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The use of digital watermarking in real applications is impeded by the weakness of current available algorithms
against signal processing manipulations leading to the de-synchronization of the watermark embedder and detec-
tor. For this reason, the problem of watermarking under geometric attacks has received considerable attention through-
out recent years. Despite their importance, only few classes of geometric attacks are considered in the literature, most
of which consist of global geometric attacks. The random bending attack contained in the Stirmark benchmark soft-
ware is the most popular example of a local geometric transformation. In this paper, we introduce two new classes of
local de-synchronization attacks (DAs). The effectiveness of the new classes of DAs is evaluated from different per-
spectives including: perceptual intrusiveness and de-synchronization efficacy. This can be seen as an initial effort to-
wards the characterization of the whole class of perceptually admissible DAs, a necessary step for the theoretical
analysis of the ultimate performance reachable in the presence of watermark de-synchronization and for the develop-
ment of a new class of watermarking algorithms that can efficiently cope with them.
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1 INTRODUCTION

Geometric transformations whereby the watermark embed-
der and detector are de-synchronized are known to be one
of the most serious threats against any digital watermark-
ing scheme. In the case of still images, for which DAs can
be easily implemented by applying a geometric transfor-
mation to the watermarked image, DAs are of the outmost
importance, since failing to cope with them would nullify
the efficacy of the whole watermarking system.

In the general case, a geometric distortion can be seen
as a transformation of the position of the pixels in the im-
age. It is possible to distinguish between global and local
geometric distortions. A global transformation is defined
by an analytic function that maps the points in the in-
put image to the corresponding points in the output im-
age. It is defined by a set of operational parameters and
performed over all the image pixels. Local distortions, in-
stead, refer to transformations affecting in different ways
the position of the pixels of the same image or affecting
only part of the image. The random bending attack [15],
contained in the Stirmark utility, is the most famous ex-

ample of a local geometric transformation.
Global geometric transformations, especially rotation,

scaling and translation, have been extensively studied in
the watermarking literature given their simplicity and dif-
fusion. Though no perfect solution exists to cope with ge-
ometric attacks, DAs based on global transformations can
be handled in a variety of ways, including exhaustive search
[8, 1], template-based re-synchronization [16, 12, 13], self-
synchronizing watermarks [5, 6] and watermarking in in-
variant domains [9]. In all the cases, the proposed solu-
tions rely on the restricted number of parameters specify-
ing the DA. For instance, it is the relatively low cardinal-
ity of the set of possible attacks that makes the estimation
of the geometric transformation applied by the attacker via
exhaustive search or template matching possible (compu-
tationally feasible). For this reason, recovering from local-
ized attacks is much harder than recovering from a global
attack. A possibility to overcome this problem in case of lo-
cal attacks could be to split the search into a number of
local searches. However, in this way, it is likely that the ac-
curacy of the estimation is reduced, given that the esti-
mation would have to rely on a reduced number of sam-
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ples.
Despite the threats they pose, local geometric transfor-

mations have received little attention by the watermark-
ing community. In practice, only the Random Bending At-
tack (RBA) contained in the Stirmark software has been
studied to some extent. However even in this case, the real
de-synchronization capabilities of RBA are not fully under-
stood, given that as implemented in Stirmark, RBA con-
sists of three modules, with only one corresponding to a
truly local geometric transformation [15].

In this paper we focus on local geometric attacks for
still images. In particular, the aim of our research is
twofold:

• To introduce two new classes of local DAs, that ex-
tend the class of local geometric attacks for still im-
ages;

• To evaluate the effectiveness of the new attacks and
compare them with the classical RBA;

For the above goals, the perceptual impact of the DAs is
taken into account, since this is the only factor limiting the
choice of the attacking strategy. The two models we pro-
pose can be seen as a first step towards the characteri-
zation of the whole class of perceptually admissible DAs,
which in turn is an essential step towards the development
of a new class of watermarking systems that can effectively
cope with them.

This paper is organized as follows. In Section 2, we de-
scribe the RBA contained in the Stirmark software. In Sec-
tion 3, we introduce a new class of local de-synchronization
attacks, the LPCD DAs, applied in a full and multiresolu-
tion framework. In Section 4, a class of attacks based on
Markov Random Fields is presented. In Section 5, we eval-
uate the effectiveness of the two new classes of DAs us-
ing two simple watermarking systems based on the DCT
and DWT transforms. Finally, in Section 6, we summa-
rize the contribution of this work and propose some ideas
for future research.

In order to ensure the reproducibility of the experimen-
tal results the software we used for the experiments is avail-
able on the web site http://www.dii.unisi.it/~vipp , further-
more a pseudo-code description of the algorithms is pro-
vided in the appendix in order to link the software to the
global description of the algorithms.

2 STIRMARK RBA

The Stirmark benchmark software first explored RBA’s
ability to confuse watermark detection. In most of the sci-
entific literature, by RBA the corresponding geometric at-
tack implemented in the Stirmark software is meant [14],
however such an attack is not a truly local attack since it
couples three different geometric transformations applied
sequentially, only the last of which corresponds to a lo-
cal attack.

