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Abstract—The problem of universal simulation given a train- bits " = (uy,...,u,) that are statistically independent of
ing sequence is studied both in a stochastic setting and for the training sequence. While, as explained below, the goals of

individugl sequences. In the‘ stochastic setting, the training se- the simulation schemes differ in each case, this paper can be
guence is assumed to be emitted by a Markov source of unknown . d tendina th Its of both [9 ’ d 112
order, extending previous work where the order is assumed viewed as extending the results of both [9] and [12].

known and leading to the notion of twice-universal simulation. Specifically, the goal in [9] is to generate an output sequence
A simulation scheme, which partitions the set of sequences of ay™ = (y,...,y,), n < ¢, corresponding to the simulated
given length into classes, is proposed for this setting and shown process, such that® = ¢(xé u”), whereg is a deterministic

to be asymptotically optimal. This partition extends the notion .
of type classes to the twice-universal setting. In the individual function that does not depend on the unknown soutcand

sequence scenario, the same simulation scheme is shown t¥vhich satisfies the following two conditions:
generate sequences which are statistically similar, in a strong 1 The probability distribution of the output sequence is
sense, to the training sequence, for statistics of any order, while . . . .
essentially maximizing the uncertainty on the output. exactlythe n-dl_men5|onal m_ar_glnal of the probability law
P corresponding to the training sequence forRlE P.

|. INTRODUCTION C2. The mutual information between the training sequence
and the output sequence is as small as possible (or
equivalently, under Condition C1, the conditional entropy
of the output sequence given the training sequence is as
large as possible), simultaneously for &le P.

Simulation of random processes is about artificial generation
of random data with a prescribed probability law, by using
a certain deterministic mapping from a source of purely
random (independent, equally likely) bits into sample paths.
It finds applications in speech and image synthesis, textg@ndition C1 states that the simulated sequence is a sample
reproduction, generation of noise for purposes of simulatij the same process as the training sequence, universally in
communication systems, and cryptography. P. Condition C2 guarantees that the generated sample path

The simulation problem of sources and channels has bd&rs “original” as possible, namely, with as small a statistical
investigated by several researchers, see, e.qg., [1], [2], [3], [dgPendence as possible on the training sequence (as opposed to
[5], [6], [7], [8]. In all these works, perfect knowledge of thethe case in whic™ = X™, which obviously satisfies Con-
desired probability law is assumed. Universal simulation waktion C1). For example, in a texture reproduction scenario,
introduced in [9] and versions of this problem were studigdtis condition would help to avoid undesired periodicities if
in [10], [11], [12], [13], [14]. In [9], the target sourc® to be @ texture is generated by appending various sequeki¢es
simulated is assumed to belong to a certain parametric famgignerated from a singleX™ (we refer to [9] for further
P (like the family of finite—alphabet Markov sources of a giveiinotivation of these conditions).
order) but is otherwise unknown, and a training sequerice In [9], the smallest achievable value of the mutual infor-
(z1,...,z¢) that has emerged fron® is available. In [12], mation as a function of, ¢, r, and the entropy raté{ of
z! is assumed to be an individual sequence not originatitige sourceP is characterized, and simulation schemes that
from any probabilistic source. In both cases, the simulati@symptotically achieve these bounds are presented. For a broad
schemes are also provided with a streamr gfurely random class of familiesP, it is shown in [9] that in order to satisfy
Condition C1, it is necessary that the outptitbe a prefix of
* The material in this paper was presented in part at the 2007 IEI%EsequenC@f having the saméype[15] asx! with respect to
ITnternatlonal Symposium on Information Theory, Nice, France, July 2007.7)_ Moreover, it is shown that for large enough, the optimal
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packargimulation scheme essentially takes the firstsymbols of

t This work was done while N. Merhav was visiting Hewlett— ’
Laboratories, Palo Alto, CA, U.S.A. a randomly selected sequence of the same type‘adg-or




