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Álvaro Mart́ın†, Neri Merhav‡, Gadiel Seroussi§, and Marcelo J. Weinberger¶
†Instituto de Computación, Universidad de la República, Montevideo, Uruguay

Email: almartin@fing.edu.uy
‡Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa, Israel

Email: merhav@ee.technion.ac.il
§Hewlett-Packard Laboratories, Palo Alto, CA, U.S.A., and Universidad de la República, Uruguay

Email: gseroussi@ieee.org
¶Hewlett-Packard Laboratories, Palo Alto, CA, U.S.A.

Email: marcelo@hpl.hp.com

Abstract— The problem of universal simulation given a train-
ing sequence is studied both in a stochastic setting and for
individual sequences. In the stochastic setting, the training se-
quence is assumed to be emitted by a Markov source of unknown
order, extending previous work where the order is assumed
known and leading to the notion of twice-universal simulation.
A simulation scheme, which partitions the set of sequences of a
given length into classes, is proposed for this setting and shown
to be asymptotically optimal. This partition extends the notion
of type classes to the twice-universal setting. In the individual
sequence scenario, the same simulation scheme is shown to
generate sequences which are statistically similar, in a strong
sense, to the training sequence, for statistics of any order, while
essentially maximizing the uncertainty on the output.

I. I NTRODUCTION

Simulation of random processes is about artificial generation
of random data with a prescribed probability law, by using
a certain deterministic mapping from a source of purely
random (independent, equally likely) bits into sample paths.
It finds applications in speech and image synthesis, texture
reproduction, generation of noise for purposes of simulating
communication systems, and cryptography.

The simulation problem of sources and channels has been
investigated by several researchers, see, e.g., [1], [2], [3], [4],
[5], [6], [7], [8]. In all these works, perfect knowledge of the
desired probability law is assumed. Universal simulation was
introduced in [9] and versions of this problem were studied
in [10], [11], [12], [13], [14]. In [9], the target sourceP to be
simulated is assumed to belong to a certain parametric family
P (like the family of finite–alphabet Markov sources of a given
order) but is otherwise unknown, and a training sequencex` =
(x1, . . . , x`) that has emerged fromP is available. In [12],
x` is assumed to be an individual sequence not originating
from any probabilistic source. In both cases, the simulation
schemes are also provided with a stream ofr purely random
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bits ur = (u1, . . . , ur) that are statistically independent of
the training sequence. While, as explained below, the goals of
the simulation schemes differ in each case, this paper can be
viewed as extending the results of both [9] and [12].

Specifically, the goal in [9] is to generate an output sequence
yn = (y1, . . . , yn), n ≤ `, corresponding to the simulated
process, such thatyn = φ(x`, ur), whereφ is a deterministic
function that does not depend on the unknown sourceP , and
which satisfies the following two conditions:

C1. The probability distribution of the output sequence is
exactlythen-dimensional marginal of the probability law
P corresponding to the training sequence for allP ∈ P.

C2. The mutual information between the training sequence
and the output sequence is as small as possible (or
equivalently, under Condition C1, the conditional entropy
of the output sequence given the training sequence is as
large as possible), simultaneously for allP ∈ P.

Condition C1 states that the simulated sequence is a sample
of the same process as the training sequence, universally in
P. Condition C2 guarantees that the generated sample path
is as “original” as possible, namely, with as small a statistical
dependence as possible on the training sequence (as opposed to
the case in whichY n = Xn, which obviously satisfies Con-
dition C1). For example, in a texture reproduction scenario,
this condition would help to avoid undesired periodicities if
a texture is generated by appending various sequencesY n

generated from a singleXm (we refer to [9] for further
motivation of these conditions).

In [9], the smallest achievable value of the mutual infor-
mation as a function ofn, `, r, and the entropy rateH of
the sourceP is characterized, and simulation schemes that
asymptotically achieve these bounds are presented. For a broad
class of familiesP, it is shown in [9] that in order to satisfy
Condition C1, it is necessary that the outputyn be a prefix of
a sequencey` having the sametype [15] asx` with respect to
P. Moreover, it is shown that forr large enough, the optimal
simulation scheme essentially takes the firstn symbols of
a randomly selected sequence of the same type asx`. For
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unlimited r and n = ` (which will be our assumption in the
rest of this paper), the resulting optimal mutual information
betweenXn andY n, after normalization, vanishes withn as
m
2

log n
n , wherem is the number of free parameters definingP.

The above rate prompts similar “model cost” issues as the
universal source coding problem [16], in the sense that the
larger the classP, the larger the cost of universality (which
in data compression takes the form of an analogous rate of
convergence to the source entropy). A natural question that
has then been asked in data compression is that ofdouble
universality [17] or hierarchical universality[18]: Assuming
a nested family of model classes (e.g., Markov models of
different orders), is it possible to achieve the optimal con-
vergence rate corresponding to thesmallestclass containing
the actual source, without prior knowledge of the class? The
answer to this question is well known to be positive, giving rise
to the notion oftwice-universal(or hierarchically universal)
schemes. In this paper, we start by addressing the problem of
hierarchical universality in the simulation setting of [9] when
P is a class of Markov models of unknown (fixed) orderk,
denotedPk.

First, we notice that (as discussed in [13]), families of
Markov models are indeed among those requiring thatx`

and y` be of the same type in order for Condition C1 to be
satisfied. Since, in the unknown model order setting, the types
of x` and y` must be the same foreveryMarkov order, the
two sequences must then coincide, leading to a single, trivial
simulator. Thus, a relaxation of Condition C1 is necessary
for the problem to become meaningful.1 As it turns out, it
suffices to allow simulators such that, for everyk andP ∈ Pk,
Condition C1 is violated only by a fraction of sequences whose
total mass (under the simulated probability, or equivalently,
underP ) is upper-bounded by a vanishing functionδ(n). In
fact, a simulator exists such thatδ(n) decreases exponentially
fast, while achieving per-symbol mutual information which
decays essentially asm2

log n
n for any Markov orderk and any

P ∈ Pk, wherem is the number of parameters corresponding
to Pk. This simulator follows a “plug-in” approach:

a. Fromxn, estimate an orderk(xn) of the Markov source;
b. Draw uniformly at random from the set of sequences

having the same Markov type of orderk(xn) asxn and
for which the estimated order is alsok(xn).

We show that the total mass of the sequences which do
not satisfy Condition C1 is upper-bounded by the probability
of underestimating the model order, whereas the conditional
entropy achieved by this scheme differs from the one achieved
by the optimal scheme that knows the “true” order by a
quantity that depends on the overestimation probability. With
a proper choice of the order estimator (in the spirit of those
used in, e.g., [19], [20], [21], [22], [23]) both the mass of
those sequences violating Condition C1, and the deviation
from optimal conditional entropy, can be made negligible.