The first transformation applied by Stirmark is defined
by:

x′= t10 + t11x+ t12y + t13xy
y′= t20 + t21x+ t22y + t23xy

(1)

where x′, y′ are the new coordinates and x, y the old ones.
In practice, this transformation corresponds to moving the
four corners of the image into four new positions, and mod-
ifying coherently all the other sampling positions. The sec-
ond step is given by:

x′′= x′ + dmax sin(y′ πM )
y′′= y′ + dmax sin(x′ πN ) (2)

where M and N are the vertical and horizontal dimen-
sions of the image. This transformation applies a displace-
ment which is zero at the border of the image and maxi-
mum (dmax) in the center. The third step of the Stirmark
geometric attack is expressed as:

x′′′ = x′′ + δmax sin (2πfxx′′) sin (2πfyy′′) randx(x′′, y′′)
y′′′ = y′′ + δmax sin (2πfxx′′) sin (2πfyy′′) randy(x′′, y′′)

(3)
where fx and fy are two frequencies (usually smaller than
1/20) that depend on the image size, and randx(x′′, y′′)
and randy(x′′, y′′) are random numbers in the inter-
val [1, 2). Equation (3) is the only local component of the
Stirmark attack since it introduces a random displace-
ment at every pixel position. In the sequel by RBA we
will mean only the transformation expressed by equa-
tion (3). This can be obtained by using the Stirmark
software setting to 0 the b, d, i and o parameters (respec-
tively the bending factor, the maximum variation of a
pixel value, the maximum distance a corner can move in-
wards and outwards), and leaving R (the randomisa-
tion factor) to the default value of 0.1.

3 THE CLASS OF LPCD DAS

In this section, we describe a first new class of DAs, namely
LPCD (Local Permutation with Cancelation and Duplica-
tion) DAs. We start from the plain LPCD attack, then we
pass to the C-LPCD (Constrained LPCD). Finally, we con-
sider the multiresolution extension of the above two classes.

3.1 LPCD

By focusing on the 1D-case, let y = {y(1), y(2)....y(n)}
be a generic signal and let z = {z(1), z(2)....z(n)} be
the distorted version of y. The LPCD model states that
z(i) = y(i + ∆i) where ∆i is a sequences of i.i.d ran-
dom variables uniformly distributed in a predefined inter-
val I = [−∆,∆]. For simplicity we assume that ∆i can take
only integer values in I. This way, the values assumed by
the samples of z are chosen among those of y. The above
model yields an interesting interpretation of the attacked
signal z. To introduce it, it is convenient to describe the
LPCD attack as a channel W (z|y) defined as follows (ne-
glecting edge effects):

W (z|y) =
n∏
i=1

W (z(i)|yi+∆
i−∆), (4)
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where: (i) yji , for i ≤ j denotes (y(i), y(i+ 1), . . . , y(j)) (a
similar notation convention applies to z), and (ii) :

W (z(i)|yi+∆
i−∆) = 1

2∆ + 1

∆∑

k=−∆

1{z(i) = y(i− k)}, (5)

where 1{z(i) = y(i − k)} denotes the indicator function
of the event {z(i) = y(i − k)}. According to the above
equation the LPCD channelW (z(i)|yi+∆

i−∆) assigns the same
probability, 1/(2∆ + 1), and independently, to all possible
values of k ∈ {−∆,−∆+1, . . . ,∆} and picks z(i) = y(i−k).
However any other probability assignmentW (z(i)|yi+∆

i−∆) is
allowed. Likewise, the probability law of y does not need to
be known (except the fact that it is memoryless). An equiv-
alent representation of this model is obtained by defin-
ing u(i) = yi+∆

i−∆. Here, if {y(i)} are i.i.d., then {u(i)} is
a first–order Markov process. Also, the channel W from
u = (u(1), . . . , u(n)) to y is obviously memoryless accord-
ing to (4). Thus, z is governed by a hidden Markov pro-
cess:

Q(z) =
∑
u

n∏
i=1

[P (u(i)|u(i− 1))W (z(i)|u(i))]. (6)

The above interpretation of the LPCD model may open
the way to the definition of optimum embedding and de-
tection strategies along the same lines described in [11].

To extend the 1D-LPCD model to the two-dimensional
case, if Z(i, j) is a generic pixel of the distorted image Z,
we let

Z (i, j) = Y (i+ ∆h (i, j) , j + ∆v (i, j)) , (7)

where Y is the original image and ∆h (i, j) and ∆v (i, j)
are i.i.d. integer random variables uniformly distributed in
the interval [−∆,∆].

3.2 C-LPCD

An important limitation of the LPCD model is the lack
of memory. This is likely to be a problem from a percep-
tual point of view: with no constraints on the smoothness of
the displacement field there is no guarantee that the set of
LPCD distortions is perceptually admissible even by con-
sidering very small values of ∆.

