side information is available to both the en-
coder and decoder has been used in [6] to model private information
embedding which has a wide variety of applications, such as digital
watermarking, data hiding and steganography. Information embedding
can be viewed as a problem of channel coding with side information.
We refer to the information embedding case where both the encoder
and decoder have the same side information signal as private infor-
mation embedding, and to the case where only the encoder has side
information as public information embedding.

We mentioned, in Section 2, that we assume that the states of the
channel are generated by a memoryless source of a given distribution
(2.2). In other models, the state sequence is not memoryless. We will
elaborate on this in Section 6.

3.2 Non-Causal Side Information

In this section, we consider the case of non-causal side information.
This model was first investigated by Kuznetsov and Tsybakov [75] in
1974, who considered the problem of coding for a computer memory
with defective cells. Here, the positions of the defective cells serve as
the channel state information, and they are known non-causally to the
encoder.

Kuznetsov and Tsybakov presented coding techniques for this chan-
nel, but they have not determined the capacity. The capacity was found
in 1980 by Gel’fand and Pinsker [56]. As in Section 2, the channel is
stationary and memoryless and the output probability is given by (2.1).
The capacity of this channel is given by

C = max
PU,X|S

[I(U ;Y )− I(U ;S)], (3.14)

where U is an auxiliary random variable with cardinality |U| ≤
|S||X | + 1, and the maximization is subjected to the constraint that
U −→ (X,S) −→ Y forms a Markov chain. An auxiliary RV was orig-
inally used by Wyner and Ziv [135] for the dual problem of source
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coding (rate-distortion) with decoder side information under a distor-
tion constraint, and it was at that time a relatively new technique. We
will elaborate more on the Wyner-Ziv problem and its duality to the
Gel’fand-Pinsker problem in Section 6.

Denoting RGP (PU,X|S) = I(U ; Y ) − I(U ;S), we now present a few
properties [56] of this function.

Claim 1. [56]
i) For fixed PU |S(u|s), RGP (PU,X|S) is a convex functional of the dis-
tribution PX|U,S(·|u, s). ii) For fixed PX|U,S , RGP (PU,X|S) is a concave
functional of the distribution PU |S(·|s).

By Claim 1, the optimum PX|U,S(·|u, s) (in the sense of (3.14)) puts all
its mass on a single x for every u, s, and so, there exists a deterministic
mapping f : U × S −→ X such that PX|U,S(x|u, s) = 1 if and only
if x = f(u, s). This remains true [6], even when the transmitter is
subjected to an average power constraint (2.3).

We will now outline the proof of the direct part of this capacity
formula. To this end, we will need to use a random binning technique,
which is also being used in the dual problem of source coding with
side information [36]. For each message m, generate 2NR0 codewords
(forming a bin) {uN (m, 1), ..., uN (m, 2NR0)} 1 i.i.d. according to the
distribution PU (u). Given the message m and the state sequence sN , the
encoder seeks a codeword in bin m that is jointly typical with sN , say
uN (m, j). If multiple such codewords in bin m exist, choose the one with
the smallest j. If no such j exists, then declare an encoding error. The
encoder then creates the input to the channel as xi = f(ui(m, j), si), i =
1, ..., N . The decoder finds an m̂ and a ĵ such that uN (m̂, ĵ) is jointly
typical with the channel output sequence yN , the decoded message in
this case will be m̂. If multiple or no such m̂ and ĵ exist, then declare a
decoding error. The probability of encoding failure goes to zero as long
as R0 > I(U ; S) and the probability of decoding failure goes to zero as
long as R + R0 < I(U ;Y ). Thus, the overall probability of error goes
to zero as long as R < I(U ; Y )− I(U ; S).

1 uN (m, j) represents a codeword indexed by m ∈ M, which is the bin index and j ∈
{1, ..., 2NR0}, which is an index within the bin.
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The above encoding procedure which finds a jointly typical code-
word uN (m, j) with sN in bin m, defines a source coding process [36],
thus the collection of codewords in each bin plays the role of a source
code. The above decoding procedure, finds a codeword from the entire
collection of codewords which is jointly typical with yN , thus the col-
lection of all the codeword in all the bins plays the role of a channel
code. We will make use of these observations later on.

3.3 Relations Between the Causal and Non-Causal Cases

We can rewrite (3.14) and present it in terms of strategies. Equation
(3.14) is maximized over PU |S(u|s)PX|U,S(x|u, s) and by Claim 1, as
discussed in Subsection 3.2, the optimal PX|U,S(x|u, s) may take values
of 0 or 1 only, and thus, X is a deterministic function of U and S.
Therefore, we can extend the input alphabet to the set of all functions
t : S −→ X in order to eliminate PX|U,S(x|u, s) from the problem. This
is very important for the numeric calculation of channel capacity. We
shall see in Subsection 7.1 that the new form of the capacity formula
will make the numeric algorithms for the computation of the channel
capacity more efficient.

The capacity for the non-causal case, in terms of strategies, is given
by

C = max
PT |S(t|s)

[I(T ; Y )− I(T ;S)], (3.15)

where the maximization is taken over all joint distributions satisfying

PT,S,X,Y (t, s, x, y) = PS(s)PT |S(t|s)δ(x, t(s))PY |X,S(y|x, s). (3.16)

Alternatively, we can rewrite the capacity formula for the causal case
(3.3), and present it in terms of auxiliary random variable:

C = max
PU (·),f :U×S−→X

I(U ; Y ), (3.17)

where U is an auxiliary random variable and the joint distributions of
the random variables S, U,X, Y is given by

PS,U,X,Y (s, u, x, y) = PS(s)PU (u)δ(x, f(u, s))PY |X,S(y|x, s). (3.18)

We can think of this auxiliary random variable as indexing a set of
functions from S to X . There are |X ||S| possible functions, but we only
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need to use at most |S||X | + 1 to achieve capacity in the non-causal
case, and |Y| in the causal case.

The causal side information capacity formula, discussed in Subsec-
tion 3.1, can be obtained as a special case of the non-causal one if we
restrict U to be independent of S. Let us look at the proof of the di-
rect part in the non-causal case. The encoder, in the causal case, is
only given the state sequence until time index i, i = 1, ..., N , i.e., Si.
Therefore, the entire state sequence SN and the codeword UN will be
jointly typical if the distribution of the auxiliary random variable U is
independent of S. For the converse part, it was shown in [56] that

NR−Nε ≤
N∑

i=1

I(Ui; Yi)− I(Ui; Si), (3.19)

where Ui is defined as Ui = (m,Y i−1, SN
i+1) and (m,Y i−1, SN

i+1) −→
(Xi, Si) −→ Yi forms a Markov chain. Therefore, when the side informa-
tion is given in a causal manner, Ui is independent of Si ((m,Y i−1) −→
(m, Si−1) −→ Yi forms a Markov chain), resulting in Shannon’s capac-
ity (3.17).

Another important observation is the following. The last step in
Gel’fand and Pinsker’s proof of the converse part is

N∑

i=1

I(Ui; Yi)− I(Ui; Si) ≤ N max
i

[I(Ui; Y )− I(Ui; S)], (3.20)

which proves the existence of a RV U , s.t R ≤ I(U ;Y )− I(U ; S). If we
have a power constraint, we cannot use (3.20). The index i which max-
imizes I(Ui; Y )− I(Ui;S), does not have to fulfill the power constraint
E[φ(Xi)] ≤ Γ. Therefore, we have to take a different approach to prove
the converse. We define a random variable J uniformly distributed in
{1, 2, ..., N}, UJ , (m, Y J−1, SN

J+1), and U , (UJ , J). Now, the proof
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of the converse part will be complete with these steps:

R− ε ≤ 1
N

N∑

i=1

I(Ui; Yi)− I(Ui; Si)

= I(UJ ; YJ |J)− I(UJ ;SJ |J)

= I(U ; YJ |J)− I(U ; SJ |J)

= I(U ;YJ |J)− I(U ; S)

≤ I(U ;Y )− I(U ;S), (3.21)

where the last equality follows from the fact that S is independent of
J , and the last inequality since conditioning reduces entropy.

We can also link Gel’fand and Pinsker’s result to the case where
both the transmitter and receiver have the same side information. This
case is a special case of equation (3.12), in which both the transmitter
and receiver have the same noisy version of the side information- W =
V = Z. In our case, Z = S, and the capacity is equal to

C = max
PX|S(x|s)

I(X;Y |S). (3.22)

In general, the capacity in this case is bigger than when we have only
perfect non-causal CSIT and no CSIR (Gel’fand and Pinsker’s setting),
but this capacity can be equal to Gel’fand and Pinsker’s capacity for-
mula (3.14), if and only if [95] the distribution achieving the maximum
in (3.22) (say P ∗

X,S,Y ) can be represented in the form of having the
auxiliary variable U : PU,X,S,Y (u, x, s, y) such that:

• ∑
u PU,X,S,Y (u, x, s, y) = P ∗

X,S,Y (x, s, y),
• the channel input x can be represented as x = f∗(u, s), where

f∗(·, ·) is the encoding mapping which maximizes (3.14), and
• the following two Markov chains are satisfied: U −→

(X, S) −→ Y and S −→ Y −→ U .

This is needed because the objective function in (3.22), I(X;Y |S) =
I(U ; Y |S) from the first Markov chain and the objective function in
(3.14), I(Y ; U) − I(U ; S) = I(U ; Y |S) from the second Markov chain.
The second Markov chain can be interpreted as follows: all the de-
pendency between the side information and the auxiliary variable U is
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captured through the channel output Y . So there is no loss in perfor-
mance in terms of getting information about U , even if we do not have
CSIR. These conditions link (3.14) and (3.22). They present another
way to determine if (3.14) equals (3.22). The obvious method to deter-
mine if they are equal, is to separately calculate the capacity of (3.14)
and (3.22). In the dirty-paper problem, as we shall see in Subsection
4.1, these conditions are met and the capacity with CSIT is equal to
the capacity with CSIT and CSIR.

3.4 Modifications and Extensions

We can also extend (3.15) to the case where the alphabets X ,Y,S are
the real line (see [6],[48]) and where the transmitter is subject to an
average power constraint to yield

C = sup
PT |S(t|s):E{φ(T (S))}≤Γ

[I(T ; Y )− I(T ;S)], (3.23)

where t ∈ T is the set of all possible mappings t : S −→ X .
Gel’fand and Pinsker’s results were used by Costa [34] to analyze the

additive interference channel, which is known also as the dirty-paper
channel, as mentioned earlier. In the Introduction, the importance of
this result and its relevance to analyzing many communication prob-
lems was discussed. This result was also used to analyze digital water-
marking and the capacity of a computer memory with defects. Costa’s
work and other related results will be presented in Section 4.

Cover and Chiang [25],[37] extended Gel’fand and Pinsker’s model
to the case where both the transmitter and receiver observe different
non-perfect CSI sequences, which are correlated to the state sequence.
This extension can be used to model a wider range of problems than the
previous model. For example, it can model a high-definition television
(HDTV) system, where the noisy analog version of the TV signal is the
side information to the decoder. In this example, the side information
is not really part of the channel, because the analog transmission serves
as the side information and there is no state process in the channel.

The model which they used assumes a CSI signal, Wn, avail-
able to the transmitter, a correlated CSI signal, Vn, available to
the receiver, and a memoryless channel with transition probability
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PY |X,W,V (y|x,w, v). We assume that the CSI signals (Wn, Vn) are gen-
erated by a memoryless source

PW N ,V N (wN , vN ) =
N∏

n=1

PW,V (wn, vn). (3.24)

The output Y N has the conditional distribution

PY N |XN ,W N ,V N (yN |xN , wN , vN ) =
N∏

n=1

PY |X,W,V (yn|xn, wn, vn).

(3.25)
For this model, we define a block code of length N as a sequence of N

encoding functions fn : M×WN −→ X , n = 1, ..., N , such that xn =
fn(m,wN ), where m ranges over the set of possible source messagesM.
The decoding function is gn : YN ×VN −→M, such that the decoded
message is m̂ = g(yN , vN ). The capacity in this case will be

C = max
PU,X|W (u,x|w)

[I(U ;V, Y )− I(U ; W )]. (3.26)

Cover and Chiang’s result follows directly from Gel’fand and
Pinsker’s result. Therefore, Cover and Chiang’s model is not really
a generalization of Gel’fand and Pinsker’s original model, just like
Salehi’s [101] model which is not really a generalization of Shannon’s
original model.

Another interesting aspect of the Gel’fand-Pinsker channel model
presented in Section 2, is that similarly to a DMC with feedback [36],
adding a feedback to the Gel’fand-Pinsker channel model or to the
Shannon channel model does not increase the capacity [131]. As in the
classical DMC, feedback can help in simplifying the coding scheme in
the Gel’fand-Pinsker channel, so there is no need for a complicated
binning scheme.

We can look back at the last few steps in Gel’fand and Pinsker’s
converse proof [56], and see that it is general enough as to include
the feedback. We have defined Ui = (m,Y i−1, SN

i+1) where Ui −→
(Xi, Si) −→ Yi forms a Markov chain. Ui −→ (Xi, Si) −→ Yi is a
Markov chain even if we include a feedback in the channel. This is due
to the fact that (m,SN , Y i−1) −→ (Xi, Si) −→ Yi is a Markov chain
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and therefore, since Ui is a deterministic function of (m,SN , Y i−1),
Ui −→ (Xi, Si) −→ Yi is a Markov chain.

We have mentioned in Subsection 3.3 that Shannon’s causal counter-
part of the problem is a special case of the Gel’fand-Pinsker non-causal
problem. If we add a feedback to Shannon’s model, we arrive at the
same conclusion, i.e., feedback does not increase capacity in the causal
model. This is due to the fact that the independence between Ui and
Si is maintained in the presence of feedback (see Subsection 3.3).

3.5 Rate-Limited Side Information

While we have assumed thus far that the CSI is delivered to the trans-
mitter and/or receiver, “free-of-charge”, a more appropriate scenario
would describe these deliveries as being carried out across capacity-
limited channels, in particular, capacities that are not necessarily higher
than the entropy of the state process. Heegard and El-Gamal [63] as-
sumed that the CSIT and the CSIR are subjected to rate constraints
Re and Rd, respectively. Therefore, the CSI signals carry only partial
information about the underlying state process. Their model is depicted
in Fig. 3.3.
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Fig. 3.3 A channel with two-sided non-causal state information with rate constraint model.

The corresponding definition of the coding system is as follows:

Definition 3. An (N,R, Re, Rd, ε) code consists of the following four
functions:
Je : SN −→ {1, ..., 2NRe}
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Jd : SN −→ {1, ..., 2NRd}
f : {1, ..., 2NR} × {1, ..., 2NRe} −→ XN

g : YN × {1, ..., 2NRd} −→ {1, ..., 2NR}
Pe ≤ ε, where Pe is defined in Section 2.

The mapping Je generates a description of the state vector SN to
the encoder f , at rate Re. Similarly, Jd generates a description of SN

to the decoder g, at rate Rd. The mappings Je and Jd, are implemented
by the encoder descriptor (ED) and decoder descriptor (DD) blocks,
respectively.

Definition 4. For fixed Re and Rd, a rate triplet (R, Re, Rd) is achiev-
able if for ε > 0 there exists an (N, R, Re, Rd, ε) code for all sufficiently
large N .

The capacity is defined as the supremum over all R, such that
(R,Re, Rd) is achievable.

The complete characterization of the capacity region is still un-
known. An inner bound to the capacity region was provided by Heegard
and El-Gamal, and is presented in Theorem 1.

Theorem 1. [63] Fix (S, PS(s),X , PY |X,S(y|x, s),Y) and alphabets
U ,S0,Se and Sd. All rate triples (R, Re, Rd) in the convex hull of the
set



(R, Re, Rd)|Re > I(S0, Se;S)
Rd > I(S0, Sd; S)− I(S0, Sd;Y )
Rd > I(Sd;S|S0)− I(Sd; Y |S0)
Re + Rd > I(S0, Se, Sd; S)− I(S0, Sd; Y ) + I(Se; Sd|S0)
Re + Rd > I(Se, Sd; S|S0)− I(Sd;Y |S0) + I(Se; Sd|S0)
R < I(U ; Y, Sd|S0)− I(U ; Se|S0)





for some probability mass function

PS,S0,Se,Sd,U,X(s, s0, se, sd, u, x) =

PS(s)PS0,Se,Sd|S(s0, se, sd|s)PU,X|S0,Se
(u, x|s0, se) (3.27)

are achievable.

The variables S0, Se, Sd denote common side information, encoder side
information and decoder side information, respectively. U is an auxil-
iary random variables that plays the role of the coding RV of Gel’fand
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and Pinsker. The first condition, is associated with the rate-distortion
function for the channel from S to (S0, Se). The second condition, is
associated with the Wyner-Ziv rate-distortion function [135] for the
channel from S to (S0, Sd) with the channel output Y serving as a
decoder side information. The third condition, is associated with the
Wyner-Ziv rate-distortion function for the channel from S to Sd with
Y serving as a decoder side information, and S0 as common side infor-
mation. The fourth and fifth conditions, are combinations of the first
condition with the second and third conditions, respectively. We also
add to both of these conditions, the information between Se and Sd,
i.e., I(Se; Sd|S0). This is due to the fact that if we want to look at the
sum of the rates Re + Rd we have to take into account the influence of
Se on Sd, because now we do not have two separate problems of encod-
ing Se, and Sd. The last condition is similar to Gel’fand and Pinsker’s
capacity formula, conditioned on S0, which is the common part of side
information sent to the transmitter and receiver.

Although Theorem 1 gives only an inner bound on the achievable
region, Heegard and El-Gamal found several special cases for which it
is the exact achievable region.
(a) Re = Rd = 0 (no description of defects), the capacity is

C = max
PX(x)

I(X; Y ). (3.28)

(b) Re > H(S), Rd > H(S|Y ) (complete description of defects at en-
coder and decoder), the capacity is equal to (3.22).
(c) Re > H(S), Rd = 0 (complete description of defects at encoder and
no description at decoder, i.e., the Gel’fand-Pinsker model), the capac-
ity is equal to (3.14).
(d) Re > 0, Rd = H(S|Y ) (complete description of defects at decoder).

In case (d), Heegard and El-Gamal suggested an expression which is
too optimistic. This case was later corrected by Rosenzweig, Steinberg
and Shamai [99], which gave a different expression for the capacity, as
we shall see later.

The achievability of these capacity formulas follows from Theorem
1 by identifying the auxiliary random variables as follows:
(a) S0 = Se = Sd = ∅, U = X.
(b) S0 = S, Se = Sd = ∅, U = X.
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(c) S0 = Sd = ∅, Se = S.
(d) Se = ∅, (S0, Sd) = S, U = X.
In [99], it was mentioned that substituting the variables (S0, Sd) =
S in case (d), forces the auxiliary variable S0 to be a deterministic
function of S. Instead, Rosenzweig, Steinberg and Shamai suggested
the assignment Sd = S. In this case, the capacity is given by

C = max
PX|S0

(x|s0)
max

PS0|S(s0|s)
I(X;Y |S, S0), (3.29)

where the second maximum is taken over the distribution PS0|S(s0|s)
satisfying

Re ≤ I(S0; S). (3.30)

Partial CSIT has received considerable attention in the context of
multi-input-multi-output (MIMO) systems used over the block fading
channel. The presence of CSIT has been shown to yield significant per-
formance gains in various aspects [10],[67],[100]. Many studies consider
a MIMO system where the transmitter is given only a quantized finite
rate CSI via an error-free feedback channel. Rosenzweig, Steinberg and
Shamai [99], studied these types of channels. They extended Heegard
and El-Gamal’s model for a channel with partial CSIT and perfect
CSIR (case (d)), to the case where the CSIT comprises two parts, both
subjected to a rate constraint. This model was later further extended
by Cemal and Steinberg to the case where the transmitter receives
multiple partial CSI signals (see [17] and [18]). Cemal and Steinberg
[19] extended the model of a single-user channel with partial CSIT and
perfect CSIR to multiple access channel (MAC), where the encoders
have access to partial rate-limited CSIT and the decoder have access
to perfect CSIR. Multiple access channels will be discussed in Section
6.6.1.

Cemal and Steinberg [18] have also extended the model for a channel
with partial CSIT and perfect CSIR, to the case where the partial CSI is
conveyed through a noisy channel (genie channel) to the encoder. They
considered an extended communication model where an information
source generates i.i.d random variables Wn ∈ W, drawn under distrib-
ution PW (·), independent of the state source Sn, is to be transmitted
through the channel, where the transmission is subjected to a distor-



30 Fundamental Results

tion constraint between the source signal W and its reconstruction Ŵ .
This communication model is depicted in Fig. 3.4. The Gel’fand-Pinsker
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Fig. 3.4 Joint state-channel source-channel coding with partial state information at the
transmitter.

channel PY |X,S(·|·, ·) operates at a rate of ρ−1
c channel uses per infor-

mation symbol and the genie channel PSe|K(·|·) operates at a rate of ρs

channel uses per state source (or at ρs/ρc channel uses per information
symbol). The joint source-channel state encoder generates a block code
of length Ns = ρsN , kNs ∈ KNs , from a state source block of length N ,
sN ∈ SN . The block KNs is subjected to a transmission cost constraint
such that E[φs(KNs)] ≤ NsΓs where φs(KNs) =

∑Ns
n=1 φs(kn) for some

cost function φs : K −→ R+. The joint source-channel encoder, receives
the partial CSIT SNs

e which is the output of the genie channel, gen-
erates the input to the Gel’fand-Pinsker channel xN ∈ XN based on
SNs

e and an information source block of length Nc = ρcN , WNc ∈ WNc .
The input block xN is subjected to a transmission cost constraint (2.3).
The decoder has access to perfect CSIR sN and produces an estimate
of the source ŵNc ∈ ŴNc from the channel output yN and the CSIR
sN . The quality of the estimation is measured by the expectation of
an additive distortion measure: d

(
wNc , ŵNc

)
=

∑Nc
n=1 d (wn, ŵn) where

d : W × Ŵ −→ R+ is a single-letter distortion measure.
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Definition 5. An (N, Nc, Ns, D, Γ,Γs) joint state-source-channel
(SSC) code for the information source PW (·), state source PS(·),
Gel’fand-Pinsker channel PY |X,S(·|·, ·) and genie channel PSe|K(·|·),
consists of three mappings:

fs : SN −→ KNs

f : WNc × SNs
e −→ XN

g : Y N × SN −→ ŴNc (3.31)

such that E[d
(
WNc , g(Y N , SN )

)
] ≤ NcD, E[φ(f(WNc , SNs

e ))] ≤ NΓ
and E[φs(fs(SN ))] ≤ NsΓs.