1The relaxation of Condition C1 was precisely the motivation for the indi-
vidual sequence setting of [12]. Relaxation in the stochastic sense discussed
here is also discussed in [11] and [14], where universal simulation with a
fidelity criterion is studied, in analogy with the (non-universal) scenario of [5].

While this comparison is with a scheme that fully satisfies
Condition C1, we further show that such a relaxation of
the condition can only produce a negligible decrease in
the achievable mutual information in the known order case.
Therefore, under the relaxed criterion, the proposed scheme is
asymptotically optimal in that it achieves essentially the same
performance as if the model order were known. In that sense,
the scheme is hierarchically universal.

The above simulation scheme is based on a partition of the
set ofn-tuples, where two sequences are in the same class if
and only if they both estimate the same Markov order, and
have the same Markov type for that order. This partition is
in the same spirit as the one giving rise to the simulation
scheme in [12], which also extends the conventional notion of
a type. In the partition of [12], two sequences belong to the
same class if and only if their Lempel-Ziv (LZ) parsing [24]
yields the same tree. Any pair of sequences that belong to the
same class in this partition has the following property, which
parallels conventional types in an individual sequence setting:
P1. For any fixed integerj, the L1 distance between the

empirical distributions ofj-tuples corresponding to the
two sequences is a vanishing function ofn.

The rate of convergence of theL1 distance demonstrated
in [12] is O(1/ log n). It is easy to see that Property P1 implies
that, for any fixed Markov source, the normalized logarithm
of the ratio between the probabilities of two sequences in
the same class is alsoO(1/ log n), provided the sequences
have positive probability. In [12], a sequence of lengthn is
said to be afaithful reproduction of another sequence of the
same length if the pair satisfies Property P1. It is further
claimed that, for simulation purposes, faithfulness parallels
Condition C1 in an individual sequence setting. Thus, the
simulator that draws a sequence uniformly at random from
the (LZ-based) class of the training sequencexn is a faithful
simulator. Moreover, it is shown in [12] that no other faithful
simulator can produce significantly more uncertainty than the
proposed one, in the spirit of Condition C2.

In this paper, we extend the results of [12] in two directions.
First, we show that the equivalence classes defined for the
twice-universal simulation scheme for Markov sources possess
similar properties in the individual sequence setting as those
shown for the LZ parsing-based scheme, but the distance
between empirical distributions (as defined in Property P1)
exhibits a faster convergence rate. Second, we formulate a
converse similar to the one presented in [12], but that applies
to a broad family of simulators, which includes both the one
proposed here and the LZ-based one. This converse unveils the
essence of the universal simulation problem in an individual
sequence setting: Find a partition of the sequence space into
a relatively small (sub-exponential) number of classes such
that all the sequences in a class have approximately uniform
probability (as per Property P1). Notice that a “slow” rate of
convergence is typical of other applications of the LZ parsing.
On the other hand, our improvement has a complexity cost,
which we discuss.

The rest of this paper is organized as follows. Section II
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introduces the main concepts and tools. Our results in the
stochastic setting are then presented in Section III, whereas
the individual sequence setting is studied in Section IV.

II. PRELIMINARIES

Throughout the paper, random variables will be denoted
by capital letters and specific values they may take will be
denoted by the corresponding lower case letters. The same
convention will apply to random vectors, with an additional
superscript denoting their dimension. Thus,xn and yn will
denote specific values of the random vectorsXn and Y n,
respectively. The (finite) source alphabet will be denoted by
A, with its cardinality,|A|, denotedα.

A Markov sourceP of orderk overA, with transition prob-
abilities P (ak+1|ak, ak−1, . . . , a1), ai ∈ A, i = 1, . . . , k + 1,
draws a sequencexn with probability

P (xn) =
n∏

i=1

P (xi|xi−1, xi−2, . . . , xi−k) (1)

where we arbitrarily assume a fixed stringx−k+1, x−1, . . . , x0

determining the initial state. We assume thatk is the minimum
possible order, in the sense that no integerk′<k can replace
k in (1). The family of Markov sources of orderk overA is
denotedPk. Thus, a source inPk is defined by a parameter
vector θ ∈ [0, 1]α

k(α−1) (excluding parameter vectors that
correspond to a lower order); such a sourceP will sometimes
be denoted byPθ. The entropy ofn-tuples emitted byP is
denotedH(Xn).

Thek-th order Markovtype class[15] Tk(xn) of a sequence
xn is the set of all sequences̃xn ∈ An such thatP (x̃n) =
P (xn) for everysourceP ∈ Pi, 0≤ i≤ k. The set of allk-th
order Markov type classes of sequences inAn will be denoted
by T n

k , with |T n
k |=Nn,k. Clearly, Tk(xn) is the set of all

sequences having the same composition asxn with respect
to the k-th order Markov model [15], [25], i.e., each state
transition occurs as many times iñxn ∈Tk(xn) as in xn,
starting from the fixed initial state(x−k+1, x−k+2, . . . , x0).
Equivalently, the type is given by the number of occurrences
in xn of each strings ∈ Ak+1, denotednxn(s), namely

nxn(s) = |{i : 0 < i ≤ n, (xi−k, . . . , xi−1, xi) = s}| (2)

where | · | denotes cardinality. Thus, thek-th order empirical
Markov source defined by the transition counts ofxn depends
on xn only throughTk(xn)=T , and is denoted̂P (k)

T . It corre-
sponds to the maximum-likelihood estimate, and its transition
probabilities are given by

p̂(a|s) =
nxn(sa)
n′xn(s)

, s ∈ Ak, a ∈ A

where n′xn(s) =
∑

a∈A nxn(sa) (which may defer from
nxn(s) by one unit as it corresponds to the number of
occurrences of the strings in x0, x1, . . . , xn−1, rather than
in xn) and p̂(a|s) is defined only fors such thatn′xn(s) > 0.
The conditional entropyĤk(xn) of this distribution, namely

the k-th order empirical conditional entropy forxn, is given
by

Ĥk(xn) =
∑

s∈Ak

∑
a∈A

nxn(sa)
n

log
n′xn(s)
nxn(sa)

(3)

and satisfiesnĤk(xn) = − log P̂
(k)
T (xn), where, throughout,

logarithms are taken in base2, and we adopt the conventions
0 log 0 = 0 and 0 log(0/0) = 0. For Pθ ∈ Pi, 0≤ i≤ k, the
probability of a type classT ∈ T n

k is given by

Pθ(T )
4
=
∑

x̃n∈T

Pθ(x̃n) = |T | · Pθ(xn) (4)

wherexn is any sequence inT . In the sequel, we will make
extensive use of the well-known properties of Markov types
summarized in Lemma 1 below. While stronger versions of
these properties can be derived, the claims in Lemma 1 are
sufficient for our purposes in this paper.

Lemma 1:
(a) Nn,k ≤ (n + 1)αk+1

.
(b)

∑
xn∈An 2−nĤk(xn) =

∑
T∈T n

k
P̂

(k)
T (T ) ≤ Nn,k.