One way to overcome the limitation of the LPCD
model, and to obtain better results from a perceptual point
of view, is to require that the sample order, in the 1D
case, is preserved (thus introducing memory in the sys-
tem). In practice, the displacement of each element i of
the distorted sequence z is conditioned on the displace-
ment of the element i− 1 of the same sequence. In formu-
las, z(i) = y(i + ∆i) where ∆i is a sequence of i.i.d inte-
ger random variables uniformly distributed in the interval
I = [max (−∆,∆i−1 − 1) ,∆]. In the sequel we will refer to
this new class of DAs as C-LPCD (Constrained Local Per-
mutation with Cancelation and Duplication). Fig. 1 illus-
trates the behavior of the C-LPCD model in the 1D case,
with ∆ = 2. We know that z(i) = y(i+ ∆i), let us assume

that ∆i is chosen in the interval Ii = [−2, 2] (the solid red
line box) and that ∆i = 1, it means that z(i) = y(i+1). At
the next step we know that z(i+1) = y(i+1+∆i+1) where
∆i+1, due to the position of the pixel z(i), must be cho-
sen in the interval Ii+1 = [0, 2] (the bold green dotted line
box). The interval Ii+1 is smaller than Ii because the po-
sition of the element i + 1 cannot precede that of the el-
ement i. For example, ∆i+1 could be equal to 2 yielding
z(i+ 1) = y(i+ 3).

Figure 1: Constrained LPCD with ∆ = 2 (one-dimensional
case).

The C-LPCD model can be mathematically described
by resorting to the theory of Markov Chains. For simplicity,
let us focus again on the one-dimensional case. It is possible
to design a Markov chain whose states correspond to the
possible sizes of the interval I = [max (−∆,∆i−1 − 1) ,∆].

In a general case, given ∆, the maximum size of I is
equal to N = 2∆ + 1 (the minimum being equal to 2) and
the transition matrix of the Markov chain (whose size is
2∆× 2∆) is:

P =




1
2

1
2 0 ·· ·· ·· 0

1
3

1
3

1
3 0 ·· ·· 0

1
4

1
4

1
4

1
4 0 ·· 0

·· ·· ·· ·· ·· ·· ··
1

2∆+1
1

2∆+1
1

2∆+1 ·· ·· ·· 2
2∆+1




(8)

where each element pij of the matrix is the transition
probability of going from state i to state j.

A visual inspection conducted on a set of images dis-
torted with the C-LPCD model reveals that changing the
value of ∆ does not change the perceived intensity of the
deformation.

This effect, that can be describing by resorting to the
properties of Markov chains [10], can be avoid by allow-
ing the model to generate a larger variety of displacement
fields. For this reason we modified the Markov chain by
changing the transition probabilities among the states in
order to give a greater probability to the transitions that
result in a larger interval I. A way to do this is to as-
sign the same probability (equal to 1

2∆+1 ) to the transi-
tions that cause a decrease of the size of I, corresponding
to the elements i, j with i = 1, ..,∆ and j = 1, .., i of the
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transition matrix, and to assign all the remaining probabil-

ity mass, equal to 1−
i∑

j=1
pij , to the transition correspond-

ing to the element i, j with i = 1, ..,∆ and j = i+1, i.e. the
transition whose effect is to enlarge the interval I. The cor-
responding transition matrix becomes:

P =




1
2∆+1

2∆
2∆+1 0 ·· ·· ·· 0

1
2∆+1

1
2∆+1

2∆−1
2∆+1 0 ·· ·· 0

1
2∆+1

1
2∆+1

1
2∆+1

2∆−2
2∆+1 0·· 0

·· ·· ·· ·· ·· ·· ··
1

2∆+1
1

2∆+1
1

2∆+1 ·· ·· ·· 2
2∆+1




(9)

Fig. 2 shows the limit probability distribution of the
states versus ∆ for the described Markov chain.

N=3 N=5 N=7
0  

0.14

0.2

0,2624
0,2880

0.3333

0.6667

Limit Probability Distribution of states vs N

 

 

state 1
state 2
state 3
state 4

Figure 2: Limit probability distribution of states versus ∆
(N = 2∆ + 1).

By looking at the figure it is possible to note that re-
gardless of the value of ∆ all the states have almost the
same limit probabilities.

The extension of the C-LPCD model to the 2D case is
obtained by applying the 1D algorithm by rows to obtain
the horizontal displacement field ∆h(i, j), and by columns
for the vertical displacements ∆v(i, j).

3.3 Multiresolution extension

To make the distortion less perceptible, we considered a
multiresolution version of the LPCD and C-LPCD attacks,
whereby the DAs are applied at different resolutions to ob-
tain the global displacement field: a low resolution displace-
ment field is first generated, then a full size displacement
is built by means of a bicubic interpolation. The full reso-
lution field is applied to the original image to produce the
distorted image.