unlimited » andn = ¢ (which will be our assumption in the While this comparison is with a scheme that fully satisfies
rest of this paper), the resulting optimal mutual informatio@ondition C1, we further show that such a relaxation of
betweenX™ andY ™, after normalization, vanishes with as the condition can only produce a negligible decrease in
%10%, wherem is the number of free parameters definfig the achievable mutual information in the known order case.
The above rate prompts similar “model cost” issues as tiid&erefore, under the relaxed criterion, the proposed scheme is
universal source coding problem [16], in the sense that tagymptotically optimal in that it achieves essentially the same
larger the classP, the larger the cost of universality (whichperformance as if the model order were known. In that sense,
in data compression takes the form of an analogous ratetloé scheme is hierarchically universal.
convergence to the source entropy). A natural question thafThe above simulation scheme is based on a partition of the
has then been asked in data compression is thatooble set ofn-tuples, where two sequences are in the same class if
universality[17] or hierarchical universality[18]: Assuming and only if they both estimate the same Markov order, and
a nested family of model classes (e.g., Markov models béve the same Markov type for that order. This partition is
different orders), is it possible to achieve the optimal conr the same spirit as the one giving rise to the simulation
vergence rate corresponding to thmallestclass containing scheme in [12], which also extends the conventional notion of
the actual source, without prior knowledge of the class? Tha type. In the partition of [12], two sequences belong to the
answer to this question is well known to be positive, giving ristame class if and only if their Lempel-Ziv (LZ) parsing [24]
to the notion oftwice-universal(or hierarchically universal) yields the same tree. Any pair of sequences that belong to the
schemes. In this paper, we start by addressing the problensafme class in this partition has the following property, which
hierarchical universality in the simulation setting of [9] whemparallels conventional types in an individual sequence setting:
P is a class of Markov models of unknown (fixed) order P1. For any fixed integey, the L; distance between the
denotedPy. empirical distributions ofj-tuples corresponding to the
First, we notice that (as discussed in [13]), families of two sequences is a vanishing functionrof
Markov models are indeed among those requiring that The rate of convergence of thg; distance demonstrated
andy‘ be of the same type in order for Condition C1 to b [12]is O(1/logn). Itis easy to see that Property P1 implies
satisfied. Since, in the unknown model order setting, the typgit, for any fixed Markov source, the normalized logarithm
of z* andy* must be the same fazveryMarkov order, the of the ratio between the probabilities of two sequences in
two sequences must then coincide, leading to a single, triviak same class is also(1/logn), provided the sequences
simulator. Thus, a relaxation of Condition C1 is necessanave positive probability. In [12], a sequence of lengths
for the problem to become meaningfulAs it turns out, it said to be afaithful reproduction of another sequence of the
suffices to allow simulators such that, for evérand P € P, same length if the pair satisfies Property P1. It is further
Condition C1 is violated only by a fraction of sequences whosgaimed that, for simulation purposes, faithfulness parallels
total mass (under the simulated probability, or equivalentigondition C1 in an individual sequence setting. Thus, the
under P) is upper-bounded by a vanishing functié(n). In  simulator that draws a sequence uniformly at random from
fact, a simulator exists such thétr) decreases exponentiallythe (LZ-based) class of the training sequenteis a faithful
fast, while achieving per-symbol mutual information whiclsimulator. Moreover, it is shown in [12] that no other faithful
decays essentially @ °2" for any Markov orderk and any simulator can produce significantly more uncertainty than the
P € Py, wherem is the number of parameters correspondingroposed one, in the spirit of Condition C2.
to P;.. This simulator follows a “plug-in” approach: In this paper, we extend the results of [12] in two directions.
a. Fromz™, estimate an ordéet(x™) of the Markov source; First, we show that the equivalence classes defined for the
b. Draw uniformly at random from the set of sequencdwice-universal simulation scheme for Markov sources possess
having the same Markov type of ordgfz™) asz™ and similar properties in the individual sequence setting as those
for which the estimated order is alédz™). shown for the LZ parsing-based scheme, but the distance
We show that the total mass of the sequences which Bgtween empirical distributions (as defined in Property P1)
not satisfy Condition C1 is upper-bounded by the probabiligxhibits a faster convergence rate. Second, we formulate a
of underestimating the model order, whereas the conditiorfginverse similar to the one presented in [12], but that applies
entropy achieved by this scheme differs from the one achievigda broad family of simulators, which includes both the one
by the optimal scheme that knows the “true” order by Broposed here and the LZ-based one. This converse unveils the
quantity that depends on the overestimation probability. Wigssence of the universal simulation problem in an individual
a proper choice of the order estimator (in the spirit of thosg&quence setting: Find a partition of the sequence space into
used in, e.g., [19], [20], [21], [22], [23]) both the mass of relatively small (sub-exponential) number of classes such
those sequences violating Condition C1, and the deviatihiat all the sequences in a class have approximately uniform

from optimal conditional entropy, can be made negligibl@robability (as per Property P1). Notice that a “slow” rate of
) convergence is typical of other applications of the LZ parsing.
_ The relaxation of _Condltlon C1 was p_rem_sely the motivation for thg indion the other hand, our improvement has a complexity cost,

vidual sequence setting of [12]. Relaxation in the stochastic sense discussed .

here is also discussed in [11] and [14], where universal simulation with"¥ ich we discuss.

fidelity criterion is studied, in analogy with the (non-universal) scenario of [5]. The rest of this paper is organized as follows. Section I



introduces the main concepts and tools. Our results in thiee k-th order empirical conditional entropy far®, is given
stochastic setting are then presented in Section lll, wherdns

L R o , . ngn (sa nin(s
the individual sequence setting is studied in Section IV. e =3Y 3 T(L ) log = (ia)) 3)
Il. PRELIMINARIES seAtacd
iofi 3 ny _ _ H(k) (.n
Throughout the paper, random variables will be denotéld Satisfiesify(z") = —log P "(a™), where, throughout,

by capital letters and specific values they may take will 8gar|thms are taken in bask and we adopt the conventions

denoted by the corresponding lower case letters. The sal 8g0 , 0 and01log(0/0) = 0. Eqr PQ. € Pi, 0<i<k, the
convention will apply to random vectors, with an additional?rObabIIIty of a type clasd” € 7" is given by
superscript denoting their dimension. Thug, and y™ will Py(T) A Z Py(i™) = |T| - Py(z™) (4)
denote specific values of the random vectdf$ and Y,
respectively. The (finite) source alphabet will be denoted
A, with its cardinality,|.A|, denotedx.

A Markov sourceP of orderk over A, with transition prob-
abilities P(ak+1|ak,ak_1, e ,al), a; €A i=1,... ) k+1,
draws a sequence* with probability

w . zreT . .

herex™ is any sequence iff’. In the sequel, we will make
extensive use of the well-known properties of Markov types
summarized in Lemma 1 below. While stronger versions of
these properties can be derived, the claims in Lemma 1 are
sufficient for our purposes in this paper.