(c) For every typeT ∈ T n
k , P̂

(k)
T (T ) ≥ (n + 1)−αk+1

.

Proof. Part (a) is an obvious consequence of the characteriza-
tion of types in terms of sequence composition with respect to
thek-th order Markov model. The equality in Part (b) follows
from breaking the summation into type classes, whereas the in-
equality follows from the fact that each term in the summation
over the types is at most1. As for Part (c), we apply Equa-
tion (4) with Pθ(xn) = P̂

(k)
T (xn). The size of a type class is

given by Whittle’s formula [28], which consists of the product
of αk multinomial coefficients (one per state) and a cofactor.
As shown in [29, page 1996], the cofactor is lower-bounded
by n−αk+1, whereas each multinomial coefficient is lower-
bounded, using Stirling’s formula, by the maximum-likelihood
probability of the sub-sequence of symbols occurring at the
corresponding state, divided by

√
(2πn)α−1. Multiplying by

P̂
(k)
T (xn), xn ∈ T , it follows that

P̂
(k)
T (T ) ≥ (2πn)−αk(α−1)/2n−αk+1 .

The claimed bound follows by noticing that2πn < (n + 1)2

providedn ≥ 5.

Denoting withT (j), 1 ≤ j ≤ Nn,k, the type classes inT n
k ,

Pθ(T (j)) can be regarded as a function of the parameter vector
θ. A key property of the familyPk in the context of universal
simulation is that the set{Pθ(T (j))}Nn,k

j=1 , as functions of

θ ∈ Ω (whereΩ is any subset of[0, 1]α
k(α−1) with positive

measure), is linearly independent overR (see [13] for a dis-
cussion on this property for Markov models). Our converse in
the stochastic setting will make use of the following equivalent
property, which follows immediately from the characterization
of linear independence in terms ofCasorati determinantsgiven
in, e.g., [26, Chapter 14, Lemma 1].

Lemma 2:Given any subsetΛ of [0, 1]α
k(α−1) with positive

measure, there existNn,k parameter valuesθ1, . . . , θNn,k
∈ Λ

such that the matrix{Pθi
(T (j))}Nn,k

i,j=1 is nonsingular.
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Throughout this paper, all simulation schemesyn =
φ(x`, ur) assumen = `, and the keyur is assumed to be an
unlimited stream of random bits,u∞. The resulting condi-
tional distribution onyn given xn is regarded as a channel,
denotedW (yn|xn), with entropyH(Y n|xn). In casexn is
assumed to emerge from a probabilistic sourceP ∈ Pk, the
conditional entropy achieved by the channelW and the mutual
information betweenXn and Y n that is induced byP and
W will be denotedH(Y n|Xn) andI(Xn;Y n), respectively.
In this case, we seek a simulation scheme that, without
knowledge ofk (which may take on any nonnegative integer
value), achieves essentially the same mutual information as
the optimal universal scheme that knowsk (Condition C2
in Section I), while deviating from Condition C1 for just a
negligible fraction of the sequences, for anyP ∈ Pk.

In both the stochastic and the individual sequence setting,
our simulation scheme will rely on the existence of Markov
order estimators with certain properties, which are specified in
Lemma 3 below. For concreteness, we will focus on a specific
estimator, namely a penalized maximum-likelihood estimator
that, given a samplexn from the source, chooses orderk(xn)
such that

k(xn) = arg min
k≥0

{Ĥk(xn) + αkf(n)} (5)

where f(n) is a vanishing function ofn, ties are resolved,
e.g., in favor of smaller orders, and it is assumed that
the fixed string determining the initial state is as long as
needed (e.g., a semi-infinite all-zero string). For example,
f(n) = (α− 1)(log n)/(2n) corresponds to the asymptotic
version of the MDL criterion [16]. In the classical estimation
problem,f(n) governs the trade-off between the probabilities
of underestimating and overestimating the model order. In the
simulation problem for individual sequences,f(n) will be
shown to govern a trade-off between faithfulness and entropy
of the simulator. The estimatek(xn) can be obtained in time
that is linear inn by use of suffix trees as in [27]. The
set of n-tuples xn such thatk(xn) = i will be denotedAn

i .
To state Lemma 3 we define, for a distributionP ∈Pk, the
overestimation probability

Po/e(n)
4
= Pr(k(Xn) > k)

and, similarly, the underestimation probability

Pu/e(n)
4
= Pr(k(Xn) < k) .

Lemma 3:For anyk ≥ 0 and anyP ∈Pk, the estimator of
Equation (5) satisfies

(a) (n+1)αk+1
Po/e(n) vanishes polynomially fast (uniformly

in P andk) providedf(n) >β(log n)/n for a sufficiently
large constantβ.

(b) Pu/e(n) vanishes exponentially fast providedf(n) =
o(1).

(c) If zn ∈ Tk(xn)(xn) thenk(zn) ≥ k(xn).
(d) αk(xn) = O(1/f(n)) for any xn ∈ An.

Proof. Part (a) is handled with the method of types as in [22].
A rough bounding procedure (which requires a larger value of
β) is given next for completeness:

Po/e(n) ≤
∑
i>k

∑
xn∈An

i

2−nĤk(xn)

≤
∑
i>k

∑
xn∈An

i

2−n[Ĥi(x
n)+(αi−αk)f(n)]

≤
n∑

i=k+1

n−β(αi−αk)
∑

xn∈An

2−nĤi(x
n)

≤
n∑

i=k+1

n−β(αi−αk)Nn,i

where in the first inequality we upper-boundP (xn) with the
maximum-likelihood probability, the second inequality follows
from the definition ofAn

i and (5), in the third one we apply
the condition onf(n) and we extend the inner summation
to all sequencesxn, and in the fourth one we use Lemma 1,
Part (b). The claim then follows from Lemma 1, Part (a), from
observing that the largest term in the summation is the one
corresponding toi = k + 1, and that a suitable choice ofβ
will result in a polynomial decay even after multiplication of
Po/e(n) by (n+1)αk+1

. The exponential decay in Part (b), on
the other hand, follows from the fact that underestimation is
a large deviations event. The complete proof is omitted, since
similar results have been shown for several variants of this
estimator (see, e.g., [23]). Part (c) is an obvious consequence
of the fact thatĤi(xn) = Ĥi(zn) for all i ≤ k(xn). Finally,
Part (d) follows from the fact that, by the definition ofk(xn)
in (5),

Ĥk(xn)(xn) + αk(xn)f(n) ≤ Ĥ0(xn) + f(n) = O(1)

sincef(n) = o(1) and Ĥ0(xn) = O(1).
We consider the simulation scheme that, given a training

sequencexn, drawsyn uniformly at random from the set

M(xn)
4
= Tk(xn)(xn) ∩ An

k(xn) .