More specifically, the multiresolution models consist of
two steps. Let S×S be the size of the image (for sake of sim-
plicity we assume S is a power of 2). To apply the LPCD
(or C-LPCD) model at the L−th level of resolution, two

displacement fields δh (i, j) and δv (i, j) with size S
2L × S

2L
are generated. Then the full resolution fields ∆h(i, j) and
∆v(i, j) are built by means of bicubic interpolation. Note
that, this way non-integer displacement values are intro-
duced 1. The full resolution displacement fields ∆h and ∆v

are used to generate the warped image Z as follows:

Z(i, j) = Y (i+ ∆h(i, j), j + ∆v(i, j)). (10)

As opposed to the original version of LPCD and C-LPCD,
however, the presence of non-integer displacements is now
possible due to the interpolation. To account for this possi-
bility, whenever the displacement vector points to non in-
teger coordinates of the original image, the gray level of the
attacked image Z(i, j) is computed by means of the bicu-
bic interpolation. While the above interpolation does not
have a significant impact on the visual quality of the at-
tacked image, the possible introduction of new gray levels
that were not present in the original image, complicates
the LPCD and C-LPCD models, by making it more dif-
ficult to describe the attacked signal as a hidden markov
process (as we did in section 3.1).

The pseudo-code description of the multiresolution ver-
sion of LPCD DAs is provided by Algorithms 1 and 2 in
the appendix.

3.4 Cardinality evaluation

A measure of the difficulty of coping with a given type of
DA is given by the cardinality of the attack class. In fact,
the larger is the DA space, the more difficult will be to re-
cover the synchronization between the embedded and the
detector, both in terms of complexity and accuracy. As a
matter of fact, it is possible to show [11, 1] that as long as
the cardinality of the DAs is subexponential, the exhaus-
tive search of the watermark results in asymptotically opti-
mum watermark detection with no loss of accuracy with re-
gard to false detection probability. By contrast, when the
size of the DA is exponential, simply considering all the
possible distortions may not be a feasible solution both
from the point of view of computational complexity and
detection accuracy [11]. In order to evaluate the cardinal-
ity of the classes of DAs, the perceptual impact of LPCD
and C-LPCD must be taken into account. Thus we first
found the limits of the model parameters by means of per-
ceptual considerations, then we estimated the cardinality
of the various classes of LPCD DAs.

Let us observe that from a perceptual point of view,
LPCD DAs have a different behavior for different values
of N and for different levels of resolution L, in particular,
the image quality increases if the attacks are applied to a
lower level of resolution (larger L) but, at the same time,
the number of possible distortions decreases.

In a previous work [4], both subjective and objective
tests were performed to establish the sensitivity of the hu-
man visual system to the geometric distortions introduced

1It is still possible to obtain integer displacements by apply-
ing a nearest neighbor interpolation instead of a bicubic one (of
course at the expense of the smoothness of the displacement field).
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by the LPCD model as a function of the control parame-
ters N and L. This way the authors were able to identify
the range of values of the control parameters that do not
affect image quality: for each level of resolution, the max-
imum value of N that can be used while keeping the dis-
tortion invisible was found. For instance, in the case of im-
ages of size 512 × 512, the maximum admissible geomet-
ric distortions are obtained by using L = 6, N = 5 for the
LPCD model and L = 5, N = 5 or L = 6, N = 7 for the
C-LPCD model (for higher level of resolution it is not pos-
sible to find an adequate value of N resulting in an invisi-
ble distortion).

(a)

(b)

Figure 3: Examples of displacement fields generated with
LPCD DA’s: (a) LPCD with L = 6 and N = 5; (b) C-
LPCD with L = 5 and N = 5.

In Fig. 3, two examples of displacement fields gener-
ated with the LPCD attack with L = 6 and N = 5 (3.a)
and the C-LPCD attack with L = 5 and N = 5 (3.b) are
given: as expected, by applying the model to a lower level
of resolution, it is possible to obtain a more uniform field
(for the purpose of visibility the total displacement field is
cropped and only one vector every sixteen samples is de-
picted in the figure).

We can now use the above considerations to estimate
the cardinality of the class of LPCD DAs. For the LPCD
model, the number of possible admissible geometric dis-
tortions is simply equal, neglecting the boundary effects,
to (N

S

2L
× S

2L )2, where S is the size of the image. Then if
we consider an 512× 512 image, and we take into account
the perceptual analysis in [4], we obtain 2.93× 1089 differ-
ent attacked images.

With regard to the C-LPCD model, we need to refer
again to the theory of Markov chains. Let us consider the
one-dimensional case and the graph of the Markov chain
describing the C-LPCD model. It is possible to construct
the adjacency matrix A of zeroes and ones, where Ai,j = 1
if in the graph there is an edge going from node i to node j
and zero otherwise. The number of paths of length n that
start from node i and end into node j is given by the (i, j)
entry of the matrix An. The exponential growth rate of the
number of paths of length n in the graph is en lnλmax where
λmax is the largest eigenvalue of A. In the C-LPCD case,
the practical values of n are not very large, for instance for
a 512 × 512 image, with L = 5, we have n = 16, then we
can easily compute the matrix An and derive the exact size
of the C-LPCD class of attacks. Specifically, by remember-
ing that the two-dimensional extension of C-LPCD is ob-
tained by applying the one-dimensional C-LPCD DA first
by rows and then by columns, we obtain the results re-
ported in Table 1.