The distortion cost triple (D, Γ, Γs) is achievable with bandwidth ex-
pansion factors ρc and ρs if for any ε > 0 and sufficiently large N , there
exists an (N, ρcN, ρsN, D + ε, Γ, Γs) joint SSC code. Given bandwidth
expansion factors ρc and ρs, the distortion-cost region is the closure of
the set of achievable distortion-cost triples (D, Γ, Γs) and is denoted by
D.

Cemal and Steinberg [18] have characterized D.

Theorem 2. [18] For any information source PW (·), state source
PS(·), Gel’fand-Pinsker channel PY |X,S(·|·, ·) and genie channel
PSe|K(·|·) with bandwidth expansion factors ρc and ρs, D is the set
of all distortion-cost triples (D, Γ, Γs) for which there exist a random
variable S0 taking values in S0 such that the following conditions are
satisfied simultaneously: (i) The Markov relations S −→ S0 −→ X,
S0 −→ (X, S) −→ Y hold. (ii) The auxiliary alphabet S0 satisfies
|S0| ≤ |S|+ 1. (iii) The distortion-cost triple (D,Γ, Γs) satisfies

ρcRW (D) ≤ I(X; Y |S, S0)

I(S, S0) ≤ ρsCg(Γs)

E[φ(X)] ≤ Γ (3.32)

where RW (D) , minPŴ |W (ŵ|w):E[d(w,ŵ)]≤D I(W ; Ŵ ) is the rate-

distortion function and Cg(Γs) , maxPK(k):E[φs(k)]≤Γs
I(K; Se) is the

capacity-cost function.
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If we compare the achievable rate region given in (3.29), (3.30) to the
distortion-cost region characterized in Theorem 2, we see that the par-
tial description of Re in (3.30) is replaced by ρsCg(Γs) and the Gel’fand-
Pinsker channel capacity C in (3.29) is replaced by ρcRW (D). This
connection implies a separation principle in our extended scenario. A
separation principle holds for state coding independent of the genie
channel (but depending on the Gel’fand-Pinsker channel), and a sepa-
ration principle holds for the main source coding, independent of the
Gel’fand-Pinsker channel statistics.

In [112], [111] a dual problem was investigated, where the transmit-
ter have access to full non-causal CSIT and the receiver have access to
rate-limited CSIR. The capacity of this model is given by

C = max [I(U ;Y |Sd)− I(U ;S|Sd)] (3.33)

where the maximization is over all PX,Sd,U |S(·, ·, ·|·) satisfing

Rd ≥ I(S; Sd)− I(Y ; Sd). (3.34)

Coding of side information intended for the channel decoder is a Wyner-
Ziv like problem, since the channel output depends statistically on the
state, thus serving as side information in the decoding of the encoded
state. Steinberg [113] suggested as an application for this model the
problem of reversible information embedding with compressed host at
the decoder. Information embedding, and reversible information em-
bedding is discussed in Section 5.2.
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Specific Channel Models

In this section, we describe two specific models of channels with side
information. We use the results presented in Section 3 to find the capac-
ities of these channels and we present coding techniques. The specific
channels are the “dirty paper” channel, the AWGN channel with fading
and the modulo additive noise channel.

4.1 The Dirty Paper Channel

In this subsection, we consider the problem of a power constrained
additive noise channel, where part of the noise is known at the trans-
mitter as side information. This part of the noise may be the result
of an additive interference. This model is suitable to describe, for ex-
ample, a scenario in which a user, which is located close to the main
transmitter, is interfering, but cooperating by revealing his messages
in advance. It is also suitable to describe a scenario in which one trans-
mitting antenna, is interfering another antenna, serving the same user
in a MIMO scenario.

The channel output, in this model, is given by

Y N = XN + SN + ZN , (4.1)
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where SN is the interference sequence which is known to the encoder,
and ZN is the statistically independent unknown additive noise se-
quence. The encoder satisfies the power constraint (1.2).

This problem was investigated by Costa [34] and is known as the
“dirty-paper” problem, and the channel model is known as Costa’s
channel. In his work, Costa assumed that the interference and noise
are sequences of i.i.d. random variables distributed according to S ∼
N (0, Q) and Z ∼ N (0, B), respectively. Costa showed that the capacity
is given by

C =
1
2

log
(

1 +
Γ
B

)
, (4.2)

which is the same as if SN was absent altogether.
Let X be a N (0, Γ) random variable independent of S and let

U = X + αS. Costa directly computed I(U ; Y )− I(U ; S) for this joint
distribution and then optimized the result over α. He found that the
optimal value of α is α∗ = Γ

Γ+B . We observe that α∗(X + Z) is the
MMSE estimator of X given X + Z, and therefore, X − α∗(X + Z) is
independent of X + Z. Furthermore, X −α∗(X + Z) is independent of
Y = X + S + Z since they are jointly Gaussian and uncorrelated, or
more generally, since X − α∗(X + Z) −→ X + Z −→ X + S + Z form
a Markov chain. This more general independence quality allows us to
drop Costa’s assumption that SN is Gaussian. Therefore, SN can have
any (power limited) ergodic distribution [31], [32]. Costa’s result was
also extended to any known deterministic sequence SN with a common
source of randomness available to both the transmitter and receiver
[48].

Costa’s result still holds, with a more general and sufficient con-
dition on the noise ZN : if XN has the capacity-achieving distribution
for the additive noise channel Y N = XN + ZN and there exist a linear
function α(·) such that XN−α

(
XN + ZN

)
is independent of XN +ZN .

This condition is met if ZN is a colored Gaussian process since the ca-
pacity achieving distribution is also Gaussian. In [141] this result was
further extended to the case where the noise and interference are not
necessarily stationary or ergodic (see [141] for more details).

The dirty-paper approach can also be extended to the vector case
[140]. This extension is given in the following Lemma.
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Lemma 1. Given a fixed power constraint, a Gaussian vector channel
with side information yN = xN + sN + zN , where zN and sN are
independent Gaussian random vectors, and sN is known non-causally
at the transmitter but not at the receiver, has the same capacity as if
sN did not exist, i.e.,

C = max
P

UN ,XN |SN (uN ,xN |sN )

{
I(UN ; Y N )− I(UN ;SN )

}

= max
P

XN |SN (xN |sN )
I(XN ; Y N |SN ). (4.3)

Further, the capacity-achieving xN is statistically independent of sN .

Costa presented a transmission strategy based on the binning tech-
nique. He did not give a practical coding scheme for this channel.
Several practical coding schemes for this problem will be presented
in Section 7.

In the binary modulo-2 additive noise channel case, Barron, Chen
and Wornell [6], showed that if the known interference S is a binary
symmetric source, the known noise Z is an independent Bernoulli-p
source, and the channel input satisfies an input Hamming constraint
1
N EωH(XN ) ≤ γ, where ωH(·) denotes the Hamming weight, then the
capacity with side information at the transmitter is given by

C = u.c.e {H(γ)−H(p), (0, 0)} , 0 ≤ γ ≤ 0.5 (4.4)

where u.c.e{·} denotes upper convex envelope as a function of γ. The
proof of (4.4) is dual to the proof given by Wyner and Ziv for the binary
symmetric source coding problem with side information.

A closed-form formula for the capacity of the dirty-tape channel is
still unavailable. In [48] Erez, Shamai and Zamir used Shannon’s general
capacity formula (3.7) for the causal case to find the capacity of this
channel for the worst case interference in the sense of the statistics of S,
which is the asymptotic case of strong interference. In their calculations,
they have also used a common random variable, available to both the
transmitter and receiver (common randomness). This common variable
does not increase the capacity [77].

The worst interference capacity of Shannon’s causal channel without
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randomness is given by

C = inf
PS(·)

sup
PT (·):E{(T (S)2)}≤Γ

I(T ;Y ). (4.5)

Let U be a RV uniformly distributed over [−L/2, L/2), where L is
a positive number. Define

hmin = inf
t∈T

h(t(U) + U + Z), (4.6)

where h(·) denotes differential entropy and Z is the channel noise, and
where t(·) is a strategy belonging to the set of strategies T (Γ), defined
over the interval [−L/2, L/2), and satisfying the power constraint (1.2),
i.e.,

T (Γ) =
{
t : E[t(U)]2 ≤ Γ

}
. (4.7)

Define
C̃L(Γ) = log L− hmin, (4.8)

and
C̃(Γ) = lim

L→∞
C̃L(Γ). (4.9)

The worst interference capacity C(Γ) of the dirty-tape problem is given
by the upper convex envelope of C̃(Γ).

Erez, Shamai and Zamir used a coding scheme which is similar to
the one that was proposed by Costa for this problem. Costa’s encoding
scheme is, in general, suboptimal for general SNR’s, but is asymptot-
ically optimal at high SNR’s. The asymptotic (high SNR) rate loss
with respect to the no interference case, is equal to the shaping gain,
1
2 log 2πe

12 ≈ 0.254 bits per channel use [48].
We will present coding schemes for this problem in Subsection 7.2.

4.2 The AWGN Channel With Fading

The additive white Gaussian noise (AWGN) channel with fading can be
modeled as a state dependent channel with CSIT and/or CSIR using
the models presented in Section 3. A large number of works have been
devoted to assess the capacity of this channel. These works differ in
their assumptions on the availability of CSI at both the transmitter
and receiver.
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In this subsection, we consider a single-user channel model with
flat-fading1. We assume that the channel output is matched-filtered to
the pulse shape and subsequently sampled. These samples are modeled
as

Yn = SnXn + Zn, (4.10)

where the channel input and output, at time n, are represented by
Xn ∈ C, Yn ∈ C respectively. The complex, circularly symmetric i.i.d.
Gaussian noise samples are represented by Zn, where E(|Zn|2) = σ2.
Sn represents the complex circularly symmetric fading samples with a
power (Rn = |Sn|2) and power distribution designated by PR(·). The
phase of the fading samples arg(Sn) (arg(Sn) stands for the argument
of Sn) is distributed uniformly in [−π, π) and is assumed independent
of R. We further assume that E(R) = E(|S|2) = 1. The channel input,
in this model, is subjected to an average-power constraint

E(|Xn|2) ≤ Γ. (4.11)

In the following subsections, we present different models for the
AWGN channel with fading. In each model, we will use different as-
sumptions on the availability of side information at the transmitter
and/or the receiver.

4.2.1 Perfect CSIR and no CSIT

This case has been treated in [60],[11]. It applies, for example, to the
case of a flat-fading channel where the receiver is informed by a third
party of the fading realizations sN and use them as it’s CSIR. We
assume that {Rn} is a stationary ergodic process. In this case, we can
easily derive the capacity formula by

C = E

[
log(1 +

rΓ
σ2

)
]

=
∫ ∞

0
PR(r) log

(
1 +

rΓ
σ2

)
dr, (4.12)

where PR(·) is the distribution function of R. This channel is equivalent
to a memoryless channel and the CSIR is interpreted as an additional

1A passband pulse amplitude modulated signal is said to experience flat-fading if it is
transmitted over a fading channel of a delay spread that is negligible compared to the
symbol duration.
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channel output [13]. Therefore, ordinary channel coding will be suffi-
cient to achieve capacity in this case (see Section 3.1).

4.2.2 Perfect CSIT and CSIR

This model applies, for example, to the case of time-division duplex
(TDD) based systems, where reciprocity facilitates channel measuring.
The receiver, as in Section 4.2.1, is informed by a third party of the
fading realizations, sN , and use them as it’s CSIR. Here, we assume
that the channel state information is known to both the transmitter
and receiver in a causal manner. The capacity formula, in this case, is
a special case of (3.11) and is given by

C = E

[
sup log(1 +

Ψ(r)r
σ2

)
]

, (4.13)

where the supremum is over all nonnegative power assignments Ψ(r)
satisfying

E [Ψ(r)] ≤ Γ. (4.14)

The optimal power assignment Ψopt(r), given in [60], satisfies

Ψopt(r)
Γ

=

{
1
r0
− 1

r , r ≥ r0

0, r < r0
(4.15)

where the constant r0 is determined by the average power constraint
and the specific distribution of the fading power PR(r). This optimal
power control policy can be interpreted as a time-water-pouring solu-
tion [60], that is, above a threshold r0 the stronger the channel gain,
the larger is the instantaneous transmitted power.

The capacity, in this case, can be achieved by a variable-rate,
variable-power communication technique as was suggested in [60]. How-
ever, in [13], Caire and Shamai showed that it is possible to achieve
capacity using an ordinary channel coding scheme and using, at the in-
put of the channel, an amplifier, whose gain is

√
Ψopt(r)/Γ, controlled

by the observed fading power r. This amplifier is interpreted as part of
the channel, the instantaneous power gains are revealed to the receiver,
and we can use (4.12) to calculate the capacity in this case by replacing
r with the effective power gains Ψopt(r)/Γ.
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4.2.3 Perfect CSIT and no CSIR

This model is less interesting than the previous ones, because it rarely
reflects practical situations. This model may be applied to the exam-
ple given in Section 4.2.2 without CSIR. and the channel output is a
complex scalar Y with probability distribution given by

PY |T,R(y|t(r), r) =
∫ ∞

0
PR(r)

1
2πσ2

{
exp− 1

2σ2
|y −√rt(r)|2

}
dr,

(4.16)
with the input t(r), r ≥ 0 subjected to the average power constraint
E

[
T 2(R)

] ≤ Γ.
We note here that we have assumed that s =

√
r. This assumption

is justified by the reason that if the transmitter has full access to the
fading coefficients, it can fully neutralize their phase by rotation at no
additional power cost.

A general formula of the capacity, has not been found. A simple
upper bound is the case were the CSI is also available to the receiver.
Lower bounds were derived by using suboptimal strategies. One of them
is the truncated channel inversion [60]. This strategy uses a standard
long codebook and an amplitude amplifier at the transmitter with the
power gain function

Ψopt(r)
Γ

=
{

α
r , r ≥ r0

0, r < r0
, (4.17)

where

α−1 =
∫ ∞

r0

r−1PR(r)dr. (4.18)

The receiver, in this case, receives an unfaded Gaussian channel Yn =
Xn + Zn with probability

PG =
∫ ∞

r0

PR(r)dr, (4.19)

and a pure noise channel Yn = Zn with the complementary probability
1− PG.

A lower bound is obtained by setting: PG = 1, i.e., the channel is
unfaded and there is no power constraint. In this case, the lower bound
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is given by

C ≥ log
(

1 +
SNR

E[1/r]

)
. (4.20)

As a simple upper bound, we can take (4.13), which is the case
where the CSI is also available to the receiver.

In [61], tighter upper bounds were given both for the causal and
the non-causal cases. These upper bounds were derived directly from
Gel’fand and Pinsker’s capacity formula (3.14) for the non-causal case,
and from Shannon’s capacity formula (3.3) for the causal case (see [61]).
Therefore, they are superior to the trivial upper bound which assumes
that the side information is also available to the receiver.

4.3 Modulo Additive Noise Channels

The modulo additive noise channel was studied in [50],[51],[52]. This
channel belongs to the class of channels with states and side information
at the encoder which were presented in Section 3.

Very few explicit solutions exist for the capacity of channels with
side information at the encoder. This is due to the computational com-
plexity of the solution. The modulo additive noise channel is one of the
few cases for which the capacity was found. This model may be used,
for example, in the problem of writing to a computer memory with
defective cells.

The modulo additive noise channel problem is divided into two cat-
egories, according to whether the side information is available to the
encoder in a causal or non-causal manner. We will present both.

A simple coding scheme that achieves the capacity of this channel
was presented in [50]. This coding structure achieves also the random-
coding error exponent, and therefore is optimal for some range of rates
below capacity [51],[52].

Let X = Y = Z = {0, ..., |X |−1}. A symmetric, or modulo additive
noise channel can be described by

Y = X + Z, (4.21)

where Z is conditionally independent of X given the state S, and ad-
dition or substraction is performed modulo |X |. The side information
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S may be thought of as a version of the channel noise Z. No power
constraint is imposed on the transmitter.

We begin with the causal version of the problem. By the additivity
of the channel, we have PY |X,S(y|x, s) = PZ|S(y − x|s). Therefore, the
transition probability of the equivalent channel to the modulo additive
noise channel is given by

PY |T (y|t) =
∑

s

PS(s)PZ|S(y − t(s)|s) = Pr(Z + t(s) = y). (4.22)

The capacity of the memoryless modulo additive noise channel with
causal side information is give by [50]

C = log |X | −Hmin (4.23)

where
Hmin , min

t∈T
H(Z − t(S)), (4.24)

where H(·) is the entropy. It can be easily seen that by (4.22) we get
Hmin = mint∈T H(Y |T = t) = mint∈T H(Z + t(S)), this is because the
minimization of the entropy of Z + t(S) and of Z − t(S) is the same.

We start with the converse part of the proof, i.e., C ≤ log |X |−Hmin.
Since

H(Y ) ≤ log |X | and H(Y |T ) ≥ min
t∈T

H(Y |T = t) = Hmin, (4.25)

we have I(T ; Y ) = H(Y )−H(Y |T ) ≤ log |X | −Hmin for any distribu-
tion on T , and the converse follows from (3.3).

We next show the direct part, i.e., C ≥ log |X |−Hmin. Let t∗ denote
a strategy for which H(Y |T = t∗) = Hmin. Define the following class
of strategies

T ∗ = {tj} where tj(s) = t∗(s) + j, j = 1 · · · |X |. (4.26)

From (4.22), we see that PY |T (y|tj) = Pr(Z + tj(S) = y) = Pr(Z +
t∗(S) = y − j) i.e., PY |T (y|tj) is the transition probability PY |T (y|t∗)
shifted modulo |X | by j. Therefore, H(Y |tj) = H(Y |t∗) = Hmin for
all j. Furthermore, choosing T to be uniformly distributed within T ∗
induces uniform distribution on Y. Thus, for such T we have equality
in both inequalities (4.25), and the direct part follows.
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We have given the full proof for the capacity of this channel because
it helps to understand the optimal transmission scheme which is called
“the instantaneous-predictor encoder” that is depicted in Fig. 4.1. By
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Fig. 4.1 Instantaneous prediction encoding scheme.

restricting the input alphabet to the set T ∗, the resulting channel from
T ∗ to Y can be viewed as an additive noise channel, whose alphabet is
X , and whose noise is distributed as Z̃ , Z+t∗(S) , Z−tmin(S), where
tmin(·) , arg mint:S→X H(Z−t(S)). The transmission scheme, depicted
in Fig. 4.1, has a simple modular structure, consisting of an ordinary
(i.e., state independent) Shannon code for a symmetric channel with
rate bellow (4.23), followed by a shift by tmin(s). This structure leads
to the following interpretation. Since the receiver does not know S, it
“sees” a channel with effective noise Z̃ = Z − tmin(S). Shifting Z by
tmin(S) thus makes the effective noise the least harmful for the receiver.
The function tmin(·) minimizes the entropy of Z−tmin(S). We can view
this function as the prediction of Z from S with minimum error entropy
criterion.

This result was also expanded to the case of non-causal side in-
formation, and to the case where the state process has memory. We
use the following definition of the state weight independent prediction
(SWIP).
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Definition 6. [50] Fix the set of conditional noise distributions
{PZ|S(z|s), z ∈ X , s ∈ S}. If the same function t = tmin(·) minimizes
the entropy of Z − t(S) for every state set of weights {PS(s), s ∈ S},
then we say that the noise satisfies the state weight independent pre-
diction (SWIP) property, or in short, “the noise is SWIP”.

We also define

HN
min , 1

N
min

tN :SN−→XN
H(ZN − tN (SN )). (4.27)

The capacity for the SWIP noise with memory both for the causal
and non-causal cases is given in Theorem 3.

Theorem 3. [50] For SWIP noise and stationary state process, the
instantaneous shift function

tN (sN ) = (tmin(s1), · · ·, tmin(sN )) where tmin

achieves H1
min in (4.27), is optimal for both causal and non-causal side

information at the encoder. Thus

C = log |X | − lim
N→∞

1
N

H(Z1 − tmin(S1), · · ·, ZN − tmin(SN )) (4.28)

i.e., the optimum (causal or non-causal) encoder reduces to the instan-
taneous prediction encoder.

The limit in (4.28) exists since Zi − tmin(Si), i = 1, 2..., is a stationary
process.

The capacity for the memoryless SWIP additive noise channel is
given by

C = log |X | −H(Z − tmin(S)). (4.29)

Therefore, the capacity in the causal case is equal to the capacity of
the non-causal case, if the noise satisfies the SWIP property.
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Applications

Next, we present several applications that will be described by the
models presented in Section 3, and Section 4.

We distinguish between applications and specific channel models in
which the side information is inherently a part of the channel (e.g.,
the AWGN channel with fading), and cases where the side information
is “artificial” or “man-made”, e.g., a channel with two cooperating
transmitters where the side information to the first transmitter is the
message transmitted by the second transmitter.

5.1 The Gaussian Vector Broadcast Channel

A broadcast channel model describes a communication scenario in
which a single transmitter sends independent information to multi-
ple non-cooperating receivers. A Gaussian vector broadcast channel or
MIMO broadcast channel model describes a communication scenario
in which a single transmitter with multiple antennas sends indepen-
dent information to multiple non-cooperating receivers with multiple
antennas through a Gaussian channel.

This model is used to describe the downlink of a wireless system,

45
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where the base station is equipped with an antenna array, for example,
a CDMA downlink [128]. It is also being used to describe a DSL line
[58] with coordinated transmission and uncoordinated receivers.

We use the following notation in this subsection. Upper case let-
ters are used to denote scalar random variables as before, or matrices,
e.g., H, where the context should make the distinction clear. Bold face
letters are used to denote vectors, e.g., x,y, or vector random vari-
ables, e.g., X,Y. For matrices, the superscript † denotes the conjugate
transpose (Hermit) operation, the superscript t denotes the transpose
operation and | · | denotes the determinant operation.

The broadcast channel was first introduced by Cover [35], who also
proposed an achievable coding strategy based on superposition. Super-
position coding has been shown to be optimal for a class of degraded
broadcast channels1.

Consider a standard scalar two-user Gaussian broadcast channel,
defined by

Y1 = h1X + Z1

Y2 = h2X + Z2 (5.1)

where Zi ∈ C is the i.i.d. noise which is a complex circularly symmetric
Gaussian RV with variance E[||Zi||2] = 1, i.e., Zi ∼ NC(0, 1), and where
h1, h2, |h1|2 ≥ |h2|2, are the channel gains for the two users known to
both the transmitter and receivers, and where X ∈ C and Yi ∈ C are
the input and outputs of the channel.

This channel can be regarded as a degraded broadcast channel for
which the capacity region is well established [36].

The capacity region of this channel can be attained by two different
coding techniques. The first is the superposition technique, and the
second one is the dirty-paper technique [140]. We will now describe
how the dirty-paper technique is used for this channel.