N - Lemma 1:
P(l‘ ) = HP(I‘H&L‘Z',l,CUi,Q,...733‘2-,;6) (1) (a) Nn,k < (n+1)ak+1.
= —nH(z" Ak
e : , . (0) Yonean 27 = e PY(T) < N
» _aktt
where we arbitrarily assume a fixed stringg11,z—-1,. .., o () For every typel ¢ T, P%k)(T) > (n+1) .

determining the initial state. We assume thas the minimum

possible order, in the sense that no inteljet k can replace Proof. Part (a) is an obvious consequence of the characteriza-
k in (1). The family of Markov sources of ordérover A is tion of types in terms of sequence composition with respect to
denotedP;. Thus, a source P, is defined by a parameterthe k-th order Markov model. The equality in Part (b) follows
vector § € [0, 1]ak(a—1) (excluding parameter vectors thaffom breaking the summation into type classes, whereas the in-
correspond to a lower order); such a souRtevill sometimes €quality follows from the fact that each term in the summation
be denoted byP. The entropy ofn-tuples emitted byP is OVer the types is at most As for Part (c), we apply Equa-

denotedH (X™). tion (4) with Py(x™) = If’}k) (z™). The size of a type class is
Thek-th order Markowtype clasg15] T}, (z") of a sequence given by Whittle’s formula [28], which consists of the product
2" is the set of all sequences’ € A" such thatP(i") = Of o* multinomial coefficients (one per state) and a cofactor.

P(a") for everysourceP € P;, 0<i < k. The set of allk-th AS ShO\’i\In in [29, page 1996], the cofactor is lower-bounded
order Markov type classes of sequencestinwill be denoted PY n~* *', whereas each multinomial coefficient is lower-
by 7;%, with |7;| = N,, x. Clearly, Ti.(z") is the set of all bounded, using Stirling’s formula, by the maximum-likelihood
sequences having the same composition:aswith respect Probability of the sub-sequence of symbols occurring at the
to the k-th order Markov model [15], [25], i.e., each stat€orresponding state, divided by'(27n)*~*. Multiplying by
transition occurs as many times i € T, (z") as in z™, P:(F’“) (z™), z™ € T, it follows that

starting from the fixed initial stat€x_j 1,7 _g42,...,20). < (k) —ak(a—1)/2, —ak+1
Equivalently, the type is given by the number of occurrences Py (T) = (2mn) n ‘
in 2™ of each strings € A", denotedn,~ (s), namely The claimed bound follows by noticing thatn < (n + 1)2

providedn > 5. 0
Denoting with7W), 1 < j < N,, 1, the type classes ",
where| - | denotes cardinality. Thus, theth order empirical P»(7'?)) can be regarded as a function of the parameter vector
Markov source defined by the transition countscbfdepends 6. A key property of the familyP;, in the context of universal
onz” only throughTy (z")=T, and is denoted®" . It corre- simulation is that the sefP,(7?)}"", as functions of
sponds to the maximum-likelihood estimate, and its transitigne (2 (where( is any subset of0, Ha’“(a—l) with positive

Ngn(8) =i : 0<i<mn, Xicp,...,xi—1,2;) =5}t (2)

probabilities are given by measure), is linearly independent over(see [13] for a dis-
ngn (50) cussion on this property for Markov models). Our converse in
plals) = TZ”/”’ Ok seAf ae A the stochastic setting will make use of the following equivalent

property, which follows immediately from the characterization
where 7. (s) = 3, 4 nen(sa) (which may defer from of linear independence in terms Gasorati determinantgiven
n,(s) by one unit as it corresponds to the number df. €.9., [26, Chapter 14, Lemma 1].

occurrences of the string in g, z1,...,2,_1, rather than ~ Lemma 2:Given any subset of [0, 1] (*~1) with positive

in z) and j(a|s) is defined only fors such thatn/,.(s) >0. Mmeasure, there exist,, , parameter values,, ... 0y, , € A
The conditional entropy;,(z") of this distribution, namely such that the matriX P, (T(j))}fvjjl is nonsingular.
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Throughout this paper, all simulation schemg® = Proof. Part (a) is handled with the method of types as in [22].
#(x%,u") assumen =/, and the keyu" is assumed to be anA rough bounding procedure (which requires a larger value of
unlimited stream of random bits;>°. The resulting condi- () is given next for completeness:
tional distribution ony™ given z" is regarded as a channel, B ("
denotedW (y"|«™), with entropy H(Y™|2z"). In casez™ is Boje(n) < Z Z 27mE")
assumed to emerge from a probabilistic source P, the >k aneAy ) ,
conditional entropy achieved by the chanféland the mutual Z Z 9=nlHi(@")+(a' —a®) f(n)]
information betweenX™ and Y™ that is induced byP and i>k an €AY
W will be denotedH (Y| X™) and I(X™; Y™), respectively. n . R

Z nfﬁ(offak) Z 27nHi(m")

IN

In this case, we seek a simulation scheme that, without <

knowledge ofk (which may take on any nonnegative integer i=k+1 znEeAn

value), achieves essentially the same mutual information as n -

the optimal universal scheme that knows(Condition C2 < Yy N,

in Section ), while deviating from Condition C1 for just a i=k+1

negligible fraction of the sequences, for aRye Py. where in the first inequality we upper-boudt(z™) with the

In both the stochastic and the individual sequence settimgaximum-likelihood probability, the second inequality follows
our simulation scheme will rely on the existence of Markofrom the definition of A7 and (5), in the third one we apply
order estimators with certain properties, which are specifiedtime condition onf(n) and we extend the inner summation
Lemma 3 below. For concreteness, we will focus on a specifiz all sequences™, and in the fourth one we use Lemma 1,
estimator, namely a penalized maximum-likelihood estimat&art (b). The claim then follows from Lemma 1, Part (a), from
that, given a sample™ from the source, chooses ordgz™) observing that the largest term in the summation is the one

such that corresponding ta = k£ + 1, and that a suitable choice ¢f
. PP . will result in a polynomial decay even after multiplication of
k(z") = arg I]gg{Hk(x )+ a®f(n)} ®) R e(n) by (n+ l)akH. The exponential decay in Part (b), on