With the above approach, we were able to count all
the distortions that can be generated with the C-LPCD
model. Nevertheless, as explained in the previous subsec-
tion, the occurrence of a particular distortion configuration
depends on the Markov chain transition matrix and is not
constant for all the configurations. Thus, for a more ap-
propriate evaluation of the cardinality of C-LPCD DAs,
we need to refer to the entropy rate of the corresponding
Markov chain. In this context, the following result from
information theory [3] is useful: let {Xi} be a stationary
Markov chain with stationary distribution µ and transi-
tion matrix P , then the entropy rate is

H(X ) = −
∑
ij

µipij log pij . (11)

The knowledge of the entropy rate of the Markov chain
and the Asymptotic Equipartition Property (AEP) [3] help
us to find the number of possible distortions that can
be generated with a so defined Markov chain, since it
asymptotically corresponds to the number of typical se-
quences, i.e., 2nH . After some algebraic manipulations, we
find that in the case of C-LPCD with N = 5 and L = 5,
H(X ) is approximately equal to 1.4881 bits and the num-
ber of different distortions that is possible to generate is
2256·1.4881 ' 4.76 · 10114. In the same way, in the case of
C-LPCD with N = 7 and L = 6, is possible to gener-
ate 264·1.6055 ' 8.53 · 1030 different distortions. By looking
at Table 1, we can see that, as we expected, the cardinal-
ity of C-LPCD evaluated by considering the entropy rate
of the Markov chain (second row) is much smaller than
the number of possible distortions (first row). We conclude
this section by observing that the size of both the LPCD
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LPCD C-LPCD C-LPCD
L6−N5 L5−N5 L6−N7

cardinality 2.93× 1089 1.54× 10265 1.54× 1084

2nH 2.93× 1089 4.76× 10114 8.53× 1030

Table 1: Cardinality evaluation of the LPCD attacks: in
the first row the number of possible distortions is reported,
the second row refers to the number of typical sequences.

and the C-LPCD DAs exhibit an exponential growth, with
the constrained model resulting in a higher growth rate.
For this reason, both classes of attacks are likely to make
watermark detection rather difficult, and will need to be
carefully considered in future works on DA-resistent wa-
termarking.

4 MARKOV FIELD DA (MF-DA)

One problem with the C-LPCD attack is that it does not
take into account the two-dimensional nature of images,
since it is based on a one-dimensional Markov chain. To
overcome this limitation, we introduce a new class of DAs
based on the theory of Markov random fields. We will re-
fer to this new class of attacks as MF-DA.

Markov random field theory is a branch of probability
theory for analyzing the spatial or contextual dependen-
cies of physical phenomena. The foundations of the the-
ory of Markov random fields may be found in statistical
physics of magnetic materials (Ising models, spin glasses,
etc..) but also in solids and crystals, where the molecules
are arranged in a lattice structure and there are interac-
tions with close neighbors (for example, Debye’s theory for
the vibration of atoms in a lattice is based on a model of
quantum harmonic oscillators with coupling among near-
est neighbors). Markov random fields are often used in im-
age processing applications, because this approach defines
a model for describing the correlation among neighboring
pixels [7].

4.1 Model description

Many vision problems can be posed as labeling problems
in which the solution to a problem is a set of labels as-
signed to image pixels or features. A labeling problem is
specified in terms of a set of sites and a set of labels. Let
S = {1, ...,m} be a discrete set of m sites in which 1, ...,m
are indices (a site often represents a point or a region in the
Euclidean space such as an image pixel or an image fea-
ture). A label is an event that may happen to a site. Let
L = {l1, ..., ln} be a set of labels. The labeling problem is
to assign a label from L to each of the sites in S. In the ter-
minology of random fields, a labeling is called a configura-
tion.

The sites in S are related to one another via a neigh-
borhood system. A neighborhood system for S is defined
as N = {Ni|∀i ∈ S} where Ni is the set of sites neighbor-
ing i. The neighboring relationship has the following prop-
erties:

1. a site is not neighboring to itself: i /∈ Ni
2. the neighboring relationship is mutual: i ∈ Ni′ ⇔ i′ ∈

Ni

If S is a regular lattice, the neighboring set of i is often
defined as the set of nearby sites within a radius of r:

Ni = {i′ ∈ S|[dist(i, i′)]2 ≤ r, i′ 6= i}
Once introduced a set S and a neighborhood system N ,

is possible to define a clique c for (S, N) like a subset of sites
in S. It consists either of a single site c = {i} (single-site
clique), or of a pair of neighboring sites c = {i, i′} (pair-
sites cliques), or of a triple of neighboring sites c = {i, i′, i′′}
(triple-sites cliques), and so on.