The transmitter sends X = X1 + X2, where X1 and X2 are scalar
independent Gaussian signals with powers αΓ and (1−α)Γ for α ∈ [0, 1],

1A two-user broadcast channel is called physically degraded if PY 1,Y 2|X (y1, y2|x) =

PY 1|X (y1|x)PY 2|Y 1
(y2|y1), and stochastically degraded if its conditional marginal dis-

tributions are the same as that of a physically degraded broadcast channel.
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respectively. The message intended for Y1 is transmitted through X1,
and the message intended for Y2 is transmitted through X2. Once a
codeword xN (2) for user 2 is generated, the transmitter non-causally
knows the interference signal h1x

N (2) that this codeword will cause to
user 1. Therefore, by using Costa’s results an achievable rate for user
1 will be log(1 + α|h1|2Γ). User 2 (the weaker user) decodes xN (2) by
treating xN (1) as an additional background noise. Hence, an achievable
region for this channel is given by

⋃

α∈[0,1]

{
(R1, R2) :

R1 ≤ log(1 + α|h1|2Γ),

R2 ≤ log
(
1 + (1−α)|h2|2Γ

1+α|h2|2Γ

)
}

. (5.2)

This achievable region is also the capacity region for this channel. The
converse which proves this, was given by Bergmans [9] using the entropy
power inequality (EPI). Note that in applying the dirty-paper coding
(DPC) technique in the broadcast channel, we have not used the de-
graded structure of the channel. This fact hints that DPC technique
can be useful in non degraded settings, where successive cancelation
at the receivers is not necessarily possible, due to the lack of order
between the receivers.

Next, we consider the Gaussian vector broadcast (MIMO broadcast)
channel depicted in Fig. 5.1, with K users (receivers), user i equipped
with ri antennas (i = 1, 2, ..., K), and a transmitter with t antennas,
defined by 



Y 1

·
·
·
Y K




=




H1

·
·
·

HK




X +




Z1

·
·
·
ZK




(5.3)

where X ∈ Ct, Y i ∈ Cri , and Zi ∈ Cri where Zi ∼ N (0,Σzizi) are the
input, the outputs and the noise vectors (at any given channel use),
and Hi ∈ Cri×t are the channel transfer matrices from the transmit-
ter to the i-th receiver. We assume that the channel matrices Hi are
constant and are perfectly known to the transmitter and to all the re-
ceivers. The transmitter, in this setting, sends independent information
mi ∈ {1, ..., 2NRi}, i = 1, ..., K, to each receiver. Let X = X1+...+XK ,
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Fig. 5.1 The K-user Gaussian vector broadcast channel.

where Xi, i = 1, ..., K, are independent Gaussian vectors whose covari-
ance matrices are Σxixi . The message intended for Y i is transmitted
through Xi, for i = 1, 2...,K. The input signal satisfies an input con-
straint tr(E[XX†]) ≤ Γ.

When a broadcast channel has a vector input and vector outputs, it
is no longer necessarily degraded. Superposition coding and successive
decoding does not apply to a general non-degraded broadcast channel.
However, the dirty-paper approach is still applicable to a general non-
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degraded broadcast channel. Caire and Shamai [14], [16] were the first
to consider using the dirty-paper approach to find the achievable rate
region for a two-user non-degraded broadcast channel, with t antennas
for the transmitter, and one antenna per user. Caire and Shamai have
also found the sum capacity for this two-user case.

The dirty-paper approach can be extended to the vector case to be
used for the MIMO broadcast channel [140]. This extension was given
in Lemma 1, and it may be applied at the transmitter by choosing
codewords for different receivers in a similar way as for the two-user
scalar broadcast channel case. The transmitter picks a codeword for
receiver 1. The transmitter then chooses a codeword for receiver 2 with
full (non-causal) knowledge of the codeword intended for receiver 1.
Therefore, it can use a dirty-paper coding technique in order to subtract
the interference for receiver 2, which is caused by the codeword intended
to receiver 1. Similarly, the codeword for receiver 3 is chosen in order
to subtract the interference to receiver 3, which is caused by signals
intended for receivers 1 and 2. This process continues for all K receivers.

Using Lemma 1, we can get the achievable rate region for the K

users [140] case. In addition, there is no “natural” order of the users,
since the channel is not degraded. Therefore, we can permute the users
arbitrarily, repeat the above procedure and get another achievable re-
gion.

Theorem 4. Consider the Gaussian vector broadcast channel yi =
Hix + zi, i = 1, ..., K, under a power constraint Γ. The following rate
region is achievable:




(Rπ(1), ..., Rπ(K)) :

Rπ(i) ≤ log

���Hπ(i)

�PK
k=i Σxπ(k)xπ(k)

�
H†

π(i)
+Σzπ(i)zπ(i)

������Hπ(i)

�PK
k=i+1 Σxπ(k)xπ(k)

�
H†

π(i)
+Σzπ(i)zπ(i)

���





(5.4)

where π is the permutation function π : {1, ..., K} −→ {1, ..., K},
Σzπ(i)zπ(i)

is the covariance matrix for zπ(i), and Σxπ(i)xπ(i)
is a set of pos-

itive semi-definite matrices satisfying the constraint:
∑K

i=1 tr(Σxixi) ≤
Γ.

We can see that the RHS of (5.4), is neither a concave nor a convex
function of the covariance matrices. This is the reason that the capac-
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ity region for the non-degraded broadcast channel is very difficult to
characterize.

Theorem 4 is a generalization of Caire and Shamai’s result [16],
for the two-user case. They have succeeded to find the sum capacity
for the two-user case by finding an optimal set of (Σx1x1 , Σx2x2), and
proved that the dirty-paper achievable rate region coincides with an
outer bound for the rate region.

The capacity region of a Gaussian MIMO broadcast channel was
characterized by Weingarten, Steinberg and Shamai in [130]. This ca-
pacity region coincides with the dirty-paper rate region given in Theo-
rem 4.

5.2 Watermarking

Several applications in information hiding require a system that mod-
ifies an original host signal (covertext) in order to embed some extra
information (digital watermark). The embedding must not cause a no-
ticeable distortion relative to the host signal. We use a distortion mea-
sure between the host and watermarked signals, and we constrain the
embedding distortion to be at most D1, as we shall see later. The em-
bedding should also be robust to attacks on the watermarked signal
(composite signal). In some applications, the attacks on the water-
marked signal are the result of standard signal processing operations,
in other cases they are malicious.

Watermarking (information embedding) is a model for copyright
protection schemes for audio, video and images that are distributed
in digital formats. The embedded signal in watermarking, either no-
tifies a recipient of any copyright or licensing restrictions or inhibits
unauthorized copying. This watermark could be, for example, a digi-
tal “fingerprint” that uniquely identifies the original purchaser of the
authorized copy. If illicit copies were made from the authorized copy,
all copies would carry this fingerprint, thus identifying the owner of
the authorized copy from which all illicit copies were made. The wa-
termark could also enable or disable copying by a duplication device
that will check the watermark before making another copy. This water-
mark could also be checked by a disc player in order to decide whether
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or not to play the disc. In other applications, the watermark signal
is used for authentication check or detection of tampering to the host
signal. Watermarking can also be used for a type of covert communi-
cation called “steganography”, in this application a secret message is
embedded within the host signal.

Other applications of information hiding include monitoring of air-
play of advertisements on commercial radio broadcast. These adver-
tisements could be embedded with a digital watermark and the adver-
tisers could count the number of times the watermark occurs during
a given broadcast period, as promised by the radio station operators.
Another application for which a watermarking model is used could be
a backwards-compatible upgrading of an existing communication sys-
tem [97]. Examples include standard AM/FM radio and analog TV
(NTSC/PAL/SECAM). In this application, we would like to simulta-
neously transmit a digital signal with existing analog commercial radio
or TV without interfering with conventional analog reception. The ana-
log signal in this application, serves as the host signal and the digital
signal serves as the watermark.

Information embedding can be viewed as a problem of channel cod-
ing with side information, where the host signal plays the role of side
information and the power constraint is replaced with a distortion con-
straint. This distortion constraint is the reason why watermarking can
be modeled as a channel with artificial states and CSIT. We refer to
the information embedding case where both the encoder and decoder
have the same side information signal as private information embed-
ding, and to the case where only the encoder has side information as
public information embedding.

In this section, we consider the model depicted in Fig. 5.2. In this
model, we assume a host signal source producing random variables
{Sn} taking values in S according to the distribution PS(s), a side in-
formation source producing random variables {Kn} ∈ K distributed as
PK(k), and a message source producing a message M from a message
setM. We assume that the side information KN is available to both the
encoder and the decoder, but not to the attacker. This side information
is important for two reasons. First, it may provide a source of random-
ness that is also known to the decoder and enable the use of random-
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Fig. 5.2 Watermarking model.

ized codes as a means of protection against malicious attacks. Second,
it may provide side information about SN to the decoder. When KN

provides perfect side information, i.e., KN = SN , the model is suit-
able to describe a private information embedding scenario, and when
KN is independent of SN , the model is suitable to describe a public
information embedding scenario.

In this model, SN is not really part of the channel, but it can in-
fluence the channel output through a distortion constraint between
the host and the watermarked signals. This distortion constraint will
be described later. Here, the attacker is represented by the channel
PY N |XN (yN |xN ) which is called the attack channel.

The information hider applies an encoding function f , producing
the watermarked signal xN = f(sN ,m, kN ) that is made publicly avail-
able. This watermarked signal is conveyed through an attack channel
PY N |XN (yN |xN ) that produces corrupted data (forgery) Y N , in an at-
tempt to remove the watermark m from xN . We assume that the at-
tacker knows the distributions of all random variables in the problem
and the actual information hiding code used, but not the side informa-
tion SN . The decoder uses Y N and KN in order to produce an estimate
of the watermark m̂ = g(yN , kN ).

The information hider and the attacker are subjected to distor-
tion constraints between the host and watermarked signals. We de-
fine a distortion function for the information hider as a nonnegative
function d1 : S × X −→ R+. This constraint replaces the power con-
straint which was so far being used. The distortion function for the
attacker is defined as a nonnegative function d2 : X × Y −→ R+.
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The distortion functions d1(s, x) and d2(x, y) are extended to distor-
tion functions on N -tuples by dN

1 (sN , xN ) = 1
N

∑N
n=1 d1(sn, xn) and

dN
2 (xN , yN ) = 1

N

∑N
n=1 d2(xn, yn), respectively.

A length-N information-hiding code subject to distortion D1 is a
triple (M, f, g), where:
M is the message set of cardinality |M|, f : SN ×M×KN −→ XN is
the encoder mapping a sequence sN , a message m, and side information
kN to a sequence xN = f(sN ,m, kN ). This mapping is subject to the
distortion constraint

∑

sN∈SN

∑

kN∈KN

∑

m∈M

1
|M|PSN ,KN (sN , kN )dN

1 (sN , f(sN ,m, kN )) ≤ D1,

(5.5)
and g : YN ×KN −→M is the decoder mapping the received sequence
yN and the side information kN to a decoded message m̂ = g(yN , kN ).

Definition 7. A memoryless attack channel subject to distortion D2 is
a family of conditional output distributions {PY |X(y|x) : x ∈ X , y ∈ Y}
such that PY N |XN (yN |xN ) =

∏N
n=1 PY |X(yn|xn),

∑

xN∈XN

∑

yN∈YN

dN
2 (xN , yN )PY N |XN (yN |xN )PXN (xN ) ≤ D2 (5.6)

for all N ≥ 1.

We define the support set of PS,K(s, k),

Ω = {(s, k) ∈ S × K : PS,K(s, k) > 0}. (5.7)

Consider an auxiliary random variable U defined over a finite set U of
cardinality |U| ≤ |X ||Ω| + 1. When the attack channel PY |X(·|·) is a
fixed known one, the information hiding capacity is given by [89]

C = max I(U ; Y |K)− I(U ; S|K), (5.8)

where the maximum is taken over all distributions PX,U |S,K(x, u|s, k)
and functions f satisfying (5.5). In the more general case, information
hiding can be thought of as a game between two players, the informa-
tion hider and the attacker, in cases where the attack channel is not
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fixed and known. The first player tries to maximize a payoff function
(e.g., achievable rate), and the second one tries to minimize it. The in-
formation available to each player critically determines the value of the
game. In our scenario, we assume that the information hider chooses
the encoder f and the attacker is able to learn f and choose the attack
channel PY N |XN (yN |xN ) accordingly. We also assume that the decoder
knows the attack channel PY N |XN (yN |xN ) and chooses g accordingly.
These assumptions may be too optimistic. In [31],[108] a more conser-
vative approach for the information hider and the decoder is to assume
that they are unable to know PY N |XN (yN |xN ), but the attacker is able
to find out both f and g and design PY N |XN (yN |xN ) accordingly.

An expression for the information-hiding capacity is derived in
terms of optimal covert and attack channels [89].

Definition 8. A memoryless covert channel subject to distortion D1

is a conditional distribution PX,U |S,K(x, u|s, k) from S × K to X × U ,
such that

∑

x,s,k,u

d1(s, x)PX,U |S,K(x, u|s, k)PS,K(s, k) ≤ D1. (5.9)

The class Q is the set of all memoryless covert channels subject to
distortion D1. The class A(Q, D2) is the set of all memoryless attack
channels subject to distortion D2 under covert channels from the class
Q.

Additional constraints may be imposed on the attack channel. For
this reason, we assume that the attack channel belongs to a subset
of A(Q, D2). Assume this subset is of the form A(Q) = A(Q, D2)

⋂B,
where B is some compact set of channels.

Definition 9. The class A(f, D2) is the set of all memoryless at-
tack channels that satisfy the distortion constraint (5.6) under the
information-hiding code (M, f, g).

By analogy with A(Q), we also define A(f) = A(f, D2)
⋂B.

Theorem 5. Assume that for any N ≥ 1, the attacker knows f , and
the decoder knows both f and the attack channel. A rate R is achievable
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for distortion D1 and attacks in the class {A(f)} if and only if R < C,
where

C = max
PX,U|S,K(x,u|s,k)∈Q

min
PY |X(y|x)∈A(Q)

{I(U ;Y |K)− I(U ; S|K)} ,

(5.10)
U is a random variable defined over an alphabet U of cardinality
|U| ≤ |X ||Ω|, and the random variables U, S,K, X, Y are jointly dis-
tributed as
PU,S,K,X,Y (u, s, k, x, y) = PS,K(s, k)PX,U |S,K(x, u|s, k)PY |X(y|x), i.e.,
(U, S,K) −→ X −→ Y forms a Markov chain.

It can be easily seen, that in the special case K = S, i.e., when
the host signal is also available to the decoder (private information
embedding), the hiding-capacity is given by

C = max
PX|S(x|s)

min
PY |X(y|x)

I(X;Y |S), (5.11)

where the maximization and minimization are subject to the distortion
and B constraints. Theorem 5 considers only memoryless attack chan-
nels. The results for the private information embedding and the public
information embedding settings, were extended in [109] and [108], re-
spectively, to any attack channel PY N |XN (·|·) that satisfies a distortion
constraint. These extended results agree with (5.10) and (5.11) when
we consider only memoryless attack channels under the expected dis-
tortion constraints given by (5.6).

In Theorem 5, the cardinality of the auxiliary random variable U

was mistakenly upper bounded by |U| ≤ |X ||Ω|. The minimization over
the attack channel in Theorem 5 means that in our setting, unlike
Gel’fand and Pinsker’s setting, the attack channel in not a known fixed
one, and is not necessarily memoryless. Therefore, there is no obvious
upper bound on the cardinality of the auxiliary random variable U ,
and one cannot apply Carathéodory’s theorem straightforwardly, but
rather to a finite set of conditional distributions PY |X(·|·) (whose size
depend on a number l > 0) that approximate the set of attack channels
{PY |X(y|x) : x ∈ X , y ∈ Y} which satisfy (5.6). Instead of the infinitely
many channels in {PY |X(y|x) : x ∈ X , y ∈ Y} there are (l + 1)|X ||Y|

channels to which we can apply Carathéodory’s theorem. The results
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in [108] quantify the loss, in terms of rate, when the encoder employs
an auxiliary random variable with cardinality (l + 1)|X ||Y|, where the
rate loss tends to zero as l tends to infinity (see the result of [108]).

So far we have considered information embedding schemes, for which
the embedder distorts the host signal. In [68], the problem of informa-
tion hiding without the distortion of the host signal is considered, i.e.,
the host signal can be recovered reliably by the decoder. This type of
information hiding is called reversible information hiding. Reversible
information hiding is important in applications where no degradation
of the original host is allowed. These applications include medical im-
agery, military imagery and multimedia archives of valuable original
works.

In reversible information hiding scheme, the decoder has to pro-
duce an estimate of the host sequence as well as an estimate of the
embedded message, such that Pe , Pr(ŜN 6= SN

⋃
m̂ 6= m), is small.

As in standard information embedding, the embedder is subjected to
a distortion constraint between the host and the watermarked signals
D1 ≥

∑
x,s PX,S(x, s)d(x, s). For the case of noiseless channel PY |X(·|·)

(i.e., no attack channel) the capacity is given by [68]

C = max H(X)−H(S), (5.12)

where the maximization is over all PX,S(x, s) satisfying the distortion
constraint D1. In a similar manner, if an attack channel PY |X(·|·) is
present, the capacity for a distortion D1 is given by

C = max I(Y ; X)−H(S), (5.13)

where the maximization is taken over all joint distributions satisfying

PX,Y,S(x, y, s) = PS(s)PY |X(y|x)P (X|S)(x|s). (5.14)

Although the embedder distorts the host signal, transmitting at rates
below (5.13) results in small Pe. Therefore, the receiver can estimate
the host signal reliably.

The reversible information embedding problem can be extended to
multi-user channels. In [73], Kotagiri and Leneman have found the re-
versible information embedding capacity for the two-user multiple ac-
cess channel, two-user degraded broadcast channel and the two-user
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degraded relay channel. The capacity for the single-user scenario given
in (5.13), is a special case of the capacity of the multiple access channel.
Reversible information embedding for the two-user degraded broadcast
channel is discussed in Subsection 6.6.2.

Due to the requirement to produce an estimate of the host sequence
at the decoder, in cases where the host entropy is larger than the chan-
nel capacity, no communication can take place under a complete re-
construction requirement. In [133] a relaxed version of the problem is
considered, where instead of an exact reconstruction, the decoder is
required to reconstruct the host within a distortion level D2. However,
for very small distortion levels D2 at the destination, there is a high
penalty to pay in the embedding rate. In [113], Steinberg suggested as a
possible solution to this problem to provide the decoders, a priori, with
a compressed version of the host. Steinberg considered the problem of
reversible information embedding for the degraded broadcast channel
where a compressed host data is available, before transmission, at the
decoders. This model corresponds to the scenario where the composite
data is subjected to several stages of attack.

In [80] the problem of joint information hiding and lossy compres-
sion is considered. Consider the model depicted in Fig. 5.3. Due to
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bandwidth or storage constraints, we are interested in the compression
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of the watermarked signal before transmission. The model depicted in
Fig. 5.3 could be used for the following scenario. A high-resolution im-
age (e.g., a satellite image) is watermarked for copyright protection and
compressed before it is transmitted through a noiseless channel (e.g.,
the Internet) to a costumer. The costumer decompresses the image and
use it. If illicit copies are made from this authorized decompressed im-
age, all copies will carry the watermark message, thus identifying the
original owner of this image.

The difference between this model and the model presented in Fig.
5.2 is the absence of the auxiliary random variable K and the com-
pression of the watermarked signal XN . The information hider, in this
setting, conveys SN and the message m through an encoding function
f , by producing the watermarked signal XN = f(SN ,m). Here, the
watermarked signal XN is entropy-coded, i.e., compressed in a block-
wise manner using the optimum lossless code and the corresponding
watermarked signal rate is defined by

H(f(SN ,m))
N

(5.15)

and should not exceed a prescribed value Rc. The compressed water-
marked signal is sent to the decoder.

Let A denote the set of all triples (U, S, X) of random variables
taking values in the finite sets U ,S,X , where U is an arbitrary finite
alphabet of size |U| ≤ |S||X |, and the joint probability distribution
of (U, S, X),PU,S,X(u, s, x), is such that the marginal distribution of S

is PS(·), and
∑

sN∈SN

∑
m∈M

1
|M|PSN (sN )dN

1 (sN , f(sN ,m)) ≤ D1. For
any triple (U, S, X), there exists a related quadruple (U, S, X, Y ), with
Y taking values in Y, such that

PU,S,X,Y (u, s, x, y) = PU,S,XPY |X(y|x). (5.16)

Let R(D1) denote the rate-distortion function of the source PS(·)
[36]. The information hiding capacity for a discrete memoryless cover-
text S, a memoryless attack channel PY N |XN (yN |xN ) and Rc ≥ R(D1)
is given by

C = max
(U,S,X)∈A

min {I(U ;Y )− I(U ;S), Rc − I(S; U,X)} . (5.17)
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Here an alternative coding scheme to Gel’fand and Pinsker’s coding
scheme is proposed, which takes into account the compression. This
coding scheme achieves the capacity of (3.14), and also allows us to
characterize the tradeoff between the information hiding and the com-
pression rates.

First, we will describe the code generation. For each mes-
sage m, generate 2NR0 codewords (or a bin) UN (m, j) ∈
{uN (m, 1), ..., uN (m, 2NR0)}, where m ∈ M is the bin index (|M| =
2NR) and j ∈ {1, ..., 2NR0} is the codeword index inside the
bin m, i.i.d. according to the distribution PU (·). For each code-
word UN (m, j) = uN (m, j), generate 2NRx composite sequences
XN (m, j, k) ∈ {xN (m, j, 1), ..., xN (m, j, 2NRx)}, where k is the com-
posite sequence index inside the set indexed by (m, j), i.i.d. accord-
ing to the distribution PX|U (·|·). Let us denote this set by C(m, j) =
{xN (m, j, 1), ..., xN (m, j, 2NRx)}.

Encoding is done in the following way: given the message m and the
state sequence sN , the encoder seeks a codeword in bin m that is jointly
typical with sN , say uN (m, j). The first composite sequence found in
C(m, j) that is jointly typical with (sN , uN (m, j)), say xN (m, j, k),
is chosen for transmission. If there exist more than one such se-
quence, the described above process is applied to the first matching
uN (m, j) found in a bin’s list. If no such uN (m, j) exists such that
(sN , UN (m, j), xN (m, j, k)) are jointly typical declare an encoding er-
ror.