A key lemma in the analysis of this simulation scheme,
for both the stochastic and the individual sequence setting,
states that for anyxn the setM(xn) comprises all but a
negligible fraction of the sequences inTk(xn)(xn). By Part (c)
of Lemma 3, the remaining sequences are in{An

i }i>k(xn). To
state the lemma, we define

P
(i)
o/e(n)

4
= max

P=PT ,T∈T n
i

Po/e(n) (6)

namely, P(i)
o/e(n) is the maximum value ofPo/e(n) over all

empirical distributions of Markov type classes of orderi and
lengthn. Notice thatP(i)

o/e(n) is a deterministic function ofi
and n, independent of any underlying probability law. Since
Part (a) of Lemma 3 holds uniformly inP and k, it follows
from (6) that (n + 1)αi+1

P
(i)
o/e(n) is upper-bounded, for a

suitable choice off(n), by a function that decays polynomially
fast with n, uniformly in i.
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Lemma 4:For anyi ≥ 0, let T ∈ T n
i and assumeT∩An

i 6=
φ. Then,

|T ∩ An
i |

|T |
≥ 1− (n + 1)αi+1

P
(i)
o/e(n) .

Proof.By Lemma 1, Part (c), and sincêP (i)
T (·) is uniform over

T , we have

(n + 1)−αi+1
≤ P̂

(i)
T (T ) = P̂

(i)
T (T ∩ Ān

i )
|T |

|T ∩ Ān
i |

where the complement of a setS is denotedS̄. By Lemma 3,
Part (c), sinceT ∩An

i is nonempty, we havek(zn) ≥ i for all
zn ∈ T . Therefore,

P̂
(i)
T (T ∩ Ān

i ) ≤
∑
r>i

P̂
(i)
T (An

r ) . (7)

Since P̂
(i)
T ∈ Pi (i.e., the order of the empirical distribution

is not smaller thani, for otherwise no sequence inT would
have estimated orderi), the summation in the right-hand side
of (7) is the overestimation probability forP = P̂

(i)
T , which,

by (6), is upper-bounded byP(i)
o/e(n).

Lemma 4 is valid for any model orderi and any type class
containing sequences that do estimate orderi, regardless of any
probabilistic assumption. It should be noticed, however, that
the assumption of equal weight for counting all sequences in
T can be regarded as implicitly implying that these sequences
are drawn from a Markov source of orderi or less. Notice also
that, as stated in the proof of the lemma, typesT such that
P̂

(i)
T 6∈ Pi (e.g., for i > 0, the type of orderi of the all-zero

sequence) do not contain sequences that estimate orderi.

III. T HE STOCHASTIC SETTING

Theorem 1 below states the properties, in the stochastic
setting, of the simulator that drawsyn uniformly at random
from M(xn). For this simulator,W (yn|xn) = 1/|M(xn)|
if yn ∈ M(xn) and W (yn|xn) = 0 otherwise. Sinceyn ∈
M(xn) if and only if xn ∈M(yn) (M(·) is a partition ofAn

andM(xn) = M(yn)), the output distributionQ(·) satisfies

Q(yn) =
∑

xn∈An

P (xn)W (yn|xn)

=
∑

xn∈M(yn)

P (xn)
|M(yn)|

=
P (M(yn))
|M(yn)|

. (8)

Theorem 1:For anyk ≥ 0 and anyP ∈ Pk we have
(a) The output distribution satisfies

Q(Q(yn) 6= P (yn)) ≤ Pu/e(n) .

(b) The conditional entropy of the simulator satisfies

H(Y n|Xn) ≥ E log |Tk(Xn)| − nPo/e(n) log α

+ min
i≤k

log[1− (n + 1)αi+1
P

(i)
o/e(n)]

where the expectation is with respect toP , and its entropy
satisfies

H(Y n) ≤ H(Xn) + Pu/e(n)[n log α− log Pu/e(n)] .

By Part (b) of Lemma 3, Part (a) of the theorem states that
the proposed simulator preserves the probability law, except
for a set of exponentially decaying probability of the outcomes
of the simulation. In addition, Part (b) states that, with proper
choice off(n),

I(Xn;Y n) ≤ H(Xn)−E log |Tk(Xn)|+ o(1) (9)

for the proposed scheme. As shown in [9] and discussed in
Section I, the mutual information of the optimal scheme that
knowsk (and preserves the probability law), which drawsyn

uniformly at random fromTk(xn), is

H(Xn)−E log |Tk(Xn)| ≈ αk α− 1
2

log n (10)

where the approximation is to the main asymptotic term. Thus,
the asymptotic behavior is unaffected by the addition of the
o(1) term in the proposed scheme. However, the scheme of [9]
is optimal for exact preservation of the probability law, and
therefore does not yet establish a converse theorem for the
relaxed version of Condition C1.

Notice that the choice off(n) governs the tension between
preservation of the probability law (which is only affected by
underestimation) and conditional entropy (which is reduced
by overestimation). However, as long asf(n) >β(log n)/n,
as stated in Lemma 3, the asymptotic behavior is independent
of f(n).
Proof of Theorem 1.To prove Part (a), notice that ifk(yn) ≥
k, then P (yn) =P (zn) for all zn ∈M(yn). Thus, by (8),
Q(yn) =P (yn). Hence,

P (Q(yn) 6= P (yn)) ≤ P (k(yn) < k) = Pu/e(n) . (11)

Furthermore, for allyn ∈ An,

Q(Q(yn) 6= P (yn)) = 1−Q(Q(yn) = P (yn))
= 1− P (Q(yn) = P (yn))

which, together with (11), proves the claim.
As for Part (b),

H(Y n|Xn) =
∑
i≥0

∑
xn∈An

i

P (xn) log |Ti(xn) ∩ An
i |

≥
k∑

i=0

∑
xn∈An

i

P (xn)
[
log |Ti(xn)|

+ log[1− (n + 1)αi+1
P

(i)
o/e(n)]

]
≥ E log |Tk(Xn)|
−

∑
i>k

∑
xn∈An

i

P (xn) log |Tk(xn)|

+ min
i≤k

log[1− (n + 1)αi+1
P

(i)
o/e(n)]

≥ E log |Tk(Xn)|
− n(log α)

∑
i>k

∑
xn∈An

i

P (xn)

+ min
i≤k

log[1− (n + 1)αi+1
P

(i)
o/e(n)]
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where the first inequality follows from Lemma 4, the second
inequality follows from the fact that|Ti(xn)| ≥ |Tk(xn)| for
all i ≤ k, and the third inequality follows from upper-bounding
the type class sizes fori > k with αn. The claimed bound on
the conditional entropy then follows from the definition of
Po/e(n). To upper-boundH(Y n), we observe that

H(Y n) = −
∑

yn:Q(yn)=P (yn)

P (yn) log P (yn)

−
∑

yn:Q(yn) 6=P (yn)

Q(yn) log Q(yn)

≤ H(Xn) + Q(Q(yn) 6= P (yn))

· log
∑

yn:Q(yn) 6=P (yn)

1
Q(Q(yn) 6= P (yn))

≤ H(Xn) + Pu/e(n) log
∑

yn∈An

1
Pu/e(n)

= H(Xn) + Pu/e(n) log
αn

Pu/e(n)

where the first inequality follows from Jensen’s inequality,
and the second inequality follows from Part (a) and assumes
Pu/e(n) < 1/e.