the other hand, follows from the fact that underestimation is
where f(n) is a vanishing function of:, ties are resolved, a large deviations event. The complete proof is omitted, since
e.g., in favor of smaller orders, and it is assumed thgimilar results have been shown for several variants of this
the fixed string determining the initial state is as long asstimator (see, e.g., [23]). Part (c) is an obvious consequence
needed (e.g., a semi-infinite all-zero string). For examplef the fact thati;(z") = H,(z") for all i < k(z™). Finally,
f(n)=(a—1)(logn)/(2n) corresponds to the asymptoticPart (d) follows from the fact that, by the definition bfz")
version of the MDL criterion [16]. In the classical estimationn (5),
problem, f(n) governs the trade-off between the probabilities . n k(z™) N
of underestimating and overestimating the model order. In the Hyomy (2") + @ f(n) < Ho(a") + f(n) = O(1)
simulation problem for individual sequenceg(n) will be since f(n) = o(1) and Hy(2™) = O(1). 0

shown to govern a trade-off between faithfulness and entropyWe consider the simulation scheme that. given a trainin
of the simulator. The estimate(z™) can be obtained in time ' 9 9

n n H
that is linear inn by use of suffix trees as in [27]. TheS€aUence , drawsy™ uniformly at random from the set

set of n-tuples 2™ such thatk(z") =i will be denotedA}'. M(z™) ) T (o) (&™) N AR -
To state Lemma 3 we define, for a distributidhe Py, the
overestimation probability A key lemma in the analysis of this simulation scheme,
for both the stochastic and the individual sequence setting,
P, je(n) 2 Pr(k(X™) > k) states that for any™ the setM(z™) comprises all but a
negligible fraction of the sequencesi,~)(z"). By Part (c)
and, similarly, the underestimation probability of Lemma 3, the remaining sequences ar¢ij } ;- (,»). To
A state the lemma, we define
R /e(n) = Pr(k(X") < k). _
u (1) é
Po/e(n) = P:;?%(GTJL R e(n) (6)

Lemma 3:For anyk > 0 and anyP € Py, the estimator of
Equation (5) satisfies namely, P(fj)e(n) is the maximum value of?.(n) over all
@) (n+1)*""" B, (n) vanishes polynomially fast (uniformly empirical distributions of Markov type classes of ordeand

in P andk) providedf(n) > S(log n)/n for a sufficiently lengthn. Notice thatPo(lL(n) is a deterministic function of

large constangs. and n, independent of any underlying probability law. Since
(b) R,/.(n) vanishes exponentially fast providefin) = Part (a) of Lemma 3 holds uniformly i® and#, it follows

o(1). from (6) that (n + 1)0‘1+1P0(2(n) is upper-bounded, for a
(©) If 2™ € Tyuny(2™) thenk(z") > k(a™). suitable choice of (n), by a function that decays polynomially
(d) o*@") =0O(1/f(n)) for anyz™ € A™. fast with 2, uniformly in i.



Lemma 4:For any: > 0, letT € 7.* and assum&N.A} # By Part (b) of Lemma 3, Part (a) of the theorem states that

¢. Then, the proposed simulator preserves the probability law, except
TN A @ for a set of exponentially decaying probability of the outcomes
i >1—(n+1)* Po/e( n). of the simulation. In addition, Part (b) states that, with proper

» choice of f(n),
Proof.By Lemma 1, Part (c), and sindé}z)(-) is uniform over
I(X"™Y") < H(X") - Elog|Tu(X™)| +o(1)  (9)

T, we have

T for the proposed scheme. As shown in [9] and discussed in
|T N A? Section |, the mutual information of the optimal scheme that
knows k (and preserves the probability law), which drays
uniformly at random fromily (z™), is

(n+ 1)~ < PY(T) = PY(T N A})

where the complement of a s8tis denotedS. By Lemma 3,
Part (c), sincél’'n A7 is nonempty, we have(z™) > 1 for all
Z" (= T. Therefore, ‘ H(Xn> _ ElOg |T]€(Xn)| ~ akOé _

PRI NAY) <3 PR(AY). @)

r>1

1
logn (10)

where the approximation is to the main asymptotic term. Thus,
the asymptotic behavior is unaffected by the addition of the
Since P € P; (i.e., the order of the empirical distribution,(1) term in the proposed scheme. However, the scheme of [9]
is not smaller thani, for otherwise no sequence i would s optimal for exact preservation of the probability law, and
have estimated orde}, the summation in the nght -hand sidetherefore does not yet establish a converse theorem for the
of (7) is the overestimation probability faP = PY | which, relaxed version of Condition C1.

by (6), is upper-bounded by(f/e( ). U Notice that the choice of (n) governs the tension between

Lemma 4 is valid for any model ordérand any type class preservation of the probablllty law (Wthh is Only affected by
Containing sequences that do estimate Otdm‘gard|ess of any Underestimation) and conditional entropy (Wthh is reduced
probabilistic assumption. It should be noticed, however, thBy overestimation). However, as long #én) > 3(logn)/n,
the assumption of equal weight for counting all sequencesadg stated in Lemma 3, the asymptotic behavior is independent
T can be regarded as implicitly implying that these sequenc%fsf(”)-
are drawn from a Markov source of ordieor less. Notice also Proof of Theorem 1To prove Part (a), notice that i(y") >
that, as stated in the proof of the lemma, tyfesuch that %, then P(y")=P(z") for all 2" € M(y"). Thus, by (8),

P ¢ P; (e.g., fori > 0, the type of orderi of the all-zero Q(y")=P(y"). Hence,
sequence) do not contain sequences that estimate order P(Q(y™) # P(y™) < P(k(y") < k) = Byye(n) (11)