The decoder finds m̂ and ĵ such that uN (m̂, ĵ) is jointly typical
with the channel output sequence yN . If there exist more than one such
pair (m̂, ĵ), or no such pair exit at all, declare a decoding error. The
probability of encoding failure goes to zero as long as R0 ≥ I(U ; S) and
Rx ≥ I(S;X|U), and the probability of decoding failure goes to zero as
long as R + R0 ≤ I(U ;Y ). Thus, the overall probability of error goes
to zero as long as R ≤ I(U ; Y ) − I(U ; S) and Rx ≥ I(S; X|U). Now,
since the compression procedure applied to the composite sequences is
lossless, it satisfies Rc ≥ R + Rx ≥ R + I(S; U,X). Therefore, R ≤
min{I(U ; Y )− I(U ; S), Rc − I(S; U,X)}.

In [84], a similar problem with causal covertext was analyzed. This
setting is closely related to Shannon’s channel with causal CSIT [105]
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as the non-causal covertext setting is related to Gel’fand and Pinsker’s
channel [56].

Let T denote the set of functions t : S −→ X . The information
hiding capacity for a causal discrete memoryless covertext is given by
[84]

C = max
T :Ed1(s,t(s))≤D1

min[I(T ; Y ), Rc −H(T (S)|T )], (5.18)

where the joint distribution of S, T, Y is given by

PS,T,Y (s, t, y) = PS(s)PT (t)PY |X(y|t(s)). (5.19)

The non-causal covertext setting was extended in [83], where the
problem of joint information hiding, compression and encryption was
considered. The encryption is done in order to protect the secrecy of
the watermark against an unauthorized party, which has no access to
a secret key shared by the legitimate parties. In the attack-free case,
if the key is independent of the covertext, a separation principle was
shown to exist. This separation principle, tells us that asymptotically,
for long block codes, there is no optimality loss by first applying a
rate-distortion code to the watermark source, then encrypting the com-
pressed codeword, and finally, embedding it into the covertext. If we
add an attack channel to the problem, this separation principle is no
longer valid, as the key may play an additional role of side information
used by the embedder (for more details see [83]).

We next consider the case of watermarking in Gaussian attack chan-
nels with Gaussian covertext. Consider the case of a Gaussian S and
the squared-error distortion measure d(x, y) , d1(x, y) = d2(x, y) =
(x− y)2. Here S = X = Y = R, and S ∼ N (0, σ2). The class of attack
channels is A(Q, D2). This case was studied in [89],[31] and is particu-
larly interesting. We will see that we can use Costa’s dirty-paper model
for this case. Therefore, the capacity of the private and public versions
of the problem are the same and it becomes possible to explicitly com-
pute the distributions that achieve capacity.

We start with the public version of the problem. In this case, the
host signal is also available to the decoder, and the capacity is given in
Theorem 6.
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Theorem 6. [89] Let S = X = Y = R and d(x, y) = (x − y)2 be the
squared-error distortion measure. Assume that K = S. Let a be the
maximizer of the function

f(a) =
[(2a− 1)σ2 −D2 + D1][D1 − (a− 1)2σ2]

[D1 + (2a− 1)σ2]D2
(5.20)

in the interval (ainf , 1 +
√

D1/σ), where ainf = max(1, σ2+D2−D1
2σ2 ).

Then we have
(i) If D2 ≥ (σ +

√
D1)2, the hiding capacity is C = 0.

(ii) If S is non-Gaussian with mean zero and standard deviation σ >√
D2 −

√
D1, the hiding capacity is upper-bounded by

C =
1
2

log
(

1 +
[(2a− 1)σ2 −D2 + D1][D1 − (a− 1)2σ2]

[D1 + (2a− 1)σ2]D2

)
. (5.21)

(iii) If S ∼ N (0, σ2) and D2 < (σ +
√

D1)2, the hiding-capacity is
given by (5.21). The optimal covert channel is given by X = aS + Z,
where Z ∼ N (0, D1 − (a − 1)2σ2) is independent of S. The optimal
attack is the Gaussian channel

PY |X(y|x) = N (β−1x, β−1D2), (5.22)

where β = σ2
x

σ2
x−D2

, and σ2
x = D2 + (2a− 1)σ2.

In the asymptotic case of small distortions D1, D2 −→ 0, we have

a ∼ 1 +
D1D2

3σ4
,

β ∼ 1,

C ∼ 1
2

log
(

1 +
D1

D2

)
. (5.23)

The additive white Gaussian noise attack channel PY |X(y|x) ∼
N (x,D2) is asymptotically optimal in this case.

For the private version of the problem, i.e., when the host signal is
not available to the decoder. The capacity is given in Theorem 7:

Theorem 7. Let S = X = Y = R and d(x, y) = (x − y)2 be the
squared-error distortion measure. Assume that S is N (0, σ2) and D2 <
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(σ+
√

D1)2. Let a be the maximizer of the function (5.20) in the interval
(ainf , 1 +

√
D1/σ). Then the following distribution yields the maxmin

solution of the game (5.10): X = aS + Z and U = α + Z, where
Z ∼ N (0, D1 − (a − 1)2σ2) is independent of S. The optimal attack
PY |X(y|x) is the Gaussian channel (5.22). Here β = (2a−1)σ2+D1

(2a−1)σ2−(D2−D1)

and α = D1−(a−1)2σ2

D1−(a−1)2σ2+βD2
.

The hiding capacity is the same as (5.21) in the private watermarking
game.

As in Costa’s dirty-paper problem, the capacity of the private and
public versions of the problem are the same. Costa’s result is discussed
in Section 4.1. The optimal distributions that achieve capacity in this
case, are the same as Costa’s distributions in the dirty-paper problem.
The additive white Gaussian noise attack PY |X(y|x) = N (x, D2) is
suboptimal but is asymptotically optimal for σ2 >> D1, D2 (small
distortion case). In the small distortion case, β −→ 1 and α ∼ D1

D1+D2
.

Costa showed that we can achieve capacity in this case using the
binning technique. We will present coding techniques for the water-
marking problem as well as for the dirty-paper problem, in Section
7.
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Other Related Problems

Thus far, we have presented many applications and models, for our
main problem of channel coding in the presence of side information. In
this section, we consider several other problems which are related to
the models discussed in the previous sections. In particular, we present
the source coding problem with decoder side information, where we
discuss both the lossless Slepian-Wolf problem and the lossy Wyner-
Ziv problem. Next, we study the duality between the source coding
problem with decoder side information and the problem of channel
coding with transmitter side information. We also consider the prob-
lem of joint source channel coding for the Wyner-Ziv source and the
Gel’fand-Pinsker channel and present, as an application for this model,
a backward-compatible upgrading technique of an existing communi-
cation system. Then we present the problem of achievable tradeoff be-
tween message and state information rates, and also discuss a different
aspect of the problem, where the state information is considered as
undesirable information. Finally, we consider multiuser channels with
states, and in particular, the multiple access channel and the broadcast
channel, both are controlled by a state process.

This subsection by no means includes a complete coverage of all
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problems related to the models presented in this paper. We have cho-
sen to include only several selected problems, as examples to the im-
portance of the ideas discussed in this paper.

6.1 The Slepian-Wolf Problem

We consider the problem of lossless source coding of correlated sources.
This problem is known as the Slepian-Wolf problem [107]. Slepian and
Wolf showed that separate source coding of correlated sources (with in-
creased complexity at the joint decoder) is as efficient as lossless joint
source coding in terms of total rate. Example for an applications for
the Slepian-Wolf problem is the distributed sensor network presented
in [137]. In this example, we want to compress multiple correlated sen-
sors, that do not communicate with each other, and send the sensors
compressed outputs to a base station for joint decoding. These sen-
sors could be, for example, low-cost video cameras or microphones for
survivance applications. Lossless source coding with side information
at the decoder, is a special case of the Slepian-Wolf problem, and is
the lossless version of the Wyner-Ziv problem. This particular case is
depicted in Fig. 6.1.

Encoder

X


Decoder

X
ˆ


S


Bits at

rate     R


Fig. 6.1 Source coding with side information at the decoder.

Let {Xi, Si}∞i=1 be a sequence of i.i.d. copies of a pair of RV’s
(X, S) ∼ PX,S(·, ·). The sequences are available at different locations
and therefore have to be separately lossless source coded. This problem
is therefore also known as distributed source coding (DSC). We define
a source code and an achievable source code as
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Definition 10. An
(
N,

(
2NR1 , 2NR2

))
distributed source code for the

joint source (X, S) consists of two encoder maps,

f1 : XN −→ {
1, 2, ..., 2NR1

}

f2 : SN −→ {
1, 2, ..., 2NR2

}
(6.1)

and a decoder map,

g :
{
1, 2, ..., 2NR1

}× {
1, 2, ..., 2NR2

} −→ XN × SN . (6.2)

Definition 11. A rate pair (R1, R2) is said to be achievable for a dis-
tributed source if there exists a sequence of

(
N,

(
2NR1 , 2NR2

))
dis-

tributed source codes with probability of error Pe −→ 0, where the
probability of error is given by

Pe = Pr

(
g

(
f1

(
XN

)
, f2

(
SN

)) 6= (
XN , SN

))
. (6.3)

The achievable rate region is the closure of the set of achievable rates.

Slepian and Wolf’s main result is the following theorem,

Theorem 8. [107] For the distributed source coding problem of the
source (X,S) drawn i.i.d. ∼ PX,S(·, ·), the achievable rate region is
given by

R1 ≥ H(X|S)

R2 ≥ H(S|X)

R1 + R2 ≥ H(X,S). (6.4)

The achievable rate for the lossless source coding problem, with side
information at the decoder, is by Theorem 8 given by

R ≥ H(X|S). (6.5)

The achievability of the Slepian-Wolf theorem, is proved using
the random binning concept [36]. First, independently assign every
xN ∈ XN to one of 2NR1 bins according to a uniform distribution
on {1, ..., 2NR1}. Similarly, randomly assign every sN ∈ SN to one of
2NR2 bins. Reveal the assignments f1 and f2 to both the encoder and



66 Other Related Problems

decoder. Given a source sequences xN ∈ XN and sN ∈ SN , sender 1
sends the index of the bin to which xN belongs, and sender 2 sends
the index of the bin to which sN belongs. Upon receiving the bin index
pair (i, j), the receiver declare (x̂N , ŝN ) = (xN , sN ), if there is one and
only one pair of sequences (xN , sN ) such that f1(xN ) = i, f2(sN ) = j

and xN , sN are jointly typical. Otherwise declare an error.
This is another example of the importance of the random binning

concept which is the fundamental tool for proving the achievability of
the main information-theoretic problems explored in this paper. We
note here that in a chronological order, the Slepian-Wolf problem, was
the first problem which used the random binning concept, back in 1973.

6.2 The Wyner-Ziv Problem

In this subsection, we consider the problem of lossy source coding (rate-
distortion) with decoder side information under a distortion constraint.
There is a large number of applications for this problem. These appli-
cations include distributed sensor networks and sensor arrays, as in the
Slepian-Wolf problem, and also, digital upgrade of analog television
signals, and communication in ad-hoc networks. Wyner and Ziv [135]
found the rate-distortion function for this problem. We will see in Sub-
section 6.3 that this problem and the problem of channel coding with
side information are information-theoretic duals of each other.

Consider the problem of rate-distortion optimal lossy encoding of a
source X with side information S available to the decoder as shown in
Fig 6.1. X and S are correlated random variables with joint distribu-
tion PX,S(x, s) which take values in the finite sets X , S, respectively.
Let d(x, x̂) be a distortion measure between the source X and it’s re-
construction X̂ ∈ X̂ . We say that rate R is achievable at distortion
level D if there exist an encoding function f : XN −→ {1, 2, ..., 2NR},
and a decoding function g : {1, 2, ..., 2NR} × SN −→ X̂N such that
E[d(XN , X̂N )] ≤ D. The rate-distortion function R(D) is the infimum
of the achievable rates with distortion D. Wyner and Ziv [135] found
that the rate-distortion function is given by

R(D) = min
PU|X(u|x)PX̂|U,S(x̂|u,s)

[I(U ; X)− I(U ; S)] (6.6)
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where the minimum is over all PU |X(u|x)PX̂|U,S(x̂|u, s) such that U −→
X −→ S and X̂ −→ (U, S) −→ X form a Markov chains, and

∑

x,x̂,u,s

PX,S(x, s)PU |X(u|x)PX̂|U,S(x̂|u, s)d(x, x̂) ≤ D, (6.7)

where U is an auxiliary random variable with alphabet cardinality sat-
isfying |U| ≤ |X |+ 1. Similarly to the Gel’fand-Pinsker problem, it has
been shown in [135] that there is no loos of performance in restricting
PX̂|U,S(·|u, s) to a deterministic function f̃ : SN ×UN −→ X̂N (see the
converse proof in [135]).

The achievability of Wyner and Ziv’s result, is proved using the
random binning technique. Generate 2NR1 i.i.d. codewords UN (i) ∼∏N

n=1 PU (un), and index them by
i ∈ {

1, ..., 2NR1
}
. Randomly assign the indices i ∈ {

1, ..., 2NR1
}

to one
of 2NR2 bins using a uniform distribution over the bins. Let B(j) denote
the indices assigned to bin j. Given a source sequence xN ∈ XN , the
encoder looks for a codeword that is jointly typical with xN , say uN (i).
If there is no such uN (i), the encoder declares an encoding failure. If
there is more than one such i, the encoder uses the lowest i. The encoder
sends the index of the bin in which i belongs, i.e., the bin index j is
sent if i ∈ B(j). Upon receiving the bin index j, the decoder looks
in bin j for a codeword uN (i), i ∈ B(j) that is jointly typical with
sN . If he finds a unique i, he calculates x̂N = f̃

(
sN , uN (i)

)
. If it does

not find any such i or more than one such i, the decoder declares a
decoding failure. With R1 = I(X;U) and R2 = I(X;U)− I(S;U)) the
probability of encoding or decoding failures goes to zero. Hence, with
high probability, the decoder will produce x̂N such that (6.7) is satisfied.
The probability that (6.7) is not satisfied, is called the probability of
distortion violation and is denoted by Pdv. Therefore, this probability
goes to zero in the binning scheme.

We can also consider a causal version of the Wyner-Ziv problem,
which is the source-coding dual of the Shannon channel model with
causal side information at the transmitter. Usually when a side infor-
mation signal is available to the decoder, we consider it as a non-causal
side information, because the decoder can wait to the end of transmis-
sion and then decode the messages. However, in some situations, the
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source coding system is constrained to operate with no, or with limited
delay. This causal version of the Wyner-Ziv problem was considered in
[55].

Let Dmin = E [minx̂ d(x, x̂)], where D < Dmin is not achievable at
any rate. The causal rate-distortion function for distortion level D >

Dmin is given by
R(D) = min I(U ; X) (6.8)

where the minimum is over all functions f̃ : U×S −→ X̂ , |U| ≤ |X |+1,
and PU |X(·|x) such that E

[
d

(
x, f̃ (u, s)

)]
≤ D. Here, similarly ro

Shannon’s channel coding problem with causal side information, there
is no binning scheme.

The difference between (6.8) and (6.6) is the subtracted term
I(U ; S). If we look at the direct part of Wyner and Ziv’s proof pre-
sented above, this term is a consequence of the binning technique which
partitions an (N, 2NI(U ;X)) code into bins with 2NI(U ;S) codewords, and
allows the encoder to send only the bin index instead of the codeword
index. The minimization for the two versions of the problem is over
exactly the same set. This causal version of the problem, is the dual
problem to Shannon’s channel coding problem with causal side infor-
mation. We discuss this duality in Subsection 6.3. Next, we turn back
to the non-causal scenario.

Wyner and Ziv have also treated the case of a joint Gaussian source
and squared-error distortion measure. Let XN ∼ N (0, σ2

xI). The de-
coder has access to a noisy observation of the source SN = a(XN +ZN ),
where a is a positive number, and ZN ∼ N (0, σ2

zI) is Gaussian noise.
We use the squared-error distortion measure between X and X̂, i.e.,
d(x, x̂) = (x− x̂)2. The rate-distortion function is given by

R(D) =





1
2 log2

(
σ2

zσ2
x

D(σ2
z+σ2

x)

)
, 0 ≤ D ≤ σ2

zσ2
x

σ2
z+σ2

x
;

0, D > σ2
zσ2

x
σ2

z+σ2
x
.

(6.9)

Wyner showed in [136], that if X and S are jointly Gaussian, then
the rate-distortion function takes the form

R(D) =
1
2

log2

(
B

D

)
(6.10)
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where B = σ2
x|s is the conditional variance of X given S.

Similarly to Costa’s result for the dirty-paper problem, the rate
distortion in (6.10) is the same rate-distortion function has if the side
information SN is known to both the decoder and encoder or if it was
not present at all.

An interesting application for this problem was given in [117]. Con-
sider combining images from a space-based telescope and ground-based
observatory. Both simultaneously observe the same object in space. X

corresponds to the image at the telescope, which encounters no at-
mospheric interference, and S to the image at the observatory suffer-
ing atmospheric interferences. The telescope transmits information at
rate R to the observatory, which computes the reconstructed image X̂.
Wyner and Ziv’s result means that we can transmit at a lower rate than
conventional lossy source codding without sacrificing image quality.

6.3 The Duality Between Source Coding and Channel Cod-
ing with Side Information

In this subsection, we consider the duality between source coding prob-
lem with receiver side information (SCRSI) under a distortion con-
straint and channel coding problem with transmitter side information
(CCTSI) under a power constraint. We will characterize the conditions
under which there is a functional duality between these problems. A
functional duality means that given an optimal source (respectively,
channel) coding scheme, this scheme is a functional dual to a channel
(source) coding scheme in the sense that the optimal encoder mapping
for one problem is functionally identical to the optimal decoder map-
ping for the other problem and the input-output joint distribution is
the same with some renaming of variables. This duality is used for solv-
ing practical source (respectively, channel) coding problems by solving
the dual problem of channel (respectively, source) coding. It is used to
extend the Gaussian Wyner-Ziv result (6.10) via establishing a duality
to the Costa problem.

The capacity of the channel coding problem with transmitter side
information under a given power constraint Γ is given by (3.14) and the
rate-distortion function for the source coding problem with receiver side
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information is given by (6.6). We start by stating the correspondence
between channel capacity and rate-distortion and between the variables
involved in the two coding problems:




SCRSI ←→ CCTSI

R(D) ←→ C

minimization ←→ maximization

source input X ←→ Y channel output

side information S ←→ S side information

auxiliary variable U ←→ U auxiliary variable

source reconstruction X̂ ←→ X channel input





. (6.11)

The formula duality is evident, the maximization of achievable data
rates given by (3.14) has a formula dual to the minimization of data
rates given by (6.6). Next, we will use the notation of the SCRSI prob-
lem for the CCTSI problem to characterize the conditions for a func-
tional duality between the two coding problems.

From the definition of the SCRSI problem, there are two Markov
chains in this problem: U −→ X −→ S and X̂ −→ (U, S) −→ X. Sim-
ilarly in the definition of the CCTSI problem, there are two Markov
chains: U −→ (X̂, S) −→ X and X̂ −→ (U, S) −→ X (where these two
Markov chains are written here using the notation of the SCRSI prob-
lem). The second Markov chain in the CCTSI problem, follows since
the optimal PX̂|U,S(·|u, s) in (3.14) can be restricted to a deterministic
function. In the SCRSI problem, PX̂|U,S(·|u, s) can also be restricted
to a deterministic function, however, this restriction follows from the
definitions of the SCRSI problem (see the converse proof in [135]).

Using the first Markov chain in the SCRSI problem, it can be seen
that I(U ;X)− I(U ; S) = I(U ; X|S) and therefore, (6.6) can be rewrit-
ten as

R(D) = min
PU|X(u|x)PX̂|U,S(x̂|u,s)

[I(U ; X|S)] .

The CCTSI problem, cannot be rewritten in the same manner as the
SCRSI problem.

For a functional duality between the two problems, the minimization
in the SCRSI problem given in (6.6) must satisfy an additional Markov
chain U −→ (X̂, S) −→ X. The Gaussian case is an example for a
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subset of this problem, for which all three Markov chains are satisfied
and there is a duality between the two problems.

So far we have considered for the SCRSI problem, the distortion
measure d : X × X̂ −→ R+, and for the CCTSI problem the cost
measure φ : X̂ −→ R+. In order to formulate the duality between
the two problems, we will have to generalize the distortion measure to
d : X × X̂ × S −→ R+, and the cost measure to φ : X̂ × S −→ R+.
These extensions are straightforward. The new distortion measure can
be interpreted as the distortion between x and x̂ when the outcome
of the side information is s. The new cost measure is interpreted in a
similar way.

The following theorem characterizes the conditions under which for
a SCRSI problem there is a dual CCTSI problem.

Theorem 9 ([95]). For a SCRSI, with a given source PX|S(x|s), side
information PS(s), input, side information, and reconstruction alpha-
bets X , S, and X̂ , respectively, a distortion measure d : X ×X̂ ×S −→
R+, and a distortion constraint D, let the conditional distribution
achieving the rate-distortion optimality R(D) be given by

{
P ∗

U |X(u|x)
P ∗

X̂|U,S
(x̂|u, s)

}
,

argmin8>>>>>>>>>><
>>>>>>>>>>:

{
PU |X(u|x)
PX̂|U,S(x̂|u, s)

}
:





E[d(X̂, X, S)] ≤ D

(U −→ X −→ S)
(X̂ −→ (U, S) −→ X)





9
>>>>>>>>>>=
>>>>>>>>>>;

I(U ; X)− I(U ; S)

(6.12)

inducing the following distributions:
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P ∗
X,S,X̂,U

(x, s, x̂, u) = PS(s)PX|S(x|s)P ∗
U |X(u|x)P ∗

X̂|U,S
(x̂|u, s) and

P ∗
X|X̂,S

(x|x̂, s) ,
∑

u P ∗
X,S,X̂,U

(x, s, x̂, u)
∑

u,x P ∗
X,S,X̂,U

(x, s, x̂, u)

P ∗
U |S(u|s) ,

∑
x,x̂ P ∗

X,S,X̂,U
(x, s, x̂, u)

PS(s)

P ∗
X̂|S(x̂|s) ,

∑
u,x P ∗

X,S,X̂,U
(x, s, x̂, u)

PS(s)
, (6.13)

where P ∗
U |X(·|x), P ∗

U |S(·|s), P ∗
X̂|U,S

(·|u, s), P ∗
X,S,X̂,U

(·, ·, ·, ·),
P ∗

X|X̂,S
(·|x̂, s) and P ∗

X̂|S(·|s) are the optimal distributions and
the optimal induced distributions which achieve the minimum in
(6.12). If P ∗

X,S,X̂,U
(x, s, x̂, u) is such that U −→ (X̂, S) −→ X, then ∃

a dual CCTSI, for a channel P ∗
X|X̂,S

(x|x̂, s), having side information

PS(s), input, side information, and output alphabets X̂ ,S, and X
respectively, a cost measure φ : X̂ × S −→ R+, and a cost constraint
Γ, such that

• the rate-distortion bound with receiver side information
R(D) is equal to the capacity bound with transmitter side
information C under a power constraint Γ, i.e.,

min8
>>>>>><
>>>>>>:

PU |X(u|x), PX̂|U,S(x̂|u, s) :



E[d(X̂, X, S)] ≤ D

(U −→ X −→ S)
(X̂ −→ (U, S) −→ X)





9
>>>>>>=
>>>>>>;

I(U ; X)− I(U ;S)

= max8
>>>>>><
>>>>>>:

PU |S(u|s), PX̂|U,S(x̂|u, s) :



E[φ(X̂, S)] ≤ Γ
(U −→ (X̂, S) −→ X)
(X̂ −→ (U, S) −→ X)





9
>>>>>>=
>>>>>>;

I(U ; X)− I(U ; S);

(6.14)

• the conditional distributions P ∗
U |S(u|s), P ∗

X̂|U,S
(x̂|u, s)

achieves the capacity. i.e.,
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{
P ∗

U |S(u|s)
P ∗

X̂|U,S
(x̂|u, s)

}
,

argmax8>>>>>>>>>><
>>>>>>>>>>:

{
PU |S(u|s)
PX̂|U,S(x̂|u, s)

}
:





E[φ(X̂, S)] ≤ Γ
(U −→ (X̂, S) −→ X)
(X̂ −→ (U, S) −→ X)





9
>>>>>>>>>>=
>>>>>>>>>>;

I(U ;X)− I(U ; S)

(6.15)

where the cost measure and the cost constraint are given, respectively,
by

φ(x̂, s) , c1D(P ∗
X|X̂,S

(x|x̂, s)||PX|S(x|s)) + θ(s)

Γ , EPS(s)P ∗
X̂|S(x̂|s)(φ(X̂, S)) (6.16)

for arbitrary c1 > 0 and θ(s).