From an algorithmic perspective, the enumeration of the
intersectionM(xn) of Tk(xn)(xn) andAn

k(xn), on which the
implementation of the draw is based, may be a challenging
problem. We can circumvent the problem by drawing uni-
formly at random from the type class, until a sequence that
estimates the same order asxn is drawn. By Lemma 4, with
very high probability, only one draw will be needed. We can
also consider the simulation scheme that simply draws from
the type classTk(xn)(xn), rather than from the intersection
M(xn). While it cannot be claimed that such a scheme
preserves the probability law in the strong sense of Part (a) of
Theorem 1, it can be shown that, with an appropriate choice
of f(n),

Q

(∣∣∣∣Q(yn)
P (yn)

− 1
∣∣∣∣ > ε(n)

)
< δ(n)

whereε(n) andδ(n) are vanishing functions. Clearly, the con-
ditional entropy of this simulator satisfies,a fortiori, Part (b)
of Theorem 1, as it draws from a larger set, whereas we
can upper-boundH(Y n) so that the upper bound (9) on the
mutual information still holds. However, such a scheme does
not yield a partition ofAn anddoes notsatisfy our claims in
the individual sequence setting.

Next, we establish a converse theorem, for which we need to
show that a deviation in the probability law as the one allowed
for the scheme of Theorem 1 cannot open the possibility
for a faster decay of the per-symbol mutual information in
a competing scheme that knowsk. This fact is established in
Theorem 2 below.

Theorem 2 (Converse):Let Ω denote an open subset of
[0, 1]α

k(α−1). Let δθ(n) be a set of functions indexed byθ
such that

τθ
4
= lim inf

n→∞

−1
n

log δθ(n) > 0

and assume that for everyθ∈Ω there exists an open neigh-
borhoodΛθ containing θ over which the infimum ofτθ is
positive. LetW be any simulation scheme such that its output
distribution Qθ satisfies, for everyθ ∈ Ω, Qθ(Qθ(yn) 6=
Pθ(yn)) ≤ δθ(n). Then, for everyθ ∈ Ω,

I(Xn;Y n) ≥ H(Xn)−E log |Tk(Xn)| − o(1)

where theo(1) term may not be uniform inθ.

The conditions on the set of functionsδθ(n) in Theorem 2
essentially state thatW is any simulation scheme such that the
probability of the outcomes for which the probability law is
not preserved is exponentially small, and that the boundδθ(n)
on this probability is well-behaved (for example, continuity
of δθ(n) as a function ofθ would suffice). Notice that, in
particular, the upper boundPu/e(n) on the probability of the
sequences which are not law preserving for the proposed
scheme satisfies these conditions (for setsΩ for whichPu/e(n)
is well-defined, namely sets which do not include parameter
vectors corresponding to distributions inPk′ , k′<k). Thus,
by the asymptotic approximation in (10), the theorem states
that no asymptotically significant improvement ofI(Xn;Y n)
can be obtained by letting the output probability deviate from
the input one by an amount such as the one allowed in the
direct (Theorem 1).
Proof of Theorem 2. Let Bδ(θ) denote the set of sequences
yn for which Qθ(yn) 6= Pθ(yn). We have

H(Y n) ≥ H(Xn) +
∑

yn∈Bδ(θ)

Pθ(yn) log Pθ(yn)

≥ H(Xn)− Pθ(Bδ(θ)) log
|Bδ(θ)|

Pθ(Bδ(θ))

where the second inequality follows from Jensen’s inequality.
In addition, for allθ ∈ Ω, we have

Pθ(Bδ(θ)) = Qθ(Bδ(θ)) ≤ δθ(n) (12)

which, assumingδθ(n) < 1/e and bounding|Bδ(θ)| with αn,
implies

H(Y n) ≥ H(Xn)− nδθ(n) log α + δθ(n) log δθ(n) . (13)

Also,

H(Y n|Xn) ≤ H(Y n|Tk(Xn))

=
∑

T∈T n
k

Pθ(T )
∑

yn∈An

W (y|T ) log
1

W (y|T )
.

Splitting the summation inyn according to whetheryn belongs
to T or not and applying Jensen’s inequality to each partial
summation, we obtain

H(Y n|Xn) ≤
∑

T∈T n
k

Pθ(T )
[
W (T |T ) log

|T |
W (T |T )

+ [1−W (T |T )] log
αn − |T |

1−W (T |T )

]
.
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DenotingwT = W (T |T ) and lettingh(·) denote the binary
entropy function, we obtain

H(Y n|Xn) ≤
∑

T∈T n
k

Pθ(T )[wT log |T |

+ (1− wT ) log(αn − |T |) + h(wT )]
≤ E log |Tk(Xn)|
+

∑
T∈T n

k

Pθ(T )[n(1− wT ) log α + h(wT )] .

This bound, together with (13), yields

I(Xn;Y n) ≥ H(Xn)−E log |Tk(Xn)|
− nδθ(n) + δθ(n) log δθ(n) (14)

−
∑

T∈T n
k

Pθ(T )[n(1− wT ) log α + h(wT )] .

Sinceδθ(n) decays exponentially fast, the proof is complete if
we show that the summation on the right-hand side of (14) also
vanishes withn. To this end, it suffices to prove thatn(1−wT )
vanishes (and, hence,h(wT ) also vanishes) for every typeT
such that the maximum-likelihood estimateθ̂T of θ, obtained
from a sequence of typeT , belongs toΛθ. This observation
follows from the fact that, for the other types,θ̂T 6∈ Λθ is
a large deviations event and therefore its probability decays
exponentially fast (depending on the setsΛθ, this decay may
not be uniform inθ).2 We next analyzewT for typesT such
that θ̂T ∈ Λθ.

First, notice that we can assumeΛθ ⊆Ω for all θ∈Ω (oth-
erwise, we can replaceΛθ with the interior of its intersection
with Ω). For a given typeT such that θ̂T ∈Λθ, consider
an open neighborhoodΛT of θ̂T , ΛT ⊆Λθ. By Lemma 2,
there exist parameter valuesθ1, . . . , θNn,k

∈ΛT such that the
matrix {Pθi

(T (j))}Nn,k

i,j=1 is nonsingular. By (12), we have
Pθi(Bδ(θi))≤ δθi(n), i = 1, 2, . . . , Nn,k. By the definition of
Λθ, infθ′ ∈Λθ

τθ′ > 0, so that the functionsδθi(n) are, in turn,
upper-bounded by a single exponentially decaying function.
Now, sinceΛT can be made arbitrarily small, the parameters
θi are arbitrarily close tôθT , and it can be assumed that no
component of̂θT (transition probability) has a positive value
while the corresponding component of a vector inΛT is zero.
Hence, by the continuity ofPθ(·) (as a function ofθ), there
exists another exponentially decaying functionδ′θ(n) such that

P̂
(k)
T (Bδ(θi)) = Pθ̂T

(Bδ(θi)) ≤ δ′θ(n)

i = 1, 2, . . . , Nn,k.3 Letting BT = ∪iBδ(θi), a union bound
yields

P̂
(k)
T (BT ) ≤ Nn,kδ′θ(n) . (15)

2Of course, sinceθ is arbitrary inΩ, our proof will actually apply to any
type T such thatθ̂T ∈Ω.