IIl. THE STOCHASTIC SETTING
Furthermore, for ally™ € A",

Theorem 1 below states the properties, in the stochastic
setting, of the simulator that drawg® uniformly at random QAW™) #PW") = 1-QQWE") =PH™)
from M(2™). For this simulator,V (y"|z™) = 1/|M(z™)] = 1-PQWy") = Py™)
if y* € M(z™) and W (y"|z™) = 0 otherwise. Since,” €
M(z™) if and only if 2™ € M(y™) (M(-) is a partition ofA»  Which, together with (11), proves the claim.
and M(z") = M(y™)), the output distributiorQ(-) satisfies ~ As for Part (b),

Q) = Y PEW( ") HEY' XY = 33 P log|Ti(a™) N A7
znEeA™ i>0 zne AP
_ P@) _ P(M@") ‘
=2 e e ® > 3 Y P [log [T

n n
zmeM(y™) i=0 zn € AT

Theorem 1:For anyk > 0 and anyP € P, we have (i)
(&) The output distribution satisfies + log[l—(n+ 1) Po/C( )]]
QQU") # P™) < Ryeln) ERGR
Y Y S Lyjelnl) -
N e = 3 Y P log|Ti(a)]
(b) The conditional entropy of the simulator satisfies sk aneAn
HY"|X") 2 Blog|T(X")| = nBye(n) loga + minlogll - (n+1)*" P ()
: 0) = N
+ minlogll — (n+ 1) R ()] > Elog|Tp(X™)|
where the expectation is with respectfpand its entropy — n(log O‘)Z Z P(z
satisfies >k aneAn
: _ (2)
H(Y") < H(X") + Bye(n)[nlog o — log Byye(n)] + minlogllL— (n+1)7 Pl (n)]



where the first inequality follows from Lemma 4, the secondnd assume that for evefyc () there exists an open neigh-
inequality follows from the fact thatT;(z™)| > |Ti(«™)| for borhood Ay containing® over which the infimum ofry is

all i < k, and the third inequality follows from upper-boundingpositive. LetiW be any simulation scheme such that its output
the type class sizes far> k with o™. The claimed bound on distribution Q¢ satisfies, for evernyd € Q, Qo(Qo(y™) #

the conditional entropy then follows from the definition ofP,(y™)) < dg¢(n). Then, for everny € Q,

R,/e(n). To upper-boundd (Y"), we observe that
I(X™Y") > H(X") — Elog| T (X™)| - o(1)

HY") = - P(y™)log P(y™
&) yn:Q(y;_P(yn) ") 1o P™) where theo(1) term may not be uniform ir.
- Z Qy")log Q(y") The conditions on the set of functiodg(n) in Theorem 2
Y Q(y™) AP (ym) essentially state that is any simulation scheme such that the
< H(X™+QQUW") # P(y™)) probability of the outcomes for which the probability law is
1 not preserved is exponentially small, and that the baoiid)
log Z Q") £ P(y™) on this probability is well-behaved (for example, continuity
y™Qym)#P(y™) of dp(n) as a function ofd would suffice). Notice that, in
n 1 particular, the upper boun&, ,.(n) on the probability of the
s HXY)+ Ryen) logw;” R /e(n) sequences which are not I/a\SV )preserving for the proposed
Y on scheme satisfies these conditions (for seter which R, /. (n)
= H(X")+ Rye(n) logpi is well-defined, namely sets which do not include parameter
uye(n) vectors corresponding to distributions ./, k' < k). Thus,

where the first inequality follows from Jensen’s inequalityyy the asymptotic approximation in (10), the theorem states
and the second inequality follows from Part (a) and assum@gt no asymptotically significant improvement KfX™; Y™)
Ryje(n) < 1/e. L] can be obtained by letting the output probability deviate from

From an algorithmic perspective, the enumeration of tHg€ input one by an amount such as the one allowed in the
intersectionM (z") of Ty, (2") and AZ(;cny on which the direct (Theorem 1).
implementation of the draw is based, may be a challengifgoof of Theorem 2Let B;(¢) denote the set of sequences
problem. We can circumvent the problem by drawing uni#" for which Qs (y") # Ps(y™). We have
formly at random from the type class, until a sequence that

estimates the same order &% is drawn. By Lemma 4, with HY") > H(X")+ Y. Puy")logPy(y")

very high probability, only one draw will be needed. We can y"€B5(6)
also consider the simulation scheme that simply draws from S H(X™ — Po(Br (0D log P3O
the type classly,,~)(z"), rather than from the intersection - (X7) 0(Bs(0))log Py(Bs(6))

M(z™). While it cannot be claimed that such a scheme

preserves the probability law in the strong sense of Part (a)vgrfwere the second inequality follows from Jensen's inequality.

Theorem 1, it can be shown that, with an appropriate choi!:% addition, for allg € 2, we have

of f(n), . Py(Bs(0)) = Qo(B5(0)) < dy(n) (12)
0 ( Q") 4| )
e(n) ) <d(n) , , . .

P(y™) which, assumingy(n) < 1/e and bounding Bs(6)| with o™,
wheree(n) andd(n) are vanishing functions. Clearly, the conimplies
ditional entropy of this simulator satisfiea,fortiori, Part (b) n n
of Theorem 1, as it draws from a larger set, whereas weH(Y ) 2 H(X™) = ndg(n)loga+dg(n)log do(n) . (13)
can upper-bound? (Y") so that the upper bound (9) on thea|so,
mutual information still holds. However, such a scheme does
not yield a partition ofA™ anddoes notsatisfy our claims in H(Y"|X") < H(Y"|Tx(X"))
the individual sequence setting. 1

Next, we establish a converse theorem, for which we need to Zn Fo(T) ﬂz: WIT) log W(ylT)

show that a deviation in the probability law as the one allowed TeT yred
for the scheme of Theorem 1 cannot open the possibili§plitting the summation ip™ according to whethey” belongs
for a faster decay of the per-symbol mutual information ito 7" or not and applying Jensen’s inequality to each partial
a competing scheme that knows This fact is established in summation, we obtain
Theorem 2 below.