The collections of single-site, pair-site and triple-site
cliques will be denoted by C1, C2 and C3, respectively,
where:

C1 = {i| ∈ S}

C2 = {{i, i′}|i′ ∈ Ni, i ∈ S}

C3 = {{i, i′, i′′}|i, i′, i′′ ∈ S are neighbors to one another}

The collection of all cliques for (S, N) is denoted by C.
Fig. 4 shows a first order neighborhood system, also

called a 4-neighborhood system, with the four correspond-
ing pair-sites cliques. The x symbol denotes the considered
site and the letters indicate its neighbors.

Figure 4: Structure of a first order neighborhood system
and corresponding pair-sites cliques.

A random field F = {F1, F2, ..., Fm} is a family of ran-
dom variables defined on a set S, in which each random
variable Fi takes a value fi in a set of labels L.

F is said to be a Markov random field (MRF) on S
with respect to a neighborhood system N if and only if the
two following conditions are satisfied:

P (f) > 0, ∀f ∈ Lm (positivity) (12)
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P (fi|fS−{i}) = P (fi|fNi) , ∀i ∈ S (Markov property)
(13)

where f = {f1, ..., fm} is a configuration of F (corre-
sponding to a realization of the field), P (f) is the joint
probability P (F1 = f1, ..., Fm = fm) of the joint event
F = f , i.e., it measures the probability of the occurrence
of a particular configuration, and

fNi = {fi′ , i′ ∈ Ni} (14)

denotes the set of values at the sites neighboring i, i.e., the
neighborhood N centered at position i. The positivity is
due to technical reasons, since it is a necessary condition if
we want the Hammersley-Clifford theorem (see below) to
hold [2].

To exploit MRFs characteristics in a practical way, we
need to refer to the Hammersley-Clifford theorem [7] for
which F is an MRF on S with respect to N if and only if
F is a Gibbs random field (GRF) on S with respect to N ,
i.e., the probability distribution of a MRF has the form of
a Gibbs distribution:

P (f) = e−
1
T U(f)

Z
(15)

where Z is a normalizing constant called the partition func-
tion, T is a constant called the temperature and U(f) is
the energy function. The energy function

U(f) =
∑
c∈C

Vc(f) (16)

is a sum of cliques potentials, Vc(f), over all possible cliques
C. Thus the value of Vc(f) depends on the local configura-
tion on the clique c. The practical value of the theorem is
that it provides a simple way of specifying the joint prob-
ability. Since P (f) measures the probability of the occur-
rence of a particular configuration we know that the more
probable configurations are those with lower energies.

In our case, we can model geometric attacks with a ran-
dom field F defined on the set S of the image pixels. The
value assumed by each random variable represents the dis-
placement associated to a particular pixel. Specifically, for
each pixel we have two values for the two directions x and
y. For this reason each variable Fi is assigned a displace-
ment vector fi = (fx, fy) ∈ L × L. The advantage brought
by MRF theory is that by letting the displacement field of
a generic point (x, y) of the image depend on the displace-
ment fields of the other points of its neighborhood (let us
indicate this set with the notation N(x, y)), we can auto-
matically impose that the resulting displacement field is
smooth enough to avoid annoying geometrical distortions.

As we said, an MRF is uniquely determined once the
Gibbs distribution and the neighborhood system are de-
fined. In the approach proposed here, for each pixel (x, y)
only four neighbors of first order and the corresponding
four pair-site cliques, as described by Fig. 4. The poten-
tial function we used is a bivariate normal distribution ex-
pressed by:

V((x,y),(x̃,ỹ)) = 1
2πσxσy

exp
{
−
[

(fx − fx̃)2
2σ2

x

+ (fy − fỹ)2
2σ2

y

]}

(17)

where fx and fy are the components of the displacement
vector f(x,y) associated to the pixel (x, y), (x̃, ỹ) is a point
belonging to the 4-neighborhood of (x, y), fx̃ and fỹ are
the x,y components of the displacement vector f(x̃,ỹ) asso-
ciated to the pixel (x̃, ỹ) and σx and σy are the two com-
ponents of the standard deviation vector σ (these values
are controlled by perceptual constraints).

A typical application of MRF in the image processing
field is to recover the original version of an image (or a mo-
tion vector field) by relying on a noisy version of the im-
age. By assuming that the original image can be described
by means of a MRF, the above problem is formulated as a
Maximum a Posteriori estimation problem. Thanks to the
Hammersley-Clifford theorem, this corresponds to an en-
ergy minimization problem that is usually solved by apply-
ing an iterative relaxation algorithm to the noisy version
of the image [2]. The problem we have to face here, how-
ever, is slightly different. We simply want to generate a
displacement field according to the Gibbs probability dis-
tribution defined by equation (15) and the particular po-
tential function expressed in (17).