3E.g., we can pickΛT such that the positive transition probabilities ofθ̂T

are within a factoreε of the corresponding component in each vector inΛT ,
so that the probability of an event underθ̂T is upper-bounded byenε times
the corresponding probability under eachθi, and pickε sufficiently small.

Thus,

|BT ∩ T |
|T |

=
P̂

(k)
T (BT ∩ T )

P̂
(k)
T (T )

≤
P̂

(k)
T (BT )

P̂
(k)
T (T )

≤ (n+1)2αk+1
δ′θ(n)

(16)
where the second inequality follows from (15) and Lemma 1,
parts (a) and (c). Now, for anyP and anyyn ∈An, we have

Q(yn) =
Nn,k∑
j=1

P (T (j))W (yn|T (j)) . (17)

In particular, for P = Pθi and yn ∈ GT ∩ T , where GT

denotes the complement ofBT , Qθi
(yn) = Pθi

(yn) for all
values ofi. Thus, sinceyn has typeT , (17) takes the form

Pθi
(T )
|T |

=
Nn,k∑
j=1

Pθi
(T (j))W (yn|T (j)), i = 1, 2, . . . , Nn,k .

(18)
Since our choice of the parametersθi was dictated by
Lemma 2, the system of equations (18) (in theNn,k variables
W (yn|T (j))) yields a unique solution, and henceW (yn|T ) =
1/|T | for all yn ∈ GT ∩ T . It follows that

wT =
∑

yn∈T

W (yn|T ) ≥
∑

yn∈GT∩T

W (yn|T ) =
|GT ∩ T |
|T |

or, by (16),

1− wT ≤ (n + 1)2αk+1
δ′θ(n) .

Thus, we conclude thatn(1− wT ) indeed vanishes.

Notice that in the proof of Theorem 2 we have shown that,
when a deviation in the probability law is allowed for a set
of sequencesBδ(θ) of exponentially vanishing probability,
1−W (T |T ) is exponentially small for typesT such that the
maximum-likelihood estimatêθT ∈Ω. This is a generalization
of the result in [9] stating that when perfect preservation of
the probability law is required,W (T |T ) = 1 for every type
(since a law-preserving simulator can only output sequences
from the same type asxn). Both the law-preserving result and
its relaxation follow essentially from the linear independence
of the set of functions{Pθ(T (j))}Nn,k

j=1 , as functions ofθ∈Ω.

IV. T HE INDIVIDUAL SEQUENCE SETTING

In this section we analyze the proposed simulation scheme
in the individual sequence setting of [12]. By drawing uni-
formly at random a sequence fromM(xn) (wherexn is now
an individual sequence not originating from any probabilistic
source), we haveH(Y n|xn) = log |M(xn)|. To complete our
“direct” result we establish, in Theorem 3 below, the statistical
similarity between two sequences in the same classM(·) in
the implied partition ofAn.

Theorem 3 (Direct):Let xn ∈ An be arbitrary and fix a
nonnegative integerj. Then, for anyyn ∈M(xn), we have

∑
s∈Aj

∣∣∣∣nxn(s)
n

− nyn(s)
n

∣∣∣∣ = O

(√[
f(n) +

1
n2

]
αj

)
.
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Moreover, if j ≤ k(xn) + 1 then nxn(s) = nyn(s) for all
s ∈ Aj .

Proof. Let i = k(xn). By (5), for everyr > 0, we have

Ĥi(xn)− Ĥi+r(xn) ≤ αi(αr − 1)f(n) . (19)

Using Equation (3), and since, by (2), for every strings we
have

∑
u∈Ar nxn(us) = nxn(s), the left-hand side of (19)

takes the form

Ĥi(xn)− Ĥi+r(xn) =
∑

u∈Ar

∑
s∈Ai

∑
a∈A

nxn(usa)
n

· log
nxn(usa) n′xn(s)
n′xn(us)nxn(sa)

= D
(
P̂

(1)
xn (·) || P̂ (2)

xn (·)
)

whereP̂
(1)
xn (·) andP̂

(2)
xn (·) are probability mass functions over

Ai+r+1 defined byP̂ (1)
xn (usa)

4
= nxn(usa)/n and

P̂
(2)
xn (usa)

4
=

n′xn(us) nxn(sa)
n′xn(s) n

with P̂
(2)
xn (usa) = 0 if n′xn(s) = 0. By Pinsker’s inequality

we then have∑
w∈Ar+i+1

∣∣∣P̂ (1)
xn (w)−P̂

(2)
xn (w)

∣∣∣ ≤√2(ln 2)[Ĥi(xn)−Ĥi+r(xn)]

which, together with (19) yields∑
w∈Ar+i+1

∣∣∣P̂ (1)
xn (w)− P̂

(2)
xn (w)

∣∣∣ ≤√2(ln 2)f(n)αi(αr − 1) .

(20)
Now, givenyn ∈M(xn), let

∆r
4
=

∑
w∈Ar+i+1

∣∣∣∣nxn(w)
n

− nyn(w)
n

∣∣∣∣
=

∑
w∈Ar+i+1

∣∣∣P̂ (1)
xn (w)− P̂

(1)
yn (w)

∣∣∣ .

By the triangle inequality, we have

∆r ≤
∑

w∈Ar+i+1

( ∣∣∣P̂ (1)
xn (w)− P̂

(2)
xn (w)

∣∣∣ (21)

+
∣∣∣P̂ (2)

xn (w)− P̂
(2)
yn (w)

∣∣∣+ ∣∣∣P̂ (1)
yn (w)− P̂

(2)
yn (w)

∣∣∣) .