Theorem 2 (Converse)et (2 denote an open subset of p(y»|x") < Z Py(T) {W(T|T) log 7]

0,1]¢"(@=1)_ Let §y(n) be a set of functions indexed Ter W(T'|T)
such that . 1 a™ —|T)|
Tp = linniigf — log dg(n) >0 + [1=W(T|T)]log W)



Denotingwr = W(T|T) and lettingh(-) denote the binary Thus,

entropy function, we obtain . Ak
BrnT| _P{Y(BrnT) _ P (Br)

< (n+1)%"" 5} (n)

H(Y"X™) < Z Py(T)[wr log |T| |T| o Pj(ﬂk) (T) = p;k) (T)
TeTy (16)
+ (1—wp)log(a™ —|T)) + h(wr)] where the second inequality follows from (15) and Lemma 1,
, parts (a) and (c). Now, for an and anyy™ € A", we have
< Elogm(w |
+ T;n Py(T)[n(1 —wr)log a + h(wr)] . Z PTOYW (7). (17)
This bound, together with (13), yields In particular, forP = Py, andy" € G N T, where Gy

denotes the complement &, Qo,(y™) = Py, (y") for all

I(X™Y") = H(X")— Elog|Tj,(X")] values ofi. Thus, sincey™ has typeT’, (17) takes the form

— ndg(n )+59( ) log dg(n) (14) N
— Py(T)[n(1 — wr)log o+ h(wr)]. P, TW), i=1,2,...,Nos.
T;ﬂ ‘T| Z 9 y ‘ ) ) 4y ) v,k

(18)
Sincedy(n) decays exponentially fast, the proof is complete $ince our choice of the parametefs was dictated by
we show that the summation on the right-hand side of (14) alsemma 2, the system of equations (18) (in iNig ;. variables
vanishes withu. To this end, it suffices to prove thﬂ(]. U}T) y”|T(J))) y|e|ds a un|que solution, and hen% y’L|T
vanishes (and, hencé(wr) also vanishes) for every typE 1/|T| for all y™ € Gp N T. It follows that
such that the maximum-likelihood estimaig of 9, obtained
from a sequence of typ€, belongs toA,. This observation ;. = Z W (y"|T) > Z W (y"|T) = |GT nr|
follows from the fact that, for the other type€r ¢ Ay is YT yneGrnT \T|
a large deviations event and therefore its probability decags by (16
exponentially fast (depending on the safg this decay may y (16),
not be uniform ind).? We next analyzev; for typesT such
that O € Ay.

First, notice that we can assume C 2 for all § € (oth- Thus, we conclude that(1 — wr) indeed vanishes.  [J
erwise, we can replac&y with the interior of its intersection  Notice that in the proof of Theorem 2 we have shown that,
with ). For a given typeT" such thatdr € Ag, consider when a deviation in the probability law is allowed for a set
an open neighborhoodr of 7, Ar CAy. By Lemma 2, of sequencesBs(f) of exponentially vanishing probability,
there exist parameter valués, ..., 0y, , € Ay such that the 1 —W(T'T) is exponentially small for typeg’ such that the
matrix { Py, (T(J))} i s nonsmgular By (12), we have maximum-likelihood estimatér € Q2. This is a generalization
Py, (Bs(6;)) <89, (n), i =1,2,. ., N,, . By the definition of of the result in [9] stating that when perfect preservation of
Ay, infgr ¢ 5, 79 >0, SO that the functionsy, (n) are, in turn, the probability law is requirediW (T'|T) =1 for every type
upper-bounded by a single exponentially decaying functio(gince a law-preserving simulator can only output sequences
Now, sinceAr can be made arbitrarily small, the parametefsom the same type ag"). Both the law-preserving result and
¢; are arbitrarily close tdr, and it can be assumed that ndts relaxation follow essentially from the linear independence
component of); (transition probability) has a positive valueof the set of functiong P, (T J))} ¥, as functions of) € .
while the corresponding component of a vectoin is zero.
Hence, by the continuity oF(-) (as a function o), there
exists another exponentially decaying functijiin) such that  In this section we analyze the proposed simulation scheme

in the individual sequence setting of [12]. By drawing uni-
P:(F’“) (Bs(0:)) = Py, (Bs(0:)) < dp(n) formly at random a sequence fromt(z™) (wherez™ is now
an individual sequence not originating from any probabilistic
i=1,2,...,N, ;.3 Letting By = U;Bs(6;), a union bound source), we havél (Y"|z") = log |M(z™)|. To complete our
yields “direct” result we establish, in Theorem 3 below, the statistical
P}"')(BT) < N ixbh(n). (15) simi_larity betwet-:p two sequences in the same class) in
the implied partition ofA™.

20f course, sincd is arbitrary inQ, our proof will actually apply to any Theore_m 3_ (Direct):Let z" < A" be arbitrary and fix a
type T such thatdy € Q. nonnegative integef. Then, for anyy™ € M(z™), we have

3E.g., we can pick\r such that the positive transition probabilities s

1—wr < (n+1)2""5)(n).