The conditions under which for a CCTSI problem there is a dual SCRSI
problem are given in a similar theorem in [95].

Theorem 9 states that for a given SCRSI, there is a dual CCTSI
such that the optimal joint distributions for the SCRSI P ∗

U |S(u|s),
P ∗

X̂|U,S
(x̂|u, s), are identical to the optimal joint distributions of the

CCTSI, with the appropriate choice of the channel cost measure, and
the rate-distortion bound is equal to the capacity bound.

If we look at the direct part of the coding theorems given in [56],
[135], we have partitioned a codebook with 2NI(X;U) into bins (cosets).
In SCRSI, this is a partition of source codebook for quantizing X into
bins with codewords serving as a channel codebook for the fictitious
channel between U and S. In CCTSI, this is a partition of a channel
codebook for the fictitious channel between U and X into bins with
codewords serving as a source codebook for quantizing S. The jointly
typical encoding operation in SCRSI is identical to the jointly typical
decoding operation in CCTSI. The jointly typical decoding operation in
SCRSI is identical to the jointly typical encoding operation in CCTSI.
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Thus, the encoder (decoder, respectively) of SCRSI and the decoder
(encoder, respectively) of CCTSI are functionally identical.

We can also consider the operational duality between the Gel’fand-
Pinsker and the Wyner-Ziv problems. This operational duality was
explored for these problems in [129]. We consider a deterministic bin-
ning scheme instead of the random binning scheme, and evaluate the
performance on the corresponding problems.

Consider a fixed joint probability distribution PX,X̂,S,U (·, ·, ·, ·) on

the random variables X, X̂, S and U having the following properties.

(1) The value of the conditional distribution PX̂|S,U (·|s, u) can
only be 0 or 1 and is determined by a deterministic function
f : U × S −→ X̂ .

(2) U −→ (X̂, S) −→ X forms a Markov chain.
(3) U −→ X −→ S forms a Markov chain.

All the marginal and conditional probabilities are generated from this
joint probability distribution PX,X̂,S,U (·, ·, ·, ·). This joint probability
distribution with the above properties defines a pair of Gel’fand-Pinsker
and Wyner-Ziv problems.

Using a greedy algorithm as presented in [129], we are able to
construct deterministic binning scheme. For this deterministic binning
scheme, each bin contains an

(
N, 2NI(U ;S)

)
code from U to S and the

codewords in all the bins form an
(
N, 2NI(U ;X)

)
code. For SCRSI, this

is a partition of source codebook for quantizing X, with distortion vio-
lation probability satisfying Pdv ≤ ε1, into bins with codewords serving
as a channel codebook, with error probability satisfying Pe ≤ ε2. In
CCTSI, this is a partition of a channel codebook, with error proba-
bility satisfying Pe ≤ ε1, for the fictitious channel between U and X,
into bins with codewords serving as a source codebook for quantizing
S, with distortion violation probability satisfying Pdv ≤ 1 − ε2. This
deterministic binning scheme, allows a rate I(U ;X) − I(U ;S) to be
achievable for both the side information problems with an error prob-
ability, for the CCTSI problem, satisfying

Pe ≤ 1− ε2 + (ε1)
1
4 , (6.17)

and with a distortion violation probability, for the SCRSI problem,
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satisfying

Pdv ≤ 1− ε1 + (ε2)
1
4 . (6.18)

Using Theorem 9, we can generalize the Gaussian SCRSI case con-
sidered by Wyner and Ziv (see Subsection 6.2). In Subsection 4.1, we
have presented generalizations to Costa’s result, where we have seen
that there is no rate loss, relative to the case where both the encoder
and decoder have access to the side information, even if the side in-
formation is not Gaussian. We can use Theorem 9 and prove that the
more general dirty-paper problem is dual to the Wyner-Ziv problem.
Therefore, the Wyner-Ziv result is generalized to the case where Z is
Gaussian, but X and S are arbitrary.

Thus far, we have only considered the non-causal version of the dual-
ity between the SCRSI and the CCTSI problems. There is also a duality
between the causal versions of the problems, i.e., the causal Wyner-Ziv
problem presented in Subsection 6.2, and the causal Shannon’s model
presented in Subsection 3.1. If we look at both the causal Wyner-Ziv
rate-distortion function (6.8) and Shannon’s capacity formula (3.17),
and rewrite (3.17) using the notation of the SCRSI problem, i.e.,

C = max
PU (·),f :U×S−→X̂

I(U ; X), (6.19)

we can see the same term I(U ; X) in both (6.8) and (6.19). We remem-
ber that the difference between the causal and non-causal versions of
the Wyner-Ziv problem, is the subtracted term I(U ;S), where both
of the problems are minimized over the same set. In the channel cod-
ing problems, i.e., the Gel’fand-Pinsker and Shannon problems, the
difference between the capacity formulas is again the term I(U ; S).
However, there is a difference between the maximizations in the two
problem. This is due to the fact that in the causal version, U and S

are restricted to be independent.
Another similarity to the non-causal setting, is that feedforward

does not improve the rate-distortion function in the causal/non-causal
SCRSI, and feedback does not improve the capacity in the causal/non-
causal CCTSI. The problem of a channel with a feedback is considered
in Subsection 3.4.
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In Subsection 7.2, we preset nested codes for practical implementa-
tion of the binning scheme for both the Gaussian Wyner-Ziv (in Sub-
section 7.2.4) and dirty-paper (is Subsection 7.2.3) problems. As it can
be seen in these subsections, the same concepts and practical coding
schemes (with some variations) are used for the two problems.

The duality in the Gaussian case has been explored in several papers
[6], [95], [116], [117]. In these papers, a geometric interpretation for
both the dirty-paper and the Wyner-Ziv problems was given. A sphere-
packing versus sphere-covering interpretation of the duality has been
formulated to illustrate the functional duality of these problems. In
the dirty-paper problem, encoding has a sphere-covering interpretation,
and decoding has a sphere-packing interpretation. In the Wyner-Ziv
problem, it’s the other way round. This interpretation emphasizes the
fact that because there is a duality between these problems, the role
of the encoder in one problem, match the role of the decoder in the
other problem, and vice versa. A geometric derivation of the achievable
rate-distortion for the Wyner-Ziv problem, and achievable rate for the
dirty-paper problem, as given in [95], provides intuition for practical
code constructions.

6.4 Joint Source-Channel Coding for the Wyner-Ziv Source
and the Gel’fand-Pinsker Channel

In this subsection, we consider the problem of joint source channel
coding for the Wyner-Ziv source and the Gel’fand-Pinsker channel.
This combined model may be used to model the problem of a backward-
compatible upgrading of an existing communication system [97], [85],
which will be elaborated on, in this subsection.

Merhav and Shamai studied this combined model in [85], the model
that was used to describe this problem is presented in Fig. 6.2. They
assumed for this model, that the Wyner-Ziv source generates inde-
pendent copies, {Ki, Vi}∞i=1, of a pair of dependent, finite-alphabet
RV’s (K, V ) ∈ K × V, at a rate of ρs symbols pairs per second. Let
N = ρsT , where T is the duration of the block in seconds. Similarly,
the Gel’fand-Pinsker channel operates at the rate of ρc channel uses per
second and n = ρcT . The channel input is subject to a cost constraint
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Fig. 6.2 Combined model of Wyner-Ziv and Gel’fand-Pinsker.

E{∑n
i=1 φ(Xi)} ≤ nΓ, where φ is a given function from the set X to

R+ and Γ ≥ 0 is a prescribed value.
The joint source-channel encoder implements a function xN =

f(kN , sn), and the decoder is defined by a deterministic function
k̂N = g(vN , yn). The quality of the decoder output, K̂, is judged with
respect to the distortion measure d(KN , K̂N ) =

∑N
i=1 d(Ki, K̂i). The

conditional probability of V N given KN ,

PV N |KN (vN |kN ) =
N∏

i=1

PV |K(vi|ki), (6.20)

is referred to as the Wyner-Ziv channel. It is assumed that V N −→
KN −→ Y N is a Markov chain, guaranteeing independence between
the Wyner-Ziv channel and the Gel’fand-Pinsker channel.

Their main result is the following separation theorem for this model:

Theorem 10. Under the assumptions which are specified above, a
necessary and sufficient condition for D being an achievable distortion
level (of the Wyner-Ziv rate-distortion function) is

ρsRWZ(D) ≤ ρcCGP (Γ).
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Where
RWZ(D) = min[I(K;Z)− I(V ;Z)]

where Z is an auxiliary RV and the minimum is under a D distortion
constraint, and

CGP (Γ) = max[I(U ; Y )− I(U ; S)].

This separation theorem asserts that there is no loss in asymptotic op-
timality in applying first, an optimal Wyner-Ziv source code and then,
an optimal Gel’fand-Pinsker channel code. This result was extended by
Winshtok and Steinberg [134] for a Wyner-Ziv source, depending on
an arbitrary varying state, known non-causally at the encoder, which
is transmitted over an arbitrary varying Gel’fand-Pinsker channel. The
separation principle presented above holds for this extended model.

As an example for the combined model presented here, we consider
the problem of a backward-compatible upgrading of an existing com-
munication system [85], [97]. An existing analog transmission system is
digitally upgraded with the goal of optimizing (under a squared-error
metric) the delivered analog and digital signal quality under a fixed
transmission power constraint Γ. The proposed upgrading system does
not increase the transmitted spectrum and is back-compatible with the
existing analog receivers.

We consider the system depicted in Fig 6.3. The source K is an

K
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Fig. 6.3 A back-compatible digital upgrade system.

i.i.d. Gaussian source characterized by the probability density function
K ∼ N (0, σ2), and Z is an AWGN distributed as Z ∼ N (0, B). In or-
der to enhance the performance for the overall system, the transmitted
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power Γ is split between “analog power”, ασ2 (0 ≤ α ≤ Γ/σ2) and
“digital power” Γ − ασ2. Now, the “digital power” constitutes noise
for the existing analog receiver. The achievable distortion between the
source and the analog reconstruction K̂a is Da = σ2(Γ−ασ2+B)

Γ+B , for
an optimal gain factor at the decoder. The encoding procedure for
the digital part motivated by Theorem 10, combines Wyner-Ziv source
coding and Gel’fand-Pinsker channel coding. The Wyner-Ziv encoder
encodes the source K treating K̂a as side information with rate that
can be communicated across Gel’fand-Pinsker channel which treats Xa

as side information in which data is embedded (as in information em-
bedding scheme) and Z as the channel noise. The Gel’fand-Pinsker
capacity is given by CGP = 1/2 log2(1 + Γ−ασ2

B ) [34] (there is a mis-
take in the Gel’fand-Pinsker capacity given in [97]). The Wyner-Ziv
encoder encode the source at rate CGP which result in a distortion
Dd = Da2−2CGP = σ2B/(Γ + B) between the source and the digi-
tal reconstruction K̂d

1. The Gel’fand-Pinsker decoder decodes the bits
generated by the Wyner-Ziv encoder and the Wyner-Ziv decoder uses
this bits and the analog reconstruction K̂a to reconstruct K̂d.

In this hybrid system we get an efficient digital upgrade of the exist-
ing analog system without compromising the digital quality compared
to a completely digital system.

6.5 Channel Capacity and State Estimation for State-
Dependent Channels

In this subsection, we consider the problem of achievable tradeoff be-
tween message and state information rates. In this problem, the sender
has access to the channel state information and wishes to send both the
message information and the state information across the channel. As
an example to such a communication system, we consider the problem
of writing to a memory with defective cells. If the defect information
will be available to either or to both the encoder and the decoder, the
memory utilization and it’s reliability will increase. Therefore, if the
encoder has access to the defect information, it will prove useful to si-

1A Gaussian source is Wyner-Ziv refinable without rate loss, for the digital part, we can
treat it as a digital refinement of an equivalent source described by variance equal to Da.
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multaneously record information in the memory and deliver the defect
information to the decoder. Another example, which was considered in
Subsection 6.4, is the problem of a backward-compatible upgrading of
an existing communication system. In this example, the analog signal
serve as the channel state and the receiver generates an estimate of this
analog signal as well as detecting the digital signal embedded in the
analog signal.

Sutivong, Chiang, Cover and Kim [118], [119], [120] found an achiev-
able tradeoff region between pure information rate and state estimation
error for a discrete memoryless channel with an arbitrary state distor-
tion measure, and characterized the optimal tradeoff for the binary
channel and also to the Gaussian channel.

This problem also corresponds to the problem of joint source chan-
nel coding for the Wyner-Ziv source and the Gel’fand-Pinsker channel
presented in Subsection 6.4. If we consider the case ρc = ρs, the com-
bined channel PY,V |X,K,S(y, v|x, k, s) = PY |X,S(y|x, s)PV |K(v|k) can be
thought of as a Gel’fand-Pinsker channel whose input is X, its state
is (K,S), and its output is (Y, V ). This case of the combined Wyner-
Ziv and Gel’fand-Pinsker model, corresponds to the extreme case of
tradeoff considered here, where the desired coding rate is R = 0 and
the distortion measure of our new state (K, S) depends only on the
component K.

The achievable tradeoff region for the discrete memoryless channel
with arbitrary state distortion measure presented in Section 2 is given
in Theorem 11 [120].

Theorem 11. For a discrete memoryless channel PY |X,S(y|x, s) with
state sN ∼ ∏N

i=1 PS(si) non-causally known at the transmitter and a
state distortion measure d(s, ŝ), an achievable (R, D) tradeoff region
is the closure of the convex hull of the set of all (R, D) pairs, R ≥ 0,
satisfying

R ≤ I(U ; Y )− I(U ; S)− I(V ; S|U) + I(V ; Y |U)

D ≥ E{d(s, ŝ)}
for some distribution

PU |S(u|s)PV |U,S(v|u, s)PX|U,S(x|u, s)PŜ|V,U,S(ŝ|v, u, s),
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where V and U are auxiliary random variables.

This achievable rate region can be rewritten in a more compact way,
by noticing that

I(U ; Y )− I(U ; S)− I(V ; S|U) + I(V ; Y |U) = I(U, V ;Y )− I(U, V ;S).

Next, we can combine (U, V ) to one auxiliary RV by defining W =
(U, V ). Therefore, the achievable rate region is given by

R ≤ I(W ; Y )− I(W ; S)

D ≥ E{d(S, Ŝ)}, (6.21)

which is the Gel’fand-Pinsker capacity formula with a distortion con-
straint between S to Ŝ, instead of a power constraint.

The capacity region for this general scenario is still an open problem.
The proposed achievable tradeoff region can be shown to be optimal
for the additive Gaussian channel model with mean-squared distortion
constraint 1

N

∑N
i=1 E(Si − Ŝi)2 ≤ D presented in Subsection 4.1. The

optimal tradeoff region for this channel model is given in Theorem 12
[118].

Theorem 12. For the state-dependent additive Gaussian channel
Y N = XN + SN + ZN , the optimal (R, D) tradeoff region is given
by the closure of the convex hull of all (R, D) pairs satisfying

R ≤ 1
2

log
(

1 +
γΓ
B

)
(6.22)

D ≥ Q
(γΓ + B)(√

Q +
√

(1− γ)Γ
)2

+ γΓ + B
(6.23)

for some 0 ≤ γ ≤ 1.

The variable γ is the power allocation parameter. By varying 0 ≤ γ ≤ 1,
we can tradeoff between the pure information rate R and the mean-
squared estimation error D. The end points of this optimal tradeoff
region are given by

(R, D) =


0, Q

B(√
Q +

√
Γ
)2

+ B



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for the case where the transmitter send only the state information which
corresponds to the case where γ = 0, and

(R,D) =
(

1
2

log
(

1 +
Γ
B

)
, Q

Γ + B

Q + Γ + B

)

for the case where the transmitter send only pure information which
correspond to the case where γ = 1.

In [86] a different aspect of the problem was considered. In [86],
the state sequence is considered as undesired information transferred
to the receiver. This undesired state information could be, for example,
a secret analog information that should be concealed from the receiver,
or a codeword belonging to another user that should be concealed from
other users. Here, instead of transmitting both pure information and
state information, the transmitter send to the receiver pure information
and mask the state information in order to conceal it from the receiver.
The amount of information that the receiver retrieves about the state
sequence is measured by blockwise mutual information (equivocation).
We would like to find the achievable tradeoff between reliable coding
at rate R, which we would like to keep as large as possible, and an
equivocation level, 1

N I(SN ; Y N ), which we would like to make smaller
than some prescribed equivocation constraint 1

N I(SN ;Y N ) ≤ E.
The achievable tradeoff region for the discrete memoryless channel

is given in Theorem 13 [86].

Theorem 13. The achievable region A is the set of pairs {(R, E)}
for which there exists a random variable U that satisfies the following
conditions at the same time:

(1) U −→ (X,S) −→ Y is a Markov chain.
(2) E[φ(x)] ≤ Γ.
(3) R ≤ I(U ; Y )− I(U ; S).
(4) E ≥ I(S;U, Y ).

There are a few differences between this result and the Gel’fand-Pinsker
capacity result (3.14). First, the cardinality of the auxiliary RV U is
by two letters larger than in the ordinary Gel’fand-Pinsker coding be-
cause of the additional equivocation and power constraints. Second,
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the channel PX|U,S(x|u, s) is not necessarily deterministic as in the
Gel’fand-Pinsker problem.

We can also consider the problem of the achievable tradeoff region
for the causal channel. The causal achievable region, which is the set of
all achievable pairs {(R, E)}, is the same as for the non-causal setting,
with the additional constraint that U is independent of S. Therefore,
I(U ; S) = 0 in the rate inequality, and I(S;Y, U) = I(S; Y |U) in the
equivocation inequality, which are given in Theorem 13. This result
is not surprising, because the causal setting considered by Shannon,
is a special case of the non-causal setting considered by Gel’fand and
Pinsker, as was argued in Subsection 3.3.

Theorem 13, may be used in order to find the achievable region
for the additive Gaussian channel presented in Subsection 4.1. For this
additive Gaussian channel with E[XS] = ρ

√
QΓ, where ρ is the cor-

relation coefficient between X S, we denote by Ŝ, the optimal linear
estimation of S based on Y . The variance of this estimator is given by

Q̂ =

(
Q + ρ

√
QΓ

)2

Q + 2ρ
√

QΓ + Γ + B
. (6.24)

The achievable rate, from Theorem 13, is bounded by

R ≤ I(U ; Y )− I(U ; S)

≤ 1
2

log
(

1 +
Γ(1− ρ2)

B

)
. (6.25)

Next, we find the minimum achievable per-symbol masking mutual
information for a given rate R. From Theorem 13, E is bounded by

E ≥ I(S; Y,U)

≥ I(S; Y )

≥ 1
2

log
(

Q

Q− Q̂

)
. (6.26)

Let

R < log
(

1 +
Γ
B

)
, (6.27)

for a rate R, satisfying (6.27), the correlation coefficient as a function
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of R (by (6.25)) is given by

%(R) =

√
1− (22R − 1)

B

Γ
. (6.28)

The minimum achievable per-symbol masking mutual information for
a given rate R, satisfying (6.27), is given by

E = min
%(R)>0

1
2

log
Q

Q− Q̂
, (6.29)

as a function of ρ across the interval ρ ∈ [−%(R), +%(R)], where Q̂ is
given in (6.24).

We note that the same choice of U simultaneously maximizes
I(U ; Y )−I(U ; S) and minimizes I(S; Y,U). Let X̃ , X−aS, where aS

stands for the best linear estimation of X given S and a = ρ
√

Γ/
√

Q.
Thus, X̃ is uncorrelated with S, E[X̃2] = Γ(1 − ρ2) and the channel
output is now given by

Y = X̃ + (1 + a)S + Z. (6.30)

Similarly to Costa we chose U = X̃ + c(1 + a)S, where c = Γ(1−ρ2)
Γ(1−ρ2)+B

.
Therefore, (6.25) is achievable. With this choice of U , it can be shown
that the optimum linear estimation of S given Y and U , is independent
of U , thus I(S;Y, U) = I(S; Y ).

We can see that in the case of weak interference, where a small
part of the power is used to cancel the state and the reminder of the
power is used to convey information, that the achievable rate is R =
1
2 log

(
1 + Γ−Q

B

)
. We also note that if we transmit pure information at

rate R > 0, PX|U,S(·|·, ·) is deterministic, i.e., X = U − (c(1 + a)− a) S

with c and a as given above.

6.6 Multiple User Channels with Side Information

6.6.1 The Multiple Access Channel with Side Information

We consider the multiple access channel (MAC) controlled by a state
process with side information available to all the encoders, to one en-
coder and/or to the receiver. The MAC model is a very important
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model in mobile wireless communication, where several users are trans-
mitting to the base station and due to the mobility of the users, the
transmitted signals, which suffers from multipath, shadowing and prop-
agation losses, are degraded. Therefore, we consider for this problem a
model of a MAC controlled by a state process.