To do so, the displacement field is initialized by assign-
ing to each pixel (x, y) in the image a displacement vector
f(x,y) generated randomly (and independently on the other
pixels) in the interval in L × L with L = {f ∈ Z : −c ≤
f ≤ c} (the value of c is determined by relying on percep-
tual considerations). This initial random field is treated as
a noisy version of an underlying displacement field obey-
ing the MF-DA model. The MF-DA field is then obtained
by applying an iterative smoothing algorithm to the ran-
domly generated field. More specifically, the technique we
used visits all the points of the displacement field and up-
dates their values through the Iterated Conditional Mode
(ICM) algorithm detailed in [2]. Specifically, when the ICM
algorithm starts, all the pixels (x, y) of the displacement
field are randomly visited and their displacement vectors
updated by trying to minimize the potential function (17).
Specifically, a local minimum is sought by letting

fopt (x,y) = arg min
f∈(L×L)

∑

(x̃,ỹ)∈N(x,y)

V((x,y),(x̃,ỹ)) (18)

Note that in the above equation the displacements of the
pixels in the neighborhood of (x, y) are fixed, hence result-
ing in a local minimization of the Gibbs potential. After
that each pixel is visited and the corresponding displace-
ment updated, a new iteration starts. The algorithm ends
when no new modification is introduced for a whole itera-
tion, which is usually the case after 7-8 iterations.

As for the LPCD DAs, we considered a multiresolution
version of the MF-DA, where the full resolution version of
the the displacement field is built by interpolating the dis-
placement field obtained by applying the MF-DA at a reso-
lution level L. In Fig.5.a and 5.b two examples of displace-
ment fields generated with the MF-DA model are shown,
using respectively the parameters L = 6 σ = (1, 1) c = 6
and L = 4 σ = (7, 7) c = 18. With MF-DA, it is pos-
sible to obtain larger displacement vectors than with the
LPCD attacks (due to the high value of the c parameter),
while keeping the distortion invisible thanks to the abil-
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ity of the iterative conditional mode to generate a very
smooth field, as we can see from Fig. 5. A pseudo-code de-
scription of the MF-DA is provided by algorithms 3, 4 and
5 in appendix.

(a)

(b)

Figure 5: Examples of displacement fields generated with
MRF DA’s: (a) MRF with L = 6, σ = 1 and c = 6; (b)
MRF with L = 4, σ = 7 and c = 18.

4.2 Perceptual analysis

In order to evaluate the potentiality of the MF-DA class of
attacks, the perceptual impact of the distortion they gen-
erate must be taken into account. From a perceptual point
of view, MRF DAs have a different behavior for different
values of L, σ and c, in particular the image quality in-
creases if the attacks are generated at a lower level of res-
olution but, in the meantime, the number of possible dis-
tortions decreases.

After a visual inspection conducted on a set of images,
we found, for each level of resolution, the maximum value
of the σ components and c that can be used while keep-
ing the distortion invisible. Specifically, we found that, in
case of images of size 512×512, the larger perceptually ad-

missible displacements are obtained by using L = 6 σ = 1
c = 6, L = 5 σ = 3 c = 8 and L = 4 σ = 7 c = 18
(σ = σx = σy).

In Fig.6 two examples of images distorted with an
MF-DA attack applied at different levels of resolution are
shown: in the Barbara image the MRF is applied at a lower
level of resolution (L = 6), while in the Lena image the dis-
tortion is generated at a higher level of resolution (L = 4).
In both cases by comparing the original image (on the
left) with the attacked one (on the right), we can notice
a slightly perceptible distortion, that is however not an-
noying due to the smoothness constraints of the field (the
distortion is not visible if only the attacked image is pro-
vided so that the comparison with the original image is not
possible).

(a) (b)

(c) (d)

Figure 6: Example of two images attacked with the MF-DA
model: (a) original image; (b) attacked image with L = 6;
(c) original image; (d) attacked image with L = 4

Regarding the cardinality evaluation of this new class
of DAs, in principle all the displacement fields are allowed,
with the most annoying distortions corresponding to very
low probabilities (and thus very large Gibbs potential). In
order to evaluate the cardinality of the MF-DA class, then,
a first step would be to calculate the entropy rate of the
field. However this is a prohibitive task given that no tech-
nique is known to calculate the entropy rate of even the
simplest MRFs.

5 DE-SYNCHRONIZATION PROPERTIES OF THE
VARIOUS DAS

In this section, we evaluate the de-synchronization capa-
bility of the various classes of attacks. To do so, two very
simple watermarking algorithms were implemented and the



The journal title 9

ability of the various DAs to inhibit watermark detection
evaluated. The source image database used for the ex-
periments includes the six standard images: Baboon, Bar-
bara, Boats, Goldhill, Lena and Peppers. The source im-
age database and the software we used for the experiments
are available on the web site http://www.dii.unisi.it/~vipp.

The tested algorithms include:

• Blind additive Spread Spectrum in the frequency do-
main (BSS-F);

• Blind additive Spread Spectrum in the wavelet do-
main (BSS-W).

In both the systems the watermark consists of a se-
quence of nb bits X = {x(1), x(2), ..., x(nb)}; each value
x(i) being a random scalar that is either 0 or 1, with equal
probability.