IV. THE INDIVIDUAL SEQUENCE SETTING

are within a factore® of the corresponding component in each vectonin, Ngn (3) Tyn (5) 1 .
so that the probability of an event under is upper-bounded by™¢ times Z — - ——=|=0 f(n) + - al | .
the corresponding probability under eagh and picke sufficiently small. scAi n n



Moreover, if j < k(z") + 1 thenngn(s) = nyn(s) for all By the definition of the counts;..(w) andn;. (w), and notic-

se A, ing thate_(, i1y, ..., %0 = Y—(r4i—1): - - - Yo, We have, for
P all we A",
Proof. Leti = k(z™). By (5), for everyr > 0, we have
A A . ! J— ! — —
HZ(ZL'n) _ HiJrr(xn) < az(ar _ 1)f(n) (19) Nyn (’LU) nyn, (w) = MNgn (w) Nyn (w)
1(w=2z, —r—iy--+yLn
Using Equation (3), and since, by (2), for every stringve 1( _ i 4 )
have Y ,c 4 an (us) = nun(s), the left-hand side of (19) W= Yngari oY)
takes the form where 1(-) denotes the indicator function of the specified
N . " ngn (usa) event. Therefore,
A - Fop®) = 30 30 3 )
n / /
UEA” sE AT aEA Yo () =) <Y en (w) = nyn (w)] +2
log 2" (usa) nl.(s) wWEAT+ weAT+i
5 g (us) e (50) implying, by (22)
= D(EROIER0) - 2
an A, <2v/2(In2)f(n)ai(ar — 1) + —+ A (29)
where P () and PR3 () are pArobabiIity mass functions oversincey” ¢ T;(z"), we haveA, = 0, so that the recurrence
Aitr+1 defined byP Y (usa) = ngn (usa)/n and in (23) yields
A nhn (us) ngn (sa)

]%E )(usa)

Ar <2¢/2(n2)f(n)a’? Y Vam =1+ zr (24)
n
m=1
with PIn (usa) = 0 if ni.(s) = 0. By Pinsker's inequality The summation in (24) i©(a’/?), implying
we then have

N 1
3 \Pﬁ,{)( —PP(w ‘ < /200 2) [y (@m)— Hysr (7)) A, =0 <\/{f(n)+712} ak+r> . (25)
weATFi+

which, together with (19) yields The claim of the theorem fof > k(z™) follows from taking
(1) A (2) , r=j—1i—1in (25). The claim thatn,~(s) = ny~(s) for
> ‘Px” (w) = Ppa (w)‘ <V2(In2)f(n)ai(a” —1).  j <'k(z") +1 and alls € A is an immediate consequence

nin(s)n

wEATFiI+1 (20) of the fact thaty” € Ty (n) (™). [
Now, giveny™ € M(z"), let _ Thgorem 3 corresponds to Prop_erty P1 that was item-
ized in Section | for the scheme in [12]. With a proper
A, 2 Z ngn (W) ”y"(w)‘ choice of f(n), the preservation of empirical probabilities
weArit n n (or degree of “faithfulness”) withinM(z™) is stronger than
_ Z P(l)( - P(l)(w)’ the one claimed fpr the LZ parsing'—based types, for which
. z y" : the convergence i9(1/logn). As in [12, Corollary 1],
. | wEA’":“"’ for any fixed Markov measurél € Py, if y" € M(z™) then
By the triangle inequality, we have (1/n)|log(I1(z™) /T (y™))| is alsoO(+/[f(n) + 1/n?]), pro-
A (1) ~(2) vided bothII(z™) andTI(y™) are positive. Moreover, the set of
A < Z (‘Pm" (w) — Py (w)‘ (21) sequences” for which there exists a sequengé € M(a")
wEATHIH such thatII(z") #II(y™) has measure at most, /.(n) un-
’pm(g)(w) _ pﬁ)(w)‘ i Ayn (w) — pﬁ) (w)D ' SSrGHMT(ZL:LS)' for “most” sequences?, T1(z™) =II(y™) for all

We upper-bound the first term in the summation in (21) Yet, the entropy H(Y"|z™) = log|M(z")| of the pro-
using (20) which, since:(z") = k(y™), also applies to the posed simulator is essentially optimal when compared to
third term. As for the second term, sing& < T;(z"), we any competing faithful simulator, even if we are extremely
haven/,.(s) = nj.(s) andngn (sa) = nyn(sa) for all s € A*  “generous” in the definition of faithfulness for the competitor,
anda € A. Therefore, provided the type classes are defined for an estimator such
— that logn = o(nf(n)). Specifically, let aweakly faithful
Ar < 2V/2(n2)f ( )a (a -1 simulatorW (Y™|z™) be only constrained to output sequences

/ ~
+ Z Z ngn (us)  1iyn (us) Z "1/"(5“) y" such that, for any fixed nonnegative integerH; (y") <
ey vyt no | = g (s) Hi(a™) +7i(n), where{~i(n)} ;o is any family of vanishing
— 222 f(n)ai(ar —1) functions of n (not necessarily uniformly in). Notice that

the condition does not necessarily imply closeness in terms
(22) of counts (on the other hand, a scheme that approximately
preserves counts in the sense of Theorem 3 will obviously

o2

weATH?

N (w) My (w) ’ .



be faithful in this relaxed sense for some famfly;(n)};>0). Therefore, for any fixed, we have
Moreover, we further relax this condition by assuming that a I N
set B(z") of potential output sequenced may not satisfy H(Y"[z") < nHi(z") +nv(n) +log N (27)
it, with W (B(z")|z") <s(n) for some vanishing function + <(n)[—logs(n) +nlogal.
¢(n). Theorem 4 belpw asserts that, givany partition of Sincei(n) = o(1), <(n) = o(1), and, by Lemma 1, Part (a),
the sequence space into a sub-exponential number of classes, ; : .
. . )f\?m grows polynomially fast withn, it follows that
for most sequences® (under any stationary ergodic measure), ™

the conditional entrc_>py achieved by a weakly.faithful simullator lim sup [nle(Yn‘xn) _ f{i(xn):| <0

cannot be substantially larger than the logarithm of the size of n—o0

the class ofz™. Our converse will then follow as a corollarysq, any fixedi. The theorem then follows from (26) and the
to Theorem 4. fact thatlim; lim,, H; (z™) = H a.s. [32]. ]

Theorem 4:Let C(z™) denote any partition ofA™ into
N(C) classes, wheréog N(C) = o(n), and letW (Y"|a"™)
be a weakly faithful simulator. Then,

Corollary 1 (Converse):For any weakly faithful simulator
H(Y™[z") — log [M(z")]

lim sup <0
. H(Y™"|z") —log|C(a")| _ e "
1 sup n <0 almost surely under any stationary ergodic measure, provided

thatlogn = o(nf(n)).