We upper-bound the first term in the summation in (21)
using (20) which, sincek(xn) = k(yn), also applies to the
third term. As for the second term, sinceyn ∈ Ti(xn), we
haven′xn(s) = n′yn(s) andnxn(sa) = nyn(sa) for all s ∈ Ai

anda ∈ A. Therefore,

∆r ≤ 2
√

2(ln 2)f(n)αi(αr − 1)

+
∑

u∈Ar

∑
s∈Ai

∣∣∣∣n′xn(us)
n

−
n′yn(us)

n

∣∣∣∣∑
a∈A

nxn(sa)
n′xn(s)

= 2
√

2(ln 2)f(n)αi(αr − 1)

+
∑

w∈Ar+i

∣∣∣∣n′xn(w)
n

−
n′yn(w)

n

∣∣∣∣ . (22)

By the definition of the countsn′xn(w) andn′yn(w), and notic-
ing thatx−(r+i−1), . . . , x0 = y−(r+i−1), . . . , y0, we have, for
all w ∈ Ar+i,

n′xn(w)− n′yn(w) = nxn(w)− nyn(w)
− 1(w = xn+1−r−i, . . . , xn)
+ 1(w = yn+1−r−i, . . . , yn)

where 1(·) denotes the indicator function of the specified
event. Therefore,∑
w∈Ar+i

|n′xn(w)− n′yn(w)| ≤
∑

w∈Ar+i

|nxn(w)− nyn(w)|+ 2

implying, by (22),

∆r ≤ 2
√

2(ln 2)f(n)αi(αr − 1) +
2
n

+ ∆r−1 . (23)

Sinceyn ∈ Ti(xn), we have∆0 = 0, so that the recurrence
in (23) yields

∆r ≤ 2
√

2(ln 2)f(n)αi/2
r∑

m=1

√
αm − 1 +

2r

n
. (24)

The summation in (24) isO(αr/2), implying

∆r = O

(√[
f(n) +

1
n2

]
αk+r

)
. (25)

The claim of the theorem forj > k(xn) follows from taking
r = j− i− 1 in (25). The claim thatnxn(s) = nyn(s) for
j ≤ k(xn) + 1 and all s ∈ Aj is an immediate consequence
of the fact thatyn ∈ Tk(xn)(xn).

Theorem 3 corresponds to Property P1 that was item-
ized in Section I for the scheme in [12]. With a proper
choice of f(n), the preservation of empirical probabilities
(or degree of “faithfulness”) withinM(xn) is stronger than
the one claimed for the LZ parsing-based types, for which
the convergence isO(1/ log n). As in [12, Corollary 1],
for any fixed Markov measureΠ∈Pk, if yn ∈M(xn) then
(1/n)| log(Π(xn)/Π(yn))| is alsoO(

√
[f(n) + 1/n2]), pro-

vided bothΠ(xn) andΠ(yn) are positive. Moreover, the set of
sequencesxn for which there exists a sequenceyn ∈M(xn)
such thatΠ(xn) 6=Π(yn) has measure at mostPu/e(n) un-
derΠ. Thus, for “most” sequencesxn, Π(xn) =Π(yn) for all
yn ∈M(xn).

Yet, the entropyH(Y n|xn) = log |M(xn)| of the pro-
posed simulator is essentially optimal when compared to
any competing faithful simulator, even if we are extremely
“generous” in the definition of faithfulness for the competitor,
provided the type classes are defined for an estimator such
that log n = o(nf(n)). Specifically, let aweakly faithful
simulatorW (Y n|xn) be only constrained to output sequences
yn such that, for any fixed nonnegative integeri, Ĥi(yn) <
Ĥi(xn) + γi(n), where{γi(n)}i≥0 is any family of vanishing
functions of n (not necessarily uniformly ini). Notice that
the condition does not necessarily imply closeness in terms
of counts (on the other hand, a scheme that approximately
preserves counts in the sense of Theorem 3 will obviously

8



be faithful in this relaxed sense for some family{γi(n)}i≥0).
Moreover, we further relax this condition by assuming that a
set B(xn) of potential output sequencesyn may not satisfy
it, with W (B(xn)|xn) <ς(n) for some vanishing function
ς(n). Theorem 4 below asserts that, givenany partition of
the sequence space into a sub-exponential number of classes,
for most sequencesxn (under any stationary ergodic measure),
the conditional entropy achieved by a weakly faithful simulator
cannot be substantially larger than the logarithm of the size of
the class ofxn. Our converse will then follow as a corollary
to Theorem 4.

Theorem 4:Let C(xn) denote any partition ofAn into
N(C) classes, wherelog N(C) = o(n), and let W (Y n|xn)
be a weakly faithful simulator. Then,

lim sup
n→∞

H(Y n|xn)− log |C(xn)|
n

≤ 0

almost surely under any stationary ergodic measureµ.

Proof. Consider the probability distributionP̃ (xn) =
[N(C) |C(xn)|]−1 over An. By the sample converse to the
noiseless Source Coding Theorem [30, Theorem 3.1] (see
also [31]),

lim inf
n→∞

− log P̃ (Xn)
n

≥ H

in a set ofµ-volume one, whereH denotes the entropy rate
of the given measureµ. Sincelog N(C) = o(n), we then have

lim inf
n→∞

log |C(xn)|
n

≥ H (26)

in a set ofµ-volume one.
Now, to upper-bound the conditional entropyH(Y n|xn) of

the given weakly faithful simulator, define, for everyi≥ 0,

G(γ)
i (xn)

4
= {yn ∈ An : Ĥi(yn) < Ĥi(xn) + γi(n)}

andG(γ)(xn)= ∩i G(γ)
i (xn). Observe that

H(Y n|xn) = −
∑

yn∈G(γ)(xn)

W (yn|xn) log W (yn|xn)

−
∑

yn∈B(xn)

W (yn|xn) log W (yn|xn) .

Thus, by Jensen’s inequality, lettingN (γ)
i (xn) = |G(γ)

i (xn)|,
for every fixedi we have

H(Y n|xn) ≤ log N
(γ)
i (xn)

+ W (B(xn)|xn) log
|B(xn)|

W (B(xn)|xn)

≤ log N
(γ)
i (xn) + ς(n)[− log ς(n) + n log α]

where the last inequality assumesς(n) < 1/e. To upper-bound
N

(γ)
i (xn) we observe that, by Lemma 1, Part (b),

Nn,i ≥
∑

yn∈An

2−nĤi(y
n) ≥ N

(γ)
i (xn)2−n[Ĥi(x

n)+γi(n)] .

Therefore, for any fixedi, we have

H(Y n|xn) ≤ nĤi(xn) + nγi(n) + log Nn,i (27)

+ ς(n)[− log ς(n) + n log α] .

Sinceγi(n) = o(1), ς(n) = o(1), and, by Lemma 1, Part (a),
Nn,i grows polynomially fast withn, it follows that

lim sup
n→∞

[
n−1H(Y n|xn)− Ĥi(xn)

]
≤ 0

for any fixedi. The theorem then follows from (26) and the
fact thatlimi limn Ĥi(xn) = H a.s. [32].

Corollary 1 (Converse):For any weakly faithful simulator

lim sup
n→∞

H(Y n|xn)− log |M(xn)|
n

≤ 0

almost surely under any stationary ergodic measure, provided
that log n = o(nf(n)).

Proof. By Theorem 4, it suffices to show thatlog N(M) =
o(n) for f(n) satisfying the condition in the corollary. Let
Kn = max{k(xn) : xn ∈ An} andSn = αKn . Clearly,

N(M) ≤
Kn∑
i=0

Nn,i < (Kn + 1)(n + 1)αSn .