The capacity for a class of time varying MAC, when varying degrees
of causal side information concerning the condition of the channel are
provided to the transmitters and the receiver, was determined by Das
and Narayan in [40]. Das and Narayan, studied the most general model,
i.e., general channel statistics and general state process, which are not
necessarily stationary or ergodic. For this general model, they have
found the capacity region which is expressed as a union of a region
characterized by limits of mutual information. These capacity expres-
sions, as noted by Das and Narayan, do not lead to any useful insights,
because in most of the cases they cannot be significantly simplified and
be given as a single-letter expressions. However, there is one case for
which these expressions can be simplified and be given as a single-letter
formula. This case is considered here.

We consider the case of a memoryless two-user channel given by

PY N |XN (1),XN (2),SN (yN |xN (1), xN (2), sN ) =
N∏

n=1

PY |X(1),X(2),S(yn|xn(1), xn(2), sn), (6.31)

where X(1) ∈ X (1), X(2) ∈ X (2), Y ∈ Y and S ∈ S are the first
user input, the second user input, the output and state, respectively.
This channel is depicted in Fig. 6.4. We assume that the state process
is stationary and ergodic, and that the receiver has perfect causal side
information (the switch in Fig. 6.4 is closed). Let E(1) ∈ E(1), E(2) ∈
E(2) be the side information signals available to the encoders, and let

Je,1 : S −→ E(1) Je,2 : S −→ E(2)

be mappings which are used to describe the causal side information
available to the two senders. Therefore, in our setting, only partial
casual side information is available to the encoders. We also restrict
the encoders to use only strategies which depend on a k-window of the
respective side information, i.e., Sk, where k is a fixed positive integer.
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Fig. 6.4 A two-user Mac with states.

An (N, 2NR1 , 2NR2) code for this channel consists of the following:

(1) A set of N encoding functions fn(i) : {1, ..., 2NRi}×En(i) −→
X .

(2) A decoding function g : YN × SN −→ {1, ..., 2NR1} ×
{1, ..., 2NR2}

where i, i = 1, 2 is the user index.
The average probability of error is given by

Pe =
1

2N(R1+R2)

2NR1∑

m1=1

2NR2∑

m2=1

∑

sN∈SN

PSN (sN )

×∑
yN :g(yN ,sN )6=(m1,m2) PY N |XN (1),XN (2),SN (yN |xN (1), xN (2), sN ),

(6.32)

where xN (1) and xN (2) depend on the inputs to the encoders, as de-
scribed above.

A rate pair (R1, R2) is achievable if there exists a sequence of
(N, 2NR1 , 2NR2) codes with Pe −→ 0 as N −→ 0.
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The capacity of this MAC is the convex closure of the region

⋃

X(1)|Ek(1), X(2)|Ek(2)
Sk → (Ek(1), Ek(2)) → (X(1), X(2))





(R1, R2) :
0 ≤ R1 ≤ I(X(1);Y |X(2), Sk),
0 ≤ R2 ≤ I(X(2);Y |X(1), Sk),
R1 + R2 ≤ I(X(1)X(2);Y |Sk)



 (6.33)

where the joint probability distribution function of X(1), X(2), Sk and
Y is given by

PX(1),X(2),Sk,Y (x(1), x(2), sk, y) =

PSk(sk)PY |X(1),X(2),S(y|x(1), x(2), s)

×∏2
i=1

[∑
e(i)k∈Ek(i) δ

(
Je,i(sk), ek(i)

)
PX(i)|Ek(i)(x(i)|ek(i))

]
,

(6.34)

where i, i = 1, 2, is the user index. If the state process is memoryless,
then there is no need to restrict the coding strategies to a finite k-
window.

A special case of this model, was considered in [106], where perfect
causal side information is available to the encoders, and no side infor-
mation is available to the receiver (the switch in Fig. 6.4 is open). An
outer bound for the capacity region is the convex closure of the region

⋃

X(1)|E(1), X(2)|E(2)
S → (E(1), E(2)) → (X(1), X(2))





(R1, R2) :
0 ≤ R1 ≤ I(X(1);Y |X(2)),
0 ≤ R2 ≤ I(X(2);Y |X(1)),
R1 + R2 ≤ I(X(1)X(2);Y )





.

(6.35)
If we restrict X(1)|E(1) to be independent of X(2)|E(2), (6.35) is also
an inner bound to the capacity region.

Next, we consider a variation of this model, where the state process
is memoryless, with perfect non-causal side information for one of the
users, no side information for the other user, and no side information
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for the decoder. This model was studied in [72], and it applies to the
mobile wireless communication scenario, discussed in the beginning of
this subsection. We shall also consider a Gaussian version of this prob-
lem, and see that both users benefit in terms of achievable rate from
availability of the side information to only one of the users.

An achievable rate region for this discrete memoryless model is char-
acterized in Theorem 14 [72].

Theorem 14. An achievable rate region for a discrete memoryless
MAC with state information SN ∼ PSN (sN ) =

∏N
n=1 PS(sn), which

is available non-causally at only encoder 1, is the closure of the convex
hull of all pairs (R1, R2) satisfying

R1 < I(U ; Y |X(2))− I(U ; S),

R2 < I(X(2);Y |U),

R1 + R2 < I(U,X(2);Y )− I(U ; S) (6.36)

where U is a finite alphabet auxiliary RV, and all the mutual informa-
tions in the above equations are calculated using joint distribution of
the form

PS,U,X(1),X(2),Y (s, u, x(1), x(2), y) =

PS(s)PU,X(1)|S(u, x(1)|s)PX(2)(x(2))PY |X(1),X(2),S(y|x(1), x(2), s).

(6.37)

We can use Theorem 14 to characterize the achievable rate region
of the Gaussian MAC. The output of the channel is given by

Y N = XN (1) + XN (2) + SN + ZN , (6.38)

where ZN is an additive Gaussian noise, with probability distribution
Z ∼ N (0, B), SN is the channel state or interference, with probability
distribution S ∼ N (0, Q), and XN (1), XN (2) are the channel inputs,
which satisfy power constraints 1

N

∑N
n=1 X2

n(i) ≤ Γi, where i, i = 1, 2
is the user index. The achievable rate region for this channel is charac-
terized in Theorem 15 [72].
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Theorem 15. An achievable rate region for the above Gaussian MAC
with state information known at encoder 1 is given by
⋃

β

⋃

α∈A
{(R1, R2) : R1 < r1(β, α), R2 < r2(β, α), R1 + R2 < r3(β, α)}

(6.39)
where

r1(β, α) =
1
2 ln

(
βΓ1[βΓ1+(

√
Q−√βΓ1)2+B]

βΓ1(
√

Q−√βΓ1)2(1−α)2+B(βΓ1+α2(
√

Q−√βΓ1)2)

)

r2(β, α) =
1
2 ln

(
1 + Γ2[βΓ1+α2(

√
Q−√βΓ1)2]

βΓ1(
√

Q−√βΓ1)2(1−α)2+B(βΓ1+α2(
√

Q−√βΓ1)2)

)

r3(β, α) =
1
2 ln

(
βΓ1[βΓ1+Γ2+(

√
Q−√βΓ1)2+B]

βΓ1(
√

Q−√βΓ1)2(1−α)2+B(βΓ1+α2(
√

Q−√βΓ1)2)

)

(6.40)

and 0 ≤ β < min(1, Q
Γ1

), β = (1 − β), A =
{x : x ∈ R, r1(β, x) ≥ 0, r2(β, x) ≥ 0, r3(β, x) ≥ 0}.

A coding scheme which achieves the above rate region, divides the
power available to transmitter 1, between state cancelation scheme
and pure information transmission, with β being the power shar-
ing parameter, i.e., a power of βΓ1 is used for state canceling, and
(1−β)Γ1 is used for pure information transmission using a dirty-paper
scheme. The second user, now sees a channel with a weaker interference
S̃ ∼ N (0, (

√
Q−√βΓ1)2), and uses all its power Γ2 to overcome both

this interference and the additive noise.
From the above discussion, comes our main conclusion, that even

though side information is available to only one user, both of the users
benefit from it.

We can also consider another Gaussian MAC where both of the
users have non-causal side information SN . In this case, explored in
[57], [71], it turns out that the capacity region of this channel is equal
to the capacity region when SN is available at the transmitters and the
receiver, which is, in turn, equal to the capacity region of the standard
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Gaussian MAC without additive interference SN . This result, is an
extension of Costa’s result to a Gaussian MAC.

The models and result presented in this subsection can be extended
to the case where there are more that two users.

6.6.2 The Broadcast Channel with Side Information

In this subsection, we consider an extension to the broadcast channel
model presented in Subsection 5.1, to a broadcast channel controlled by
a state process with side information available to the encoder. Gel’fand
and Pinsker [57] presented in 1984 a two-user extension of Costa’s
single-user dirty-paper model. They have shown that the capacity of a
two-user Gaussian MAC or broadcast channel with states is equal to
the capacity of a MAC or broadcast channel without the states respec-
tively.

The broadcast channel with states, is the complementary model to
the MAC model, which was also controlled by a state process, presented
in Subsection 6.6.1. The model of a broadcast channel with states may
describe a communication scenario in which a base station sends in-
dependent information to multiple non-cooperating mobile users. Due
to the mobility of the users, the transmitted signal, which suffers from
multipath, shadowing and propagation losses, is degraded. This exam-
ple, is the reverse link of the communication scenario, considered as an
example for the MAC model in Subsection 6.6.1.

A memoryless two-user broadcast channel with states, depicted in
Fig. 6.5, is given by

PY N (1),Y N (2)|SN ,XN (yN (1), yN (2)|sN , xN ) =
∏N

n=1 PY (1),Y (2)|S,X(yn(1), yn(2)|sn, xn), (6.41)

where Y (1) ∈ Y(1), Y (2) ∈ Y(2), X ∈ X and S ∈ S are the first user
output, the second user output, the input and state, respectively.

We denote the marginals of the channel by PY (1)|S,X(·|s, x) and
PY (2)|S,X(·|s, x). A broadcast channel PY (1),Y (2)|S,X(·, ·|s, x) is said to
be physically degraded if we can write

PY (1),Y (2)|S,X(y(1), y(2)|s, x) =

PY (1)|S,X(y(1)|s, x)PY (2)|Y (1)(y(2)|y(1)) (6.42)
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Fig. 6.5 A broadcast channel with states.

for some probability distribution PY (2)|Y (1)(·|y(1)). From the definition
of a physically degraded broadcast channel, it can be seen that the state
process controls only the non-degraded channel, i.e., PY (1)|S,X(·|s, x),
whereas the degraded channel, i.e., PY (2)|Y (1)(·|y(1)), is independent of
the state process.

We also define a stochastically degraded broadcast channel. A
broadcast channel
PY (1),Y (2)|S,X(·, ·|s, x) is said to be stochastically degraded if there ex-
ists some probability distribution P̃Y (2)|Y (1)(·|y(1)) such that

PY (2)|S,X(y(2)|s, x) =
∑

y∈Y
PY (1)|S,X(y(1)|s, x)P̃Y (2)|Y (1)(y(2)|y(1)).

(6.43)
First, we consider a broadcast channel with non-causal side infor-

mation available to the encoder, and no side information is available to
the decoders (the switch in Fig 6.5 is open).

An
(
N, 2NR1 , 2NR2

)
non-causal code for this channel consists of the

following:

(1) An encoding function

f : {1, ..., 2NR1} × {1, ..., 2NR2} × SN −→ XN . (6.44)
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(2) A pair of decoding functions

gi : YN (i) −→ {1, ..., 2NRi}, (6.45)

where i, i = 1, 2, is the user index.
The average probability error, in the non-causal case, is given by

Pe =
1

2N(R1+R2)

2NR1∑

m1=1

2NR2∑

m2=1

∑

sN∈SN

∑

(yN (1),yN (2))/∈Am1,m2

×PSN (sN )PY N (1),Y N (2)|XN ,SN (yN (1), yN (2)|xN , sN ), (6.46)

where Am1,m2 ,
{
(yN (1), yN (2)) : g1(yN (1)) = m1, g2(yN (2)) = m2

}
,

Am1,m2 ⊆ YN (1) × YN (2), is the correctly decoded outputs set, and
where xN depends on the input to the encoder as described above.

A rate pair (R1, R2) is said to be achievable if there exists a sequence
of

(
N, 2NR1 , 2NR2

)
codes with Pe −→ 0 as N −→ 0. The closure of all

achievable rate pairs is the capacity region.
An

(
N, 2NR1 , 2NR2

)
causal code for this channel consists of the fol-

lowing:

(1) A set of N encoding functions

fn : {1, ..., 2NR1} × {1, ..., 2NR2} × Sn −→ X . (6.47)

(2) A pair of decoding functions as (6.45).

The average probability error, for the causal case, is given by (6.46),
where xN depends on the input to the encoder as described above.

We start by giving an inner and outer bounds for the capacity region
of the non-causal case, and then we turn our attention to the causal
case. The bound for the two cases were given by Steinberg in [110].

Let P stands for the collection of random variables
(K̃, S, X, Y (1), Y (2)), where K̃ take values in the finite alphabet
K̃. The joint probability distribution of these random variables satisfy

P eK,S,X,Y (1),Y (2)
(k̃, s, x, y(1), y(2)) =

P eK,S,X
(k̃, s, x)PY (1),Y (2)|X,S(y(1), y(2)|x, s), (6.48)
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and ∑

ek,x

P eK,S,X
(k̃, s, x) = PS(s). (6.49)

Therefore, the following

K̃ −→ (S,X) −→ (Y (1), Y (2)) (6.50)

is a Markov chain.
An inner bound to the capacity region of any discrete memoryless

degraded broadcast channel, with states and non-causal side informa-
tion is the set of all pairs (R1, R2) such that

R1 ≤ I(U ;Y (1)|K)− I(U ; S|K)

R2 ≤ I(K; Y (2))− I(K; S), (6.51)

for some ((K,U), X, S, Y (1), Y (2)) ∈ P, where K and U are auxiliary
random variables which take values in the finite alphabets K and U , re-
spectively. The alphabet cardinality of these auxiliary random variables
satisfy

|K| ≤ |S||X |+ 1,

|U| ≤ |S||X | (|S||X |+ 1) . (6.52)

In order to exhaust this inner bound, it is sufficient to take X to be
a deterministic function of the triple (K, U, S). The proof of this inner
bound is given in [110], and is based on the code construction for the
degraded broadcast channel [36] and the binning construction discussed
in this paper.

An outer bound to the capacity region of any discrete memoryless
degraded broadcast channel, with states and non-causal side informa-
tion is the set of all pairs (R1, R2) such that

R1 ≤ I(U ;Y (1)|K,V )− I(U ; S|K,V ),

R2 ≤ I(K; Y (2))− I(K; S),

R1 + R2 ≤ I(K, V, U |Y (1))− I(K,V,U |S), (6.53)

for some ((K, V, U) , S, X, Y (1), Y (2)) ∈ P, where K, V and U are
auxiliary random variables which take values in the finite alphabets
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K, V and U , respectively. The alphabet cardinality of these auxiliary
random variables satisfy

|K| ≤ |S||X |+ 2,

|V| ≤ |S||X | (|S||X |+ 2) + 1,

|U| ≤ | (S||X | (|S||X |+ 2) + 1) |S||X | (|S||X |+ 2) + 1. (6.54)

In Subsection 3.4, we have presented Cover and Chiang’s extension
to the Gel’fand-Pinsker model, where side information was also avail-
able to the receiver, and we have seen that this case follows directly
form Gel’fand-Pinsker model by incorporating the receiver side infor-
mation as part of the corresponding output. Therefore, a broadcast
channel with side information available to the transmitter and to the
first user, or to the second user, or to both, is a special case of our
model.

For the case where only the first user has side information (the
switch in Fig. 6.5 is closed), it turns out that the inner bound, given
in (6.51), is tight and gives the capacity region. We will not consider
the case where only the second user has side information, because it
conflicts with the physically degraded broadcast channel definition in
(6.42).

The capacity region of any discrete memoryless degraded broadcast
channel, with states and non-causal side information at the encoder,
and at the first user, is the set of all pairs (R1, R2) such that

R1 ≤ I(X;Y (1)|K,S),

R2 ≤ I(K; Y (2))− I(K; S), (6.55)

for some (K, S, X, Y (1), Y (2)) ∈ P, where K is an auxiliary random
variable which take values in the finite alphabet K. The alphabet car-
dinality of this auxiliary random variable satisfy

|K| ≤ |S||X |+ 1. (6.56)

An example to a possible application of this model that was given in
[110], is a watermarking system where the transmitter encodes water-
marks to both the first user with the side information, and the second
user without the side information. In this case, both of the users receive
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the same channel output, and one of them has access to the side infor-
mation, whereas the other does not. The user which has access to the
side information, say user Y (1), is called the private user, and the user
without the side information, user Y (2), is called the public user. In
our model the channel from Y (1) to Y (2), PY (2)|Y (1)(·|·), is an identity
channel. Another scenario in which the discrete memoryless degraded
broadcast channel model with states and non-causal side information
applies is a watermarking problem, where the encoded message is sup-
posed to pass several stages of attacks, thus resulting in a degraded
channel model.

The second example is connected to the problem of reversible in-
formation embedding with several stages of attack discussed in Section
5.2. In [73], Kotagiri and Leneman have found the reversible informa-
tion embedding capacity region for the two-user degraded broadcast
channel with non-causal CSIT. In this model, the encoder in (6.44) is
subjected to the distortion constraint given by

E
[
d

(
sN , f

(
sN ,m1,m2

))] ≤ D, (6.57)

where d : SN ×XN −→ R+ is the distortion measure between SN and
XN . The decoders produce both message estimates and host sequence
estimates, i.e.,

gi : YN (i) −→ (SN , {1, ..., 2NRi}) , (6.58)

where i, i = 1, 2, is the user index. The reversible information embed-
ding capacity region of the degraded broadcast channel is the closure
of rate pairs (R1, R2) satisfying

R1 < I(X; Y (1)|K,S)

R2 < I(K,S; Y (2))−H(S) (6.59)

for the set of conditional distributions
{
PK,X|S(·, ·|·)} satisfying the

distortion constraint (6.57), where K is an auxiliary random variable
which take values in the finite alphabet K.

Due to the requirement to produce an estimate of the host sequence
at the decoder, in cases where the host entropy is larger than the
channel capacity, no communication can take place under a complete
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reconstruction requirement. In [113], Steinberg suggested as a possi-
ble solution to this problem to provide the decoders, a priori, with a
compressed version of the host. Steinberg considered the problem of
reversible information embedding for the degraded broadcast channel
where a compressed host data is available, before transmission, at the
decoders. The model for this problem is depicted in Fig. 6.6. The com-

ChannelEncoder
21 ,mm N

X

)1(
N

Y

)2(
N

Y

N
S

Decoder
m ,

1

Decoder
Sm ,

2

State

Encoder

N
V

d
RRate ≤

N

N

S

Fig. 6.6 Reversible information embedding with compressed host at the decoders.

pressed host data V is generated by the state encoder which is given
by

fs : SN −→ V, (6.60)

where V = {1, ..., 2NRd}. The decoders which have access to the com-
pressed host data are given by

gi : YN (i)× VN −→ (SN , {1, ..., 2NRi}) , (6.61)

where i, i = 1, 2, is the user index. The probability of error in decoding
the messages and reproducing the state S are given by

Pe =
1

2N(R1+R2)

2NR1∑

m1=1

2NR2∑

m2=1

∑

(yN (1),yN (2),sN )/∈Am1,m2,s

×PSN (sN )PY N (1),Y N (2)|XN ,SN (yN (1), yN (2)|xN , sN ), (6.62)
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where

Am1,m2,s ,{
(yN (1), yN (2), sN ) :

g1(fs(sN ), yN (1)) = (sN ,m1)
g2(fs(sN ), yN (2)) = (sN ,m2)

}
, (6.63)

Am1,m2,s ⊆ SN × YN (1) × YN (2), is the correctly decoded outputs
and state set, and where xN depends on the input to the encoder as
described above.

The reversible information embedding rate-distortion region of
the degraded broadcast channel with compressed host data available
to the decoders is the collection of all rate-distortion quadruplets
(R1, R2, Rd, D) satisfying

R1 ≤ I(X; Y (1)|K,Sd, S) (6.64)

R2 ≤ I(K,S; Y (2)|Sd)−H(S|Sd) (6.65)

Rd ≥ I(Sd; S)−H(Sd; Y (2)) (6.66)

D ≥ E [d(S, X)] (6.67)

for some ((K, Sd) , X, S, Y (1), Y (2)) ∈ P, where Sd and K are auxiliary
random variables with alphabets bounded by

|Sd| ≤ |S||X |+ 3, (6.68)

|K| ≤ |Sd||S||X |+ 2. (6.69)

Next, we turn our attention to the causal case, and give the capacity
region for this case.

Let Pc stands for the collection of random variables
(K̃, S, X, Y (1), Y (2)) such that

(K̃, S,X, Y (1), Y (2)) ∈ P (6.70)

and
P eK,S

(k̃, s) = P eK(k̃)PS(s). (6.71)

The capacity region of any discrete memoryless degraded broadcast
channel, with states and causal side information at the encoder, is the
set of all pairs (R1, R2) such that

R1 ≤ I(U ; Y (1)|K),

R2 ≤ I(K;Y (2)), (6.72)
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for some ((K,U) , S, X, Y (1), Y (2)) ∈ P, where K and U are auxiliary
random variables which take values in the finite alphabets K and U , re-
spectively. The alphabet cardinality of these auxiliary random variables
satisfy

|K| ≤ |S||X |+ 1,

|U| ≤ |S||X | (|S||X |+ 1) . (6.73)

In order to exhaust this capacity region, it is sufficient to take X to be
a deterministic function of the triple (K,U, S), i.e., x = f(k, u, s).

As in the single-user channel, where Shannon’s capacity formula
can be obtained as a special case of Gel’fand and Pinker non-causal
case (as seen in Subsection 3.3), the capacity of the casual broadcast
channel with states, is a special case of the inner and outer bounds
for the non-causal case (see the proof in [110], subsection 5.5). Another
similarity to the single-user channel, is that the capacity region given in
(6.72) can be expresses in terms of strategies. Denote by T the family
of all Shannon strategies, i.e., mapping from S to X . For fixed k and u,
x = f(k, u, ·). The rate region, in terms of strategies, is the collection
of all pairs (R1, R2) over the distributions PK(·), PT |K(·|·) such that

R1 ≤ I(T ;Y (1)|K),

R2 ≤ I(K; Y (2)), (6.74)

where K ia an auxiliary random variable, PT |K(·|·) is a conditional
distribution on the set T , conditioned on K, and the pair (T, K) is
independent of S.