) - o Proof. By Theorem 4, it suffices to show thedg N(M) =
Proof. Consider the probability distributionP(2") = ;) for f(n) satisfying the condition in the corollary. Let
[N(C)[C(«")]] " over A™. By the sample converse to they "_ max{k(z") : 2" € A"} and S, = o=, Clearly,
noiseless Source Coding Theorem [30, Theorem 3.1] (see

almost surely under any stationary ergodic meagure

also [31]), Kn
3] ~log P(X™) NM) < Z Npi < (Kp +1)(n+1)%5
liminf ——————= > H i=0
n—oo n
in a set ofu-volume one, wheré{ denotes the entropy rateBy Lemmi 3, Part (d), S, — 0(1@”»' mplying
of the given measurg. Sincelog N(C) = e then have log N(M) = O((logn)/f(n)). Sincelogn = o(nf(n)), we
giv surg. Sincelog N(C) = o(n), w Ve conclude thatog N(M) = o(n). 0
i i 1281 E@")] >N (26) _ The converse in [12] (Theorem 6 therein) is also an imme-
n—oo n diate consequence of Theorem 4 since, by [12, Corollary 5],
in a set ofu-volume one. the logarithm of the number of LZ parsing-based classes is

O(n/(logn)). The key is to find a partition of the sequence
space into a sub-exponential number of classes such that
the sequences in a class satisfy Property P1. In fact, more

Now, to upper-bound the conditional entroff(Y ™|z™) of
the given weakly faithful simulator, define, for eveiy 0,

gi("/) (2™) & {y" € A" : H;(y") < H;(z") +vi(n)} obvious simulation schemes possess the same properties in
the individual sequence setting: consider, for example, the
andGg™ (z") = n; G (z™). Observe that simulator that draws uniformly at random froffi,.,(z"),
where g(n) — oo and a9 =o(n/(logn)). For fixedj and
H(Y"2")= - > W(ra")logW(y"|z")  sufficiently largen, two sequences in the same type class
ym€G (zm) clearly yield identical occurrence counts for eveptuple
_ Z W (y"]z"™) log W (y"|2™) . (exact preservation in Property P1), whereas, by the slow

growth of g(n), the converse also holds.
While all these simulators exhibit similar properties for ar-
Thus, by Jensen’s inequality, Iettirigl.(”)(x") = \gi(”) (z™)|, bitrary sequences (in the sense of Theorem 3 and Corollary 1),

yreB(zn)

for every fixedi we have when the sequence is typical of a Markov source of ovder
the proposed simulator is superior in that,k4s™) converges

H(Y"z") < log N (z") to k, it eventually draws from a larger set (by Lemma 4, it
|B(x™)] essentially draws frorffy,(z™)). In contrast to the hierarchical

+ W(B(z")]z")log W (B(z")|z") universality demonstrated in the stochastic setting, though,

the converses derived from Theorem 4 are unable to capture
such nuances, due to their asymptotic nature. In fact, second

where the last inequality assumg®) < 1/e. To upper-bound order improvements derived from model size are negligible

IN

log N\ () + ¢(n)[~ log <(n) + nlog o

Ni('Y)(xn) we observe that, by Lemma 1, Part (b), compared to the loss in conditional entropy caused by the fact
’ that these schemes draw from a single type class: indeed, the
N, > Z 9 nHi(y") > Ni('Y)(m")z_”[gi(xn)""ﬁ(")]. faithfulness requirement of Property P1 does not imply that

yneAn y" be of the same type as”, as is (essentially) the case



in the stochastic setting (one could, as in [14], draw from The above advantages of the type clas§¢6) over those
neighboring classes). based on LZ parsing have a complexity cost. Indeed, even if
For this reason, while it is possible to further refine ththe draw fromM (2") is implemented by drawing uniformly
type selection by use of tree models [22], as studied in [33t random fromT},,~)(2™) until a sequence that estimates
the potential advantages are not captured by any converseler k(x") is picked, enumeration ofj,(,~(z") is more
Moreover, the advantage of tree models in terms of type sigcembersome than enumeration of the LZ parsing-based type
is an open problem due to the lack of a result analogoukss. The reason is linked to the cofactor in Whittle’s for-
to Lemma 4. We conjecture that such a result indeed holdsula [28], which reflects the fact that enumeration of Markov
On the other hand, it is shown in [33] that tree modelypes does not reduce to independent enumerations of the state
offer an additional advantage in terms of Property P1 if wsub-sequences for memoryless types. In contrast, the scheme
measure the difference between the empirical probabilitizs[12] reduces to independent sub-sequences of draws at each

with the L, rather than thd.; distance. Indeed, for Markov node of the LZ tree.

models, aj-tuple may exist for which this difference is still
O(v/[f(n) + 1/n?]ad). Instead, the finer discrimination of
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even slower growth of thé.., distance, linear iry, has been
shown for the LZ parsing-based types [12] (as noted, the
convergence im is slower).

An alternative converse, which holds feverysequence™ 1
(rather than for a volume-one set) and which provides a rate
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