By Lemma 3, Part (d),Sn = O(1/f(n)), implying
log N(M) = O((log n)/f(n)). Since log n = o(nf(n)), we
conclude thatlog N(M) = o(n).

The converse in [12] (Theorem 6 therein) is also an imme-
diate consequence of Theorem 4 since, by [12, Corollary 5],
the logarithm of the number of LZ parsing-based classes is
O(n/(log n)). The key is to find a partition of the sequence
space into a sub-exponential number of classes such that
the sequences in a class satisfy Property P1. In fact, more
obvious simulation schemes possess the same properties in
the individual sequence setting: consider, for example, the
simulator that draws uniformly at random fromTg(n)(xn),
where g(n)→∞ and αg(n) = o(n/(log n)). For fixed j and
sufficiently largen, two sequences in the same type class
clearly yield identical occurrence counts for everyj-tuple
(exact preservation in Property P1), whereas, by the slow
growth of g(n), the converse also holds.

While all these simulators exhibit similar properties for ar-
bitrary sequences (in the sense of Theorem 3 and Corollary 1),
when the sequence is typical of a Markov source of orderk,
the proposed simulator is superior in that, ask(xn) converges
to k, it eventually draws from a larger set (by Lemma 4, it
essentially draws fromTk(xn)). In contrast to the hierarchical
universality demonstrated in the stochastic setting, though,
the converses derived from Theorem 4 are unable to capture
such nuances, due to their asymptotic nature. In fact, second
order improvements derived from model size are negligible
compared to the loss in conditional entropy caused by the fact
that these schemes draw from a single type class: indeed, the
faithfulness requirement of Property P1 does not imply that
yn be of the same type asxn, as is (essentially) the case
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in the stochastic setting (one could, as in [14], draw from
neighboring classes).

For this reason, while it is possible to further refine the
type selection by use of tree models [22], as studied in [33],
the potential advantages are not captured by any converse.
Moreover, the advantage of tree models in terms of type size
is an open problem due to the lack of a result analogous
to Lemma 4. We conjecture that such a result indeed holds.
On the other hand, it is shown in [33] that tree models
offer an additional advantage in terms of Property P1 if we
measure the difference between the empirical probabilities
with the L∞, rather than theL1 distance. Indeed, for Markov
models, aj-tuple may exist for which this difference is still
O(
√

[f(n) + 1/n2]αj). Instead, the finer discrimination of
tree models, which can grow unbalanced to fit the data faster
with different Markov orders for different contexts, guarantees
that this difference isO(

√
f(n)j3/2) for every j-tuple. An

even slower growth of theL∞ distance, linear inj, has been
shown for the LZ parsing-based types [12] (as noted, the
convergence inn is slower).

An alternative converse, which holds foreverysequencexn

(rather than for a volume-one set) and which provides a rate
of convergence, can be proved for the proposed scheme. The
competing set of simulators for which such a converse applies,
however, is weaker. The idea is to modify the definition of
weak faithfulness so that, with inputxn and i= k(xn), a
weakly faithful simulator is constrained to output sequences
yn such thatĤi(yn) < Ĥi(xn) + γ(n), whereγ(n) is some
vanishing function ofn. While the condition is now required
only for model orderk(xn) (and is trivially satisfied by the
proposed scheme), the fact that, in general,k(xn) depends
on xn, is akin to requiring uniformity in the vanishing rate
of the family {γi(n)}i≥0 in the original condition. Applying
Equation (27) fori= k(xn) and γi(n) = γ(n), and upper-
boundingĤi(xn) andNn,i using Lemma 1, parts (a) and (c),
we obtain

H(Y n|xn) ≤ log |Ti(xn)|+ 2αi+1 log(n + 1) + nγ(n)
+ ς(n)[− log ς(n) + n log α]
≤ log |M(xn)|+ 2αi+1 log(n + 1) + nγ(n)

− log[1− (n + 1)αi+1
P

(i)
o/e(n)]

+ ς(n)[− log ς(n) + n log α]

where the second inequality follows from Lemma 4. Thus, by
Lemma 3, parts (a) and (d),

H(Y n|xn) ≤ log |M(xn)|+ O
( log n

f(n)
+ nγ(n) + nς(n)

)
(28)

for all sequencesxn. Equation (28) unveils the trade-off in the
choice off(n): A larger f(n) implies a slower convergence
of the statistics (Theorem 3), but on the other hand it allows
a smaller deviation from the performance of a competing
simulator. For a Markov source of orderk, k(xn) converges
to k almost surely, and therefore, for typical sequences, the
existence of the functionγ(n) is not a stronger requirement
than the existence of the family{γi(n)}i≥0.

The above advantages of the type classesM(·) over those
based on LZ parsing have a complexity cost. Indeed, even if
the draw fromM(xn) is implemented by drawing uniformly
at random fromTk(xn)(xn) until a sequence that estimates
order k(xn) is picked, enumeration ofTk(xn)(xn) is more
cumbersome than enumeration of the LZ parsing-based type
class. The reason is linked to the cofactor in Whittle’s for-
mula [28], which reflects the fact that enumeration of Markov
types does not reduce to independent enumerations of the state
sub-sequences for memoryless types. In contrast, the scheme
in [12] reduces to independent sub-sequences of draws at each
node of the LZ tree.
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[15] I. Csisźar, “The method of types,”IEEE Trans. Inform. Theory, vol. 44,
pp. 2505–2523, Oct. 1998.

[16] J. Rissanen, “Universal coding, information, prediction, and estimation,”
IEEE Trans. Inform. Theory, vol. 30, pp. 629–636, July 1984.

[17] B. Ryabko, “Twice-universal coding,”Problems of Information Trans-
mission, vol. 20, pp. 173–177, July/September 1984.

[18] M. Feder and N. Merhav, “Hierarchical universal coding,”IEEE Trans.
Inform. Theory, vol. 42, pp. 1354–1364, Sept. 1996.

[19] N. Merhav, M. Gutman, and J. Ziv, “On the estimation of the order of
a Markov chain and universal data compression,”IEEE Trans. Inform.
Theory, vol. 35, pp. 1014–1019, Sept. 1989.

10



[20] M. J. Weinberger, A. Lempel, and J. Ziv, “A sequential algorithm for
the universal coding of finite-memory sources,”IEEE Trans. Inform.
Theory, vol. 38, pp. 1002–1014, May 1992.

[21] L. Finesso, “Estimation of the order of a finite Markov chain,” inRecent
Advances in the Mathematical Theory of Systems, Control, and Network
Signals, Proc. MTNS-91(K. Kimura and S. Kodama, eds.), Mita Press,
1992, pp. 643–645.

[22] M. J. Weinberger, J. Rissanen, and M. Feder, “A universal finite memory
source,”IEEE Trans. Inform. Theory, vol. 41, pp. 643–652, May 1995.
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