This general capacity region, is used in [110] to determine the ca-
pacity region of the degraded broadcast modulo additive noise channel.
This model is an extension of the single-user model presented in Sec-
tion 4.3. This degraded broadcast modulo additive noise channel can
be described as

Y (1) = X + Z1

Y (2) = Y (1) + Z2 = X + Z1 + Z2 = X + Z3, (6.75)

where Z1 is a state dependent noise, with conditional distribution
PZ1|S(·|·), Z2 is an additive noise independent of Z1 and of the state
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S, and Z3 is the sum of Z1 and Z2,i.e., Z3 , Z1 + Z3 with conditional
distribution PZ3|S(·|·). As in the single-user model presented in Section
4.3, the alphabets of all the RV’s are the same, i.e., X = Y(1) = Y(2) =
Z1 = Z2 = {0, 1, ..., |X | − 1} and addition or subtraction is preformed
modulo |X |. Using (6.76) the capacity of the degraded broadcast mod-
ulo additive noise channel is the collection of all pairs (R1, R2) over the
distributions PK(·), PT |K(·|·) such that

R1 ≤ H(Z1 + T (S)|K)−H(Z1 + T (S)|T ),

R2 ≤ H(Y (2))−H(Z3 + T (S)|K). (6.76)

Similarly to the single-user case, the strategy t can be interpreted as a
noise predictor, which minimizes the noise entropy.

We now consider a general broadcast channel (not necessarily de-
graded) with states, and with non-causal side information available to
the encoder. In [115], this problem was considered and an inner bound
to the capacity region was given for this model. This bound is an ex-
tension of Marton’s [82] achievable region to our model.

Let P stands for the collection of random variables
(K̃, S, X, Y (1), Y (2)), where K̃ take values in the finite alphabet
K̃. The joint probability distribution of these random variables satisfy

P eK,S,X,Y (1),Y (2)
(k̃, s, x, y(1), y(2)) =

P eK,S,X
(k̃, s, x)PY (1)|X,S(y(1)|x, s)PY (2)|X,S(y(2)|x, s), (6.77)

and both triples

K̃ −→ (S,X) −→ Y (1)

K̃ −→ (S,X) −→ Y (2) (6.78)

are Markov chains.
An inner bound to the capacity region of any discrete memoryless

broadcast channel, with states and non-causal side information is the
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convex hull of the set of all pairs (R1, R2) such that

R1 ≤ I(K, V ; Y (1))− I(K, V ;S),

R2 ≤ I(K, U ; Y (2))− I(K, U ;S),

R1 + R2 ≤ − [max {I(K;Y (1)), I(K;Y (2))} − I(K; S)]+
+I(K, V ;Y (1))− I(K, V ;S)

+I(K, U ;Y (2))− I(K, U ;S)

−I(U ; V |K,S) (6.79)

for some ((K,V, U), X, S, Y (1), Y (2)) ∈ P, where K, V and U are aux-
iliary random variables which take values in the finite alphabets K, V
and U , respectively, and where [a]+ , max {0, a}.

We can extend this model and also include common messages which
are transmitted to both of the users, in addition to the separate mes-
sages intended to each one of the users [115]. This model applies to the
wireless mobile users example, which was given in the start of this sub-
section. In this example, the base station sometimes transmits a com-
mon message to the users in addition to the separate messages. This
common message could be, for example, a control message intended to
all of the users.

The definitions of a code with a common messages set {1, ..., 2NR0}
is similar to that given for the non-causal code, except that the encoder
is now

f : {1, ..., 2NR1} × {1, ..., 2NR2} × {1, ..., 2NR0} × SN −→ XN ,

and the decoders are replaced by

g(i) : YN (i) −→ {1, ..., 2NRi} × {1, ..., 2NR0}.

The probability of error is normalized to 2N(R1+R2+R0), and the defin-
ition of an achievable rate region, stays the same.

An inner bound to the capacity region of any discrete memoryless
broadcast channel, with states, non-causal side information and trans-
mitted common messages is the convex hull of the set of all triples
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(R1, R2, R0) such that

R0 ≤ [min {I(K;Y (1)), I(K;Y (2))} − I(K; S)]+ ,

R1 + R0 ≤ I(K, V ; Y (1))− I(K, V ; S),

R2 + R0 ≤ I(K, U ; Y (2))− I(K, U ; S),

R1 + R2 + R0 ≤ − [max {I(K; Y (1)), I(K; Y (2))} − I(K; S)]+
+I(K, V ;Y (1))− I(K, V ;S)

+I(K, U ;Y (2))− I(K, U ;S)

−I(U ; V |K,S) (6.80)

for some ((K,V, U), X, S, Y (1), Y (2)) ∈ P, where K, V and U are aux-
iliary random variables which take values in the finite alphabets K, V
and U , respectively. The proof of this inner bound, follows directly from
the proof of the inner bound without common messages.

Khisti, Erez and Wornell [70] considered a similar problem, in which
only common messages are transmitted to the users. They have found
an achievable common rate for the special case of binary channels [70].
The achievable common rate is also characterized in (6.80), as this
problem is a special case of the problem considered above. Therefore,
the achievable common rate is given by

R = min {R1, R2}+ R0, (6.81)

where R1, R2 and R0 are characterized in (6.80).
Next, we consider the non degraded Gaussian broadcast channel

with states and side information available to the transmitter. A two-
user Gaussian broadcast channel is given by

Y (1) = X + S1 + Z1,

Y (2) = X + S2 + Z2, (6.82)

where Z1 ∼ N (0, B1) and Z2 ∼ N (0, B2) are additive Gaussian noises,
for the first and second users, S1 ∼ N (0, Q1) and S2 ∼ N (0, Q2) are
additive Gaussian states of interferences, both known non-causally at
the transmitter. The Gaussian random variables Z1, Z2 and (S1, S2) are
independent of each other, except of S1 and S2 that can be correlated.
The input X is subjected to a power constraint E

[
X2

] ≤ Γ.
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We can use (6.79) in order to characterize the capacity region of
this channel. We assume that B1 ≥ B2. Define the state variable S ,
(S1, S2), and set a parameter β ∈ [0, 1]. We decompose X as X =
X1 +X2, where X1 and X2 are independent of each other, with powers
βΓ and (1− β)Γ, respectively. Let K in (6.79), be a null variable and
define

V = X1 +
(

βΓ
Γ + B1

)
S1, (6.83)

and

U = X2 +
(

(1− β)Γ
(1− β)Γ + B2

)
(S2 + X1) . (6.84)

With these definitions and by (6.79), the following rate pair is achiev-
able

R1 =
1
2

log
(

1 +
βΓ

B1 + (1− β)Γ

)

R2 =
1
2

log
(

1 +
(1− β)Γ

B2

)
. (6.85)

Therefore, the capacity region of the Gaussian broadcast channel with
additive states S1, S2 known non-causally at the encoder, is equal to
the capacity region of the Gaussian broadcast channel without additive
states, with the same input constraints.

This result is in the spirit of Costa’s result, and was also noticed
for the special case when S̃ , S1 = S2, considered in [57], [71]. For this
special case, the capacity region of this Gaussian broadcast channel
coincides with the capacity region of a Gaussian broadcast channel
without states.
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Algorithms

7.1 Numerical Computation of the Channel Capacity

In this subsection, we present numerical algorithms for the computa-
tion of the capacity of channels with causal or non-causal transmitter
side information. Expressions for the capacity of channels with causal
or non-causal CSIT, were given is Section 3. Evaluating the capacity
of these channels, can be a very difficult task. In most cases, closed-
form solutions are unavailable. However, this capacity can be evaluated
numerically.

A numerical algorithm for the computation of the capacity for a
DMC was given in [3], [12], [29]. This algorithm is known as the
Arimoto-Blahut algorithm. We start by presenting the algorithm for
the DMC to show how this type of algorithm is developed. We give
the the following lemma, that will help us derive the algorithm for the
DMC.

Lemma 2. [36] Let PX(x)PY |X(y|x) be a given joint distribution.
Then the distribution PY (y) that minimizes the relative entropy
D

(
PX(x)PY |X(y|x)||PX(x)PY (y)

)
is the marginal distribution P ∗

Y (y)

103
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corresponding to PY |X(y|x), i.e.,

D
(
PX(x)PY |X(y|x)||PX(x)P ∗

Y (y)
)

=

minPY (·) D
(
PX(x)PY |X(y|x)||PX(x)PY (y)

)
, (7.1)

where P ∗
Y (y) =

∑
x PX(x)PY |X(y|x). Also

max
PX|Y (·|·)

∑
x,y

PX(x)PY |X(y|x) log
PX|Y (x|y)

PX(x)
=

∑
x,y PX(x)PY |X(y|x) log

P ∗
X|Y (x|y)

PX(x) , (7.2)

where

P ∗
X|Y (x|y) =

PX(x)PY |X(y|x)∑
x PX(x)PY |X(y|x)

. (7.3)

We then rewrite the definition of the DMC capacity using Lemma 2

C = max
PX(·)

I(X; Y )

= max
PX|Y (·|·)

max
PX(·)

∑

X

∑

Y

PX(x)PY |X(y|x) log
PX|Y (x|y)

PX(x)

= max
PX|Y (·|·)

max
PX(·)

F
(
PX|Y (·|·), PX(·)) , (7.4)

where F
(
PX|Y (·|·), PX(·)) =

∑
X

∑
Y PX(x)PY |X(y|x) log PX|Y (x|y)

PX(x) .
The concept of the algorithm is to regard PX|Y (x|y) and PX(x) as
independent variables and to optimize alternately between the two.
We start with a guess of the maximizing distribution PX(x) and find
the best conditional distribution P ∗

X|Y (x|y), which is by Lemma 2 given
by (7.3). For this conditional distribution the best input distribution
P ∗

X(x) is found by solving the maximization problem using a Lagrange
multiplier to constrain

∑
x P ∗

X(x) = 1. Hence,

P ∗
X(x) =

∏
y

(
PX|Y (x|y)PY |X(y|x)

)

∑
x

∏
y

(
PX|Y (x|y)PY |X(y|x)

) . (7.5)

A stopping criterion was also given in [12]. When the criterion is met,
we get the capacity of the channel for a desired accuracy. In order to
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find a stopping criterion, we introduce an upper-bound to the capacity
[12]

U (PX(·)) = max
x

∑

Y

PY |X(y|x) log
PY |X(y|x)∑

x PX(x)PY |X(y|x)
≥ C. (7.6)

The stopping criterion is when U (PX(·))−F
(
PX|Y (·|·), PX(·)) < ε for

any desired ε > 0. The upper-bound (7.6) appears as a problem in [54].
We can summarize the different steps of the algorithm.

(1) Start the algorithm with a guess of the maximizing distri-
bution PX(·) (the algorithm will converge from any initial
distribution).

(2) Calculate PX|Y (·|·) by using (7.3).
(3) Calculate U (PX(·)) and F

(
PX|Y (·|·), PX(·)).

(4) If U (PX(·)) − F
(
PX|Y (·|·), PX(·)) < ε the algorithm termi-

nates and the capacity is given by C = F
(
PX|Y (·|·), PX(·)),

else proceed to the next step.
(5) Calculate PX(·) by using (7.5) and jump to step 2.

In [12], Blahut proved that lower bound to the capacity
F

(
PX|Y (·|·), PX(·)) converges monotonically to the capacity of the

DMC. Blahut’s convergence proof suffers a mistake. A convergence
proof for this algorithm is complicated and can be viewed in [3] and
[29]. Since the algorithm monotonically increases the lower bound
F

(
PX|Y (·|·), PX(·)) until the convergence to the capacity, and the up-

per bound is equal to the lower bound only when they converge to the
capacity, we can use the stopping criterion presented in the algorithm.

Next, we consider Arimoto-Blahut algorithm for numerical compu-
tation of the capacity of a channel with non-causal CSIT. Arimoto-
Blahut algorithm for this channel were given in [63], [42]. We start by
describing these algorithms.

The capacity of a channel with non-causal CSIT is given by (3.15)
in terms of an extended input alphabet. We can rewrite the mutual
information in this equation and give it as

I(T ; Y )− I(T ; S) =
∑

s,y,t PS(s)PT |S(t|s)PY |T,S(y|t, s) log
(

PT |Y (t|y)

PT |S(t|s)
)

. (7.7)
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The concept of the algorithm proposed in [42], similarly to the algo-
rithm for the DMC, is to regard PT |Y (t|y) and PT |S(t|s) as independent
variables and to optimize alternately between the two. Since the objec-
tive function is concave in both PT |Y (t|y) and PT |S(t|s), and since both
PT |Y (t|y) and PT |S(t|s) are convex, the alternating optimization scheme
must converge to the global maximum from any initial distribution [63],
[29]. The authors in [42], haven’t given any stopping criterion for this
algorithm, although, this algorithm can have a stopping criterion, as
we shall see in an extended version of this algorithm [61].

In terms of complexity, the algorithm presented so far is an improved
version of an earlier algorithm given in [63]. In the original algorithm
of [63], we optimize the objective function

I(U ; Y )− I(U ; S) =
∑

s,u,x,y PS(s)PU |S(u|s)PX|U,S(x|u, s)PY |X,S(y|x, s) log
(

PU|Y (u|y)

PU|S(u|s)
)

,

(7.8)

alternately between three independent variable: PX|U,S(x|u, s),
PU |S(u|s) and PU |Y (u|y). Therefore, this algorithm is inferior to the
first algorithm, because it includes an additional step. However, this
algorithm requires less computer memory when it runs. The optimiza-
tion in the first algorithm, is over an extended alphabet with cardinality
|X ||S|. Thus, the memory requirements for the first algorithm is expo-
nential in the number of channel states.

A generalization of the first algorithm (for a channel with states)
which also take into account an average power constraint, was proposed
in [61]. The capacity of a channel with non-causal CSIT and with an
average power constraint was given by (3.23), where the average power
constraint is given by

E
[
T (S)2

]
=

∑
s,t

PS(s)PT |S(t|s)t2(s) ≤ Γ. (7.9)

Let C(Γ) be the capacity-cost curve given in (3.23) as a function of
the power constraint Γ. C(Γ) is a monotone and concave function of
Γ [6]. Therefore, the computation of the capacity-cost function for a
given value of Γ can instead be solved by computing the value of the
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capacity-cost function at a given slope a, i.e.

C(Γ)− aΓ = max
PT |S(t|s),PT |Y (t|y)

{ ∑
s,t,y PS(s)PT |S(t|s)PY |T,S(y|t, s) log

(
PT |Y (t|y)

PT |S(t|s)
)

−a
∑

s,t PS(s)PT |S(t|s)t2(s)}. (7.10)

Again we alternately optimize over PT |S(t|s) and PT |Y (t|y),

P ∗
T |S(t|s) =

(∏
y PT |Y (t|y)PY |T,S(y|t,s)

)
e−at2(s)

∑
t′

{(∏
y PT |Y (t′|y)PY |T,S(y|t′,s)

)
e−at′2(s)

} (7.11)

P ∗
T |Y (t|y) =

∑
s PS(s)PT |S(t|s)PY |T,S(y|t, s)∑

s′,t′ PS(s′)PT |S(t′|s′)PY |T,S(y|t′, s′) . (7.12)

This algorithm and the algorithm presented in [63], also have a stop-
ping criterion. This criterion may shorten the time needed to compute
the capacity when compared to the algorithm given in [42] without a
stopping criterion. We define

F
(
PT |S(·|·), PT |Y (·|·)) =

∑
s,t PS(s)PT |S(t|s)

(∑
y PY |T,S(y|t, s) log PT |Y (t|y)

PT |S(t|s) − at2(s)
)

(7.13)

U ′
(
PT |S(·|·), P̃T |S(·|·)

)
=

∑
s,t PS(s)PT |S(t|s)

(∑
y PY |T,S(y|t, s) log

eP ∗
T |Y (t|y)

ePT |S(t|s) − at2(s)
)

(7.14)

U
(
PT |S(·|·)) =

∑
s PS(s)maxt

(∑
y PY |T,S(y|t, s) log

P ∗
T |Y (t|y)

PT |S(t|s) − at2(s)
)

(7.15)



108 Algorithms

where P̃ ∗
T |Y (t|y) is the conditional distribution given by (7.12) under

P̃T |S(t|s). Similarly to the upper-bound in the DMC case, we can see
that

C(Γ)− aΓ = max
PT |S(t|s)PT |Y (t|y)

F
(
PT |S(·|·), PT |Y (·|·)) ≤ U

(
P̃T |S(·|·)

)

and F
(
PT |S(·|·), PT |Y (·|·)) = U

(
P̃T |S(·|·)

)
if and only if F is maxi-

mized over PT |S(t|s) and PT |Y (t|y) and PT |S(t|s) = P̃T |S(t|s). There-
fore, the stopping criterion in this case is when U

(
PT |S(·|·)) −

F
(
PT |S(·|·), PT |Y (·|·)) < ε for any desired ε.
The algorithm for the causal side information scenario, is similar

to the algorithm for the non-causal scenario and is given in [61]. The
equivalence of a channel with causal CSIT to a DMC with an expanded
alphabet as was demonstrated in Subsection 3.1, means that we can use
the standard Arimoto-Blahut algorithm given in [3], [12] when there is
no power constraint.

In order to calculate the capacity-cost function for a continuous al-
phabet channel, we approximate the channel by a discrete one (quan-
tizing) and then apply the algorithms presented here to finer and finer
approximations until convergence to the continuous channel capacity
is reached.

We note here that similar algorithms exist for the calculation of the
rate-distortion function [12], [36].

7.2 Coding Schemes

In Section 3, we have seen that the random binning scheme is one of
the key elements in the solution of the problems presented in this work.
We next present (in Subsection 7.2.1) lattice codes and nested lattice
codes that are used (in Subsection 7.2.3) as a coding scheme for the
continuous version of the dirty-paper problem, and also (in Subsection
7.2.4) as a coding scheme for the continuous version of the Wyner-Ziv
problem. We also present parity-check codes and nested parity-check
codes (in Subsection 7.2.2) for the binary version of the dirty-paper
problem, discussed in Subsection 7.2.3, and to both the binary version
of the Wyner-Ziv and the Slepian-Wolf problems, which are discussed
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in Subsection 7.2.4.
The concept of nested codes has been the main theme in various

works pertaining to practical coding techniques for these problems.
Willems proposed a scalar version of a nested code for channels with
CSIT [132]. Codes for the dirty-paper and dirty-tape problems, were
discussed in [47], [15], [93], [7], [93], [28]. In [23], [24], [20], [21], [43],
[88], [69], [87] coding schemes which are based on nested codes, were
proposed to the information embedding problem. Shamai, Verdú and
Zamir [103], suggested using nested codes for the Wyner-Ziv problem.
Pradhan and Ramchandran [96] proposed using nested codes for both
the Slepian-Wolf and the Wyner-Ziv problems.

This subsection by no means includes a complete coverage of all
coding schemes for the problems presented in this work. We have chosen
to include only the main ideas of nested codes, and we show how these
codes are used for the main problems presented in this paper.

7.2.1 Nested Lattice Codes for Binning Schemes

The bins of the coding schemes of Section 3, were constructed at ran-
dom. This random construction is not constructive. In this subsection,
we present a nested lattice code, that may be used as a binning scheme.

We start by introducing the basic terms and properties of lattice
codes and nested lattice codes [143]. An N -dimensional lattice Λ is
defined by a set of N basis (column) vectors gN (1), ..., gN (N) in RN .
The lattice is composed of all integral combinations of the basis vectors,
i.e.,

Λ = {lN = G · iN : iN ∈ ZN} (7.16)

where Z = {0,±1,±2, ...}, and the N ×N generator matrix G is given
by
G = [gN (1), gN (2), ..., gN (N)]. The nearest neighbor quantizer Q(·)
associated with Λ is defined by

Q(xN ) = lN ∈ Λ if ‖xN − lN‖ ≤ ‖xN − l′N‖, ∀l′N ∈ Λ (7.17)

where ‖ · ‖ denotes Euclidean norm. The basic Voronoi cell of Λ is the
set of points in RN closest to the zero codeword, i.e.,

ν0 = {xN : Q(xN ) = 0}. (7.18)
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The Voronoi cell associated with each lN ∈ Λ is a shift of ν0 by lN . The
error in quantizing xN with respect to Λ is given by

xN mod Λ = xN −Q(xN ). (7.19)

The second moment of Λ is defined as the second moment per dimension
of a uniform distribution over ν0, i.e.,

σ2 =
1
V
· 1
N

∫

ν0

‖xN‖dxN , (7.20)

where V =
∫
ν0

dxN is the volume of ν0. The normalized second moment
of Λ is given by

G(Λ) =
1

V 1+2/N
· 1
N

∫

ν0

‖xN‖dxN = σ2/V 2/N . (7.21)

The minimum possible value of G(Λ) over all lattices in RN is denoted
by GN , where GN ≥ 1/2πe,∀N . The error probability when this lat-
tice code is used as a channel code over an AWGN channel without a
channel input constraint, is the probability that a white Gaussian noise
vector ZN exceeds the basic Voronoi cell

Pe = Pr{ZN /∈ ν0}. (7.22)

An important result pertaining to lattice codes is the existence of
asymptotically “good” codes. We consider two definitions of “good”
lattice codes:

(1) Good channel codes over AWGN channel : For any ε > 0 and
sufficiently large N , there exists an N -dimensional lattice Λ
whose cell volume V < 2N(h(Z)+ε), where h(z) = 1

2 log(2πeB)
and B are the differential entropy and the variance of the
AWGN Z, respectively, such that Pe < ε.

(2) Good source codes under mean squared distortion measure:
For any ε > 0 and sufficiently large N , there exists an N -
dimensional lattice Λ with log(2πeGn) < ε, i.e., the nor-
malized second moment of good lattice codes approach the
bound 1/2πe as N goes to infinity.
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Such channel codes approach the capacity per unit volume of the
AWGN channel, and are called “good AWGN channel B-codes”, and
such source codes, scaled to second moment D, approach the quadratic
rate-distortion function R(D) at a high-resolution quantization condi-
tions, and are called “good source D-codes”. The basic Voronoi cell of
a good lattice code, when used as a channel code, approximates Euclid-
ean ball of radius

√
NB, or

√
ND, when used as a source code with

distortion D. Therefore, the volume of the Voronoi cells of good δ-codes
satisfies asymptotically

1
N

log V ≈ 1
2

log(2πeδ) (7.23)

where δ corresponds to B or D, and ≈ means approximation in an ex-
ponential sense, i.e., the difference between the normalized logarithms
is small. A lattice which is good in one sense is not necessarily good in
the other.

Definition 12. A pair of N -dimensional lattices (Λ1,Λ2) if

Λ2 ⊂ Λ1, (7.24)

i.e., each codeword of Λ2 is also a codeword of Λ1.

It can be shown that there exists corresponding generator matrices G1

and G2, such that G2 = G1 · J where J is an N × N integer matrix
whose determinant is greater than one. Λ1 is called the fine lattice and
Λ2 is called the coarse lattice. The volume of the Voronoi cells of Λ1

and Λ2 satisfy
V2 = |J | · V1 (7.25)

where V2 = V ol(ν0,2) and V1 = V ol(ν0,1) and ν0,i is the basic Voronoi
cell of Λi, i = 1, 2. We call N

√
|J | = N

√
V2/V1 the nesting ratio.

The points of the set

{Λ1 mod Λ2} , {Λ1

⋂
ν0,2} (7.26)

are called the coset leaders of Λ2 relative to Λ1. For each coset leader
vN ∈ {Λ1 mod Λ2}, the shifted lattice Λ2,vN = vN + Λ2 is called a
coset of Λ2 relative to Λ1. The cosets Λ2,vN , vN ∈ {Λ1 mod Λ2} are
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disjoint. Therefore, there are V2/V1 = |J | different cosets, whose union
gives the fine lattice

⋃

vN∈{Λ1 mod Λ2}
Λ2,vN = Λ1. (7.27)

In order to implement a binning scheme with nested lattice codes,
we require that one of the lattices is a good channel code over an
AWGN channel, and the other one is good for source coding under mean
squared error distortion measure (or with a power constraint in the
dirty-paper problem) as mentioned in Subsection 3.2. In a good binning
scheme, each bin should contain a good collection of representative
points which spread over the entire space. Hence, each bin plays the
role of a good source code. The collection of all the codewords in all the
bins, should play the role of a good channel code, in order to overcome
the noise in the channel. If the fine lattice is a good δ1-code and the
coarse lattice is a good δ2-code, δ2 > δ1, then the number of cosets of
Λ2 relative to Λ1 is about

V2/V1 = (δ2/δ1)N/2, (7.28)

where for a good channel code component, δ1 indicates the AWGN
power, which is in general smaller than, or equal to the second moment
of the lattice, and for a good source code component, δ2 indicates the
mean square distortion, which coincides with the second moment of the
lattice.

7.2.2 Nested Parity-Check Codes for Binning Schemes

We present the binary counterpart of the nested lattice codes, called
the nested parity-check codes. These codes are use as a binary binning
scheme for the discrete case, e.g., coding to a memory with defective
cells. Kuznetsov and Tsybakov introduced such a code for the noiseless
problem of coding to a memory with defective cells [75], and Tsybakov
[123] introduced such a code for the more general case of a noisy mem-
ory with defective cells.

As in Subsection 7.2.1, we start by introducing the basic terms and
properties of parity-check codes and nested parity-check codes [143].
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Let an (N,K) binary parity-check code be specified by the (N−K)×N

binary parity-check matrix H. The code C = {cN} contains all binary
vectors cN whose syndrome, defined by s(N−K) , HcN , is equal to
zero1. There are 2K codewords in C as there are 2K linearly inde-
pendent rows of H, so the code rate is log |C|

N = K/N . The set of all
vectors xN satisfying HxN = s(N−K), where s(N−K) is some general
syndrome s(N−K) ∈ {0, 1}(N−K), is called a coset, and is denoted by
Cs(N−K) . We define a decoding function f : {0, 1}(N−K) −→ {0, 1}N ,
where f(s(N−K)) is equal to the vector vN ∈ Cs(N−K) with the mini-
mum Hamming weight, where ties are broken arbitrarily. The coset, is
a shift of the code C by the vector vN , i.e.,

Cs(N−K) ,
{

xN : HxN = s(N−K)
}

=
{
cN + vN : cN ∈ C} (7.29)

where the vector vN = f(s(N−K)) is called the coset leader.
As in the continuous case discussed in Subsection 7.2.1, maximum-

likelihood decoding of parity-check code, over a binary symmetric chan-
nel with transition probability p (BSC(p))2 yN = xN + zN , where
xN , zN and yN are the channel input, the channel noise and the channel
output, respectively, amounts to quantizing yN to the nearest vector in
C with respect to the Hamming distance. This vector, ĉN , is computed
by the following procedure

ĉN = yN + ẑN , ẑN = f(HyN ). (7.30)

As in the continuous case, the error in quantizing yN by C, is given by

ẑN = f(HyN ) = yN mod C. (7.31)

The basic Voronoi set is defined as the set of vectors zN closest to the
zero vector, i.e.,

{
zN : zN + f(HzN ) = 0

}
= Ωo. (7.32)

The quantizer presented above, may be viewed as a partition of {0, 1}N

to 2K decision cells of size 2(N−K) each, which are all shifted version of

1Multiplication and addition is the binary case are modulo 2.
2A binary symmetric channel has a binary input and output, and its output is equal to the
input with probability (1− p), and with probability p, on the other hand, a 0 is received
as 1, and vice versa.
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the basic Voronoi set Ω0. Each of the 2(N−K) members of Ω0 is a coset
leader for a different coset.

As in the continuous case, we consider two definitions of “good”
codes:

(1) Good channel codes over BSC(p) [36] : For any ε > 0 and
sufficiently large N , there exists an (N, K) code of rate
K/N > C − ε, where C = 1 − H(p) is the BSC(p) capac-
ity, with a probability of decoding error smaller than ε

Pr

{
ẐN 6= ZN

}
= Pr

{
f(HZN ) 6= ZN

}
< ε (7.33)

where ZN denotes the channel noise vector (a Bernoulli(p)
vector), and ẐN denotes its estimation given by (7.30).

(2) Good source codes under Hamming distortion [36] : For any
0 ≤ D ≤ 1/2, ε > 0, and sufficiently large N , there exists
an (N, K) code of rate K/N < R(D) + ε, where R(D) =
1−H(D) is the rate-distortion function of a binary symmetric
source (BSS) XN , such that the expected quantization error
Hamming weight satisfies

1
N

E
{

ωH

(
XN + X̂N

)}
=

1
N

E
{
ωH

(
EN

)}
< D+ε (7.34)

where ωH(·) denotes the Hamming weight, X̂N denotes the
quantization of XN by the code, and where EN = XN +
X̂N = f(HXN ) is the quantization error, which is uniformly
distributed over Ω0.

Such channel codes are called “good BSC p-codes”, and such source
codes are called “good BSS D-codes”. The basic Voronoi cell of a good
(K, N) parity-check code, approximate a Hamming ball of radius Np,
when used as a channel code, or ND, when used as a source code under
Hamming distortion D.

As in the continuous case, a nested code is a pair of linear codes
(C1, C2) satisfying

C2 ⊂ C1 (7.35)

i.e., each codeword of C2 is also a codeword of C1, and as in the con-
tinuous case, we call C1 the fine code and C2 the coarse code. A pair
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{(N,K1) , (N, K2)} of parity-check codes, K1 > K2, is nested in the
sense of (7.35), if there exists corresponding parity-check matrices H1

and H2, such that

H2 =




H1

· · ·
4H


 (7.36)

where H1 is an (N −K1)×N matrix, H2 is an (N −K2)×N matrix,
and4H is a (K1−k2)×N matrix. By (7.36), the syndromes s

(N−K1)
1 =

H1x
N and s

(N−K2)
2 = H2x

N associated with some vector xN are related
as

s
(N−K2)
2 =

[
s
(N−K1)
1

4s(K1−K2)

]
,

where 4s(K1−K2) is the syndrome vector associated with 4H. There-
fore, C1 is partitioned into 2(K1−K2) cosets of C2 by setting s

(N−K1)
1 ≡ 0,

and varying 4s(K1−K2), i.e.,

C1 =
⋃

4s(K1−K2)∈{0,1}(K1−K2)

C
2,s

(N−K2)
2

,where

s
(N−K2)
2 =




0
·
·
·
0

4s(K1−K2)




(7.37)

where for each 4s(K1−K2) ∈ {0, 1}(K1−K2) and therefore, each s
(N−K2)
2

as in (7.37), C
2,s

(N−K2)
2

is called the coset of C2 relative to C1. We denote
by Ω0,i the basic Voronoi cell of Ci, i = 1, 2.

If the fine code is a good δ1-code and the coarse code is a good
δ2-code, for some δ1, δ2 such that δ2 > δ1, then the number of cosets in
(7.37) is about

|Ω0,2|
|Ω0,1| = 2(K1−K2) ≈ 2N [H(δ2)−H(δ1)]. (7.38)
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7.2.3 Dirty Paper Codes

In this subsection, we present coding schemes for both the continuous
dirty-paper problem and the binary modulo-2 additive noise channel
problem (see Subsection 4.1), called in this work the binary dirty-paper
problem, which are based on a nested lattice and a nested parity-check
codes. The nested lattice coding scheme, can also be adapted to be used
in the dirty-tape problem where we use lattices with one dimension
[48], [15], or for watermarking problems [23], [24], [20], [43]. The nested
parity-check coding scheme, can be used for a memory with defective
cells [123].

In both the binary and continuous cases, we use a pair of nested
lattice/parity-check codes, and tune the fine code to the noise level,
and the coarse code to the input constraint. In the continuous case, we
use for the fine lattice Λ1 a good channel ΓB

Γ+B -code, and for the coarse
lattice Λ2 a good source Γ-code, where Γ is the power constraint. In
the binary case, we use for the fine code C1 a good channel p-code, and
for the coarse code C2 a good source γ-code, where γ is the Hamming
input constraint. Let the random vector KN be uniform over the basic
Voronoi cell of the coarse code, i.e., ν0,2 for the lattice case, and Ω0,2 for
the binary case. KN is a dither signal available to both the encoder and
decoder. We also use, for the continuous alphabet case, the optimum
estimation coefficient α = Γ

Γ+B defined in Subsection 4.1. A coding
scheme for the dirty-paper problem is depicted in Fig. 7.1. We use the
following coding scheme:

Message selection: identify each coset Λ2,vN , vN ∈ {Λ1
⋂

ν0,2},
where vN is the coset leader, with a unique message m ∈ M.
By (7.28), this amounts to log(V2/V1) ≈ N

2 log(1 + Γ
B ) bits per

N -block.
Encoding: transmit the error vector between αsN + kN and the se-

lected coset Λ2,vN , i.e.,

xN = [vN − αsN − kN ] mod Λ2 (7.39)

where sN is the interference vector and kN is the
dither. By the properties of dithered quantization,
1
N E

{‖XN‖2 |V N = vN , SN = sN
}

= Γ, independently of
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the value of vN and sN , where the expectation is over the
dither KN .

Decoding: reconstruct the message as the unique coset containing
Q1(αyN + kN ), where Q1(·) is the nearest neighbor quantizer
associated with Λ1. The leader of this coset can be computed
as

v̂N = Q1(αyN + kN ) mod Λ2 = Q1(ỹN ) mod Λ2, (7.40)

where v̂N denotes the reconstructed coset leader from which we
can estimate the transmitted message, and for a convenience
reason, we denote the sum αyN + kN , by ỹN , αyN + kN .
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Fig. 7.1 Nested coding scheme for the dirty-paper problem.

In the binary case, we set α = 1, replace Λ2 by C2, and replace the
nearest neighbor quantizer Q1(·) associated with Λ1, by the minimum
Hamming distance decoding function (7.30) associated with C1 and use
the same coding scheme. Using this coding scheme for the binary case,
by (7.38) we have

log
|Ω0,2|
|Ω0,1| ≈ N [H(γ)−H(p)] (7.41)

bits of information, and a γ average Hamming weight of the codewords.
By (4.4), [H(γ)−H(p)] is exactly the maximal rate which can be reli-
ably communicated over this channel.

Next, we will show that the decoding error probability for the con-
tinuous case given by

Pe = Pr
(
V̂ N 6= V N

)
(7.42)
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is small. We start by replacing the gain α in the signal path depicted
in Fig. 7.1, by a short circuit and compensate for that by subtracting
(1−α)yN from ỹN . We also add another mod-Λ2 operation and denote
its output by ȳN , i.e., ȳN = [αyN + kN ] mod Λ2. By adding the mod-
Λ2 operation, we do not affect the final result, and we can reconstruct
the message by computing the leader of coset chosen by the encoder
v̂N = Q1(ȳN ) mod Λ2, instead of (7.40). The resulting channel from
V N to Ȳ N is a modulo-Λ2 additive noise channel described by the
following lemma:

Lemma 3 (Inflated lattice lemma [48]). The channel from V N to
Ȳ N , for KN uniformly distributed over ν0,2, is equivalent in distribution
to the channel

Ȳ N = [V N + ZN
eq ] mod Λ2, (7.43)

where
ZN

eq = [(1− α)KN + αZN ], (7.44)

and where ZN
eq is independent of V N .

Substituting α = Γ
Γ+B , the second moment per dimension of ZN

eq is
equal to (1 − α)2Γ + α2B = ΓB

Γ+B . If ZN
eq were AWGN (a Gaussian

random variable has the greatest entropy), then by using for the fine
lattice a good channel ΓB

Γ+B -code, Q1(Ȳ N ) mod Λ2 is equal to V N with
high probability, and therefore, Pe is small as desired.

We have assumed that ZN
eq is AWGN. However, (1 − α)KN is not

Gaussian, but rather uniform over ν0,2. This component of ZN
eq is called

the self noise component. Therefore, ZN
eq deviates from an AWGN dis-

tribution. If we put an additional condition on the fine code, the prob-
ability of the decoding error will go to zero in spite of the slight devia-
tion of ZN

eq from AWGN. This condition extends the meaning of a good
channel code, that was defined in Subsection 7.2.1:

(1) Exponentially good channel codes over AWGN channel : For
any N and ε > 0, there exists an N -dimensional lattice Λ
whose cell volume V < 2N(h(Z)+ε), where h(z) = 1

2 log(2πeB)
and B are the differential entropy and the variance of the
AWGN Z, respectively, such that Pe = {ZN 6= ν0} <

e−N ·E(ε) where E(ε) > 0.
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The effect of the self noise component on the decoding error probability
is subexponential in N relative to an AWGN noise with the same power
[143]. Thus, if the fine lattice Λ1 is an exponentially good channel ΓB

Γ+B -
code, the effect of the equivalent noise ZN

eq with the self noise component
is asymptotically equivalent to AWGN.

In the coding scheme we have just presented, the basic cell of the
coarse lattice, Λ2, defines the region of the code where the codewords
are points of the fine lattice Λ1. Thus the coarse lattice determines the
shaping gain while the fine lattice the coding gain. This coding scheme
may be viewed as a generalization of Tomlinson-Harashima (TH) pre-
coding [121], where the interference signal S plays the role of ISI, and
the scalar modulo operation of TH amounts to the special case of a
coarse lattice with one dimension. Therefore, this one dimension lat-
tice means that there will be no shaping gain. In [142], [139] precoding
schemes for the broadcast channel, which are viewed as a generalization
of TH precoding, were suggested for the broadcast channel.

Most of the coding techniques which have been proposed for the
dirty-paper problem (see Section 7.2 for a partial list), are based on
the nested code scheme. A generalization of the nested lattice cod-
ing scheme, was given in [8] and is called superposition coding. In the
nested lattice technique we have presented in Subsection 7.2.1, we re-
quire that the fine lattice Λ1 be designed as a good channel code, while
the coarse lattice Λ2 be designed as a good source code. As mentioned
in Subsection 7.2.1, a lattice which is good in one sense is not neces-
sarily good in the other. Superposition of codes, enables independent
selection of the two codes, where one code, which is called the auxiliary
code (denoted by C2), should be a good channel code, and the other
one, which is called the quantization code (denoted by C1), should be
both a good channel and source code. We describe this coding scheme
for the binary dirty-paper problem.

The quantization code C1 is randomly generated with uniform i.i.d.
elements with rate R1, while the auxiliary code C2 is randomly gen-
erated according to an i.i.d. Bernoulli-q probability distribution with
rate R2, where q is some constant q ∈ [0, 1]. The superposition code is
defined as C , C1 + C2, i.e., the codewords of the superposition code,
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are given by

C ,
{
cN = cN

1 + cN
2 : cN

1 ∈ C1, c
N
2 ∈ C2

}
. (7.45)

Define the minimum Hamming distance decoding function for a code
C (not necessarily a parity-chec code) as

QC(xN ) = arg min
cN∈C

dH(xN , cN ), (7.46)

where dH(aN , bN ) denotes Hamming distance between two length-N
vectors aN and bN .

We use the following coding scheme:

Encoding: select a codeword cN
2 ∈ C2, where the codeword index is

the message to be transmitted, and send the sequence

xN = cN
2 +sN mod C1 = cN

2 +sN+QC1(c
N
2 +sN ) = cN

2 +sN+cN
1

where cN
1 = QC1(cN

2 + sN ).
Decoding: reconstruct cN

1 from

yN = xN + sN + zN = cN
1 + cN

2 + zN (7.47)

by treating zN + cN
2 as noise, i.e.,

ĉN
1 = QC1(c

N
1 + cN

2 + zN ), (7.48)

next, reconstruct cN
2 from yN + ĉN

1 , i.e.,

ĉN
2 = QC2(y

N + ĉN
1 ). (7.49)

The codeword cN
2 of C2 contains the transmitted data, and hence the

rate of this scheme is R2.
If R1 and R2 satisfy both

R1 > 1−H(γ) (7.50)

and

R2 ≤ H(q(1− p) + p(1− q))−H(p)

R1 + R2 ≤ 1−H(p), (7.51)
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where we select q such that q(1 − p) + p(1 − q) = γ, then the average
probability of encoding and decoding error of the above coding scheme,
approaches zero with N (see [8]). Since these probabilities approaches
zero with N , we are ensured that most codes in the random-coding
ensemble are good in both senses.

We note here that similar superposition coding scheme for the con-
tinuous dirty-paper problem exist ( for mores details see [8]).

7.2.4 Codes for the Wyner-Ziv and the Slepian-Wolf Prob-
lems

We start by presenting a coding scheme for the Wyner-Ziv problem
introduced is Subsection 6.2. This coding scheme, as the coding scheme
for the dirty-paper problem, is based on a nested lattice code.

As in the nested lattice code for the continuous dirty-paper problem,
we use a nested lattice pair (Λ1, Λ2), and, contrary to the dirty-paper
code, we tune the fine code to the distortion constraint, and the coarse
code to the noise level by choosing for the fine lattice Λ1 a good source
D-code, where D is the distortion constraint, and for the coarse lattice
Λ2 a good channel B-code, where B is the noise variance. Let the
random vector KN be uniform over the basic Voronoi cell of the fine
code (uniform over the coarse lattice in the dirty-paper setting), i.e.,
ν0,1. We also use the optimum estimation coefficient α =

√
1−D/B.

A coding scheme for the Wyner-Ziv problem is depicted in Fig. 7.2. We
use the following coding scheme:

Encoding: quantize αxN + kN to the nearest point in Λ1, i.e., x̃N =
Q1(αxN+kN ), then transmit an index which identifies vN = x̃N

mod Λ2, the leader of the unique relative coset containing x̃N .
By (7.28), this index requires log(V2/V1) ≈ N

2 log(B/D) bits.
Decoding: decode the coset leader vN , and reconstruct xN as

x̂N = yN + αŵN , where ŵN =
[
vN − kN − αyN

]
mod Λ2,

(7.52)
and where yN is the side information ( denoted in Subsection
6.2 by sN ).

As seen in the above coding scheme, the coding rate of this scheme
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Fig. 7.2 Nested coding scheme for the Wyner-Ziv problem.

coincides with (6.10). The expected mean squared reconstruction error
is 1

N E
∥∥∥X̂N −XN

∥∥∥ ≤ D, as shown in [143].
Here, similarly to the dirty-paper coding scheme presented in Sub-

section 7.2.3, the distribution of the error vector x̂N − xN is not
Gaussian due to the self noise phenomenon [143]. Therefore, we need
to put an additional condition on the coarse lattice code, and use for
the coarse lattice Λ2 an exponentially good channel B-code, that was
defined in Subsection 7.2.3, instead of a good channel B-code.

Similarly to the dirty-paper setting, the Wyner-Ziv setting has a
binary version, and the coding scheme for the continuous case presented
here, is also suitable to be used in the binary case with the replacement
of the nested lattice codes with nested parity-check codes and setting
α = 1 [143].

We now turn our attention to the Slepian-Wolf problem, presented
in Subsection 6.1, which can model a lossless version of the Wyner-Ziv
problem. In this setting, we choose a good BSC p-code, in the sense that
was defined in Subsection 7.2.2, and use as bins its 2(N−K) ≈ 2NH(p)

cosets. A coding scheme for the Slepian-Wolf problem is depicted in
Fig. 7.3. We use the following coding scheme:

Encoding: transmit the syndrome s(N−K) = HxN , this requires N −
K ≈ NH(p) bits.

Decoding: decode the coset leader vN associated with s(N−K) by
vN = f(s(N−K)), calculate the error between the side infor-
mation yN (denoted by sN is Subsection 6.1) and the coset CvN
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by

ẑN = (vN + yN ) mod C
= f(s(N−K) + HyN ), (7.53)

and reconstruct xN as

x̂N = yN + ẑN ,

where addition is modulo-2, and where f(·) is defined in Subsection
7.2.2.
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Fig. 7.3 A coding scheme for the Slepian-Wolf problem.

In this coding scheme, the probability of decoding error, by (7.33),
is smaller than ε, ε > 0 for a good BSC p-code.





8

Conclusion

In this paper we have reviewed information-theoretic aspects of the
problem of coding to channels in the presence of side information. After
describing the statistical model for this type of channels, we have given
the main results for the capacity of a general channel controlled by a
state sequence, and where a CSI signal is available at the transmitter
non-causally (causally, respectively) or at the receiver. We have also
introduced Arimoto-Blahut numerical algorithms for the computation
of this capacity.

Various specific channel models of communication systems emerge
from these general models. In particular, we have focused on the dirty-
paper channel, the AWGN channel with fading and the modulo additive
noise channel. These specific channels can serve for modeling in a wide
range of problems, e.g., the Gaussian vector broadcast channel and the
watermarking problem which were presented in this paper.

In the last few years, coding strategies that come close to the op-
timum have been widely studied. The nested lattice codes are shown
as a practical binning strategy. The random binning strategy, was used
for showing achievability in our general channel model.

The models and applications which where discussed in this paper,

125
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inspire results for other problems and models. We have given some
related models and problems which are very similar to the models and
applications presented in this paper.

Some of the models discussed in this paper still remain open prob-
lems. These models includes: the capacity of the general dirty-tape
problem, the capacity of a discrete memoryless channel with states and
rate-limited side information, the capacity region of the joint problem
of pure information transmission and state estimation, analysis of the
error exponents of the Gel’fand-Pinsker channel, and finally, coding
schemes for the Gel’fand-Pinsker channel with feedback.

To conclude, we hope that this overview will resolve in better un-
derstanding of this research field and will help to attract interest to
this field.
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