In the BSS-F algorithm the watermark is inserted into
the middle frequency coefficients of the full frame DCT do-
main. The DCT of the original image is computed, the fre-
quency coefficients are reordered into a zig-zag scan and
the first L+M coefficients are selected to generate a vec-
tor W = {t(1), t(2), ..., t(L), t(L+ 1), ..., t(L+M)}. Then,
in order to obtain a tradeoff between perceptual invisibility
and robustness to image processing techniques, the lowest
L coefficients are skipped and the watermark X is embed-
ded in the last M coefficients T = {t(L+1), ..., t(L+M)},
to obtain a new vector T ′ = {t′(L + 1), ..., t′(L +M)} ac-
cording to the following rule:

T ′ = T + kPN if bit = 0
T ′ = T − kPN if bit = 1 (19)

where k is the embedding strength and PN is a uni-
formly distributed pseudo-random sequence of 1 and −1.
Equation (19) refers to the embedding of one bit, the ex-
tension to multiple bits consists of applying equation (19)
for each bit considering each time a different subset of 0T
and a different PN sequence (a more detailed description
of the watermark embedding is given by the pseudo-code
4 in appendix).

In watermark detection the DCT is applied to the wa-
termarked (and possibly attacked) image, the DCT coeffi-
cients are reordered into a zig-zag scan, and the coefficients
from the (L + 1)th to the (L +M)th are selected to gen-
erate a vector T ∗ = {t(L + 1), ..., t(L +M)}. For each bit
the correlation coefficient between the corresponding sub-
set of the T ∗ vector and a new PN sequence is evaluated
and compared to a threshold (equal to 0) to recover the em-
bedded bit.

The correlation coefficient is evaluated in the following
way:

r (A,B) =

n∑
i=1

(A(i)− µ(A)) (B(i)− µ(A))
√(

n∑
i=1

(A(i)− µ(A))2
)(

n∑
i=1

(B(i)− µ(B))2
)

(20)

(where A and B are two vectors of same size n and µ
is the mean operator) and the decision rule states that:

bit = 0 if r>0
bit = 1 if r<0 (21)

In the BSS-W watermarking system the watermark is
added to the DWT coefficients of the three largest detail
(i.e. LH, HL, HH) subbands of the image. The embedding
and decoding functions are implemented in the same way
of the previous system but the watermark is inserted in
the wavelet coefficients obtained with a one step wavelet
decomposition. A more detailed description of the two wa-
termarking systems is given by the pseudo-codes 6,7, 8 and
9 in the appendix.

The six standard images were watermarked with the
systems described above with different payloads and then
attacked with RBA and the two new classes of attacks.
Each image is attacked with a different realization of the
field. In Table 2 the values of the parameters used for the
experiments are shown. Fig. 7 and 8 show the ability of
the RBA and of the two new DAs to inhibit correct decod-
ing. The average of the bit error rate obtained for the six
images is plotted versus different values of the payload for
both the watermarking systems.

For both the systems, the RBA attack is not able to
prevent a correct watermark decoding, in fact the RBA plot
is not visible in the figures because the bit error rate is al-
ways equal to zero. A more powerful class of DAs is the
LPCD DAs that in both the systems gives a bit error rate
much higher than the RBA attack. The MF-DA always re-
sults in a very high bit error rate also applying the attack
to a lower level of resolution.
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Bit error rate vs Payload (DCT domain)

 

 
MRF.s7L4
MRF.s3L5
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CLPCD.N5L5
CLPCD.N7L6

Figure 7: De-synchronization capabilities of the various
DAs against the DCT domain system

6 CONCLUSION

In this paper we introduced two new classes of de-
synchronization attacks that extend the class of lo-
cal geometric attacks so to allow for more powerful
attacks with respect to classical RBA. The effective-
ness of the new classes of DAs is evaluated from dif-



10 The journal title

50 100 150 200
10

−3

10
−2

10
−1

10
0

nbit

B
E

R
Bit error rate vs Payload (DWT domain)

 

 
MRF.s7L4
MRF.s3L5
MRF.s1L6
LPCD.N5L6
CLPCD.N5L5
CLPCD.N7L6

Figure 8: De-synchronization capabilities of the various
DAs against the DWT domain system

Parameter Value

Stirmark

b 0
d 0
i 0
o 0
R 0.1

MF-DA c dim
2

DCT system
k 5
L 25000
M 16000

DWT system k 2

Table 2: Value of the parameters used for the experiments

ferent perspectives including perceptual intrusiveness
and de-synchronization efficacy. The experimental re-
sults showed that the two new classes of attacks are
more powerful than the local geometric attacks pro-
posed so far.

This work can be seen as a first step towards the char-
acterization of the whole class of perceptually admissible
DAs, which in turn is an essential step towards the devel-
opment of a new class of watermarking systems that can
effectively cope with them.

Future works may include the development of a per-
ceptual metric suited for geometric distortions and the use
of new potential functions.

ACKNOWLEDGMENTS

This work was supported by the Italian Ministry for
University and Research, under FIRB project no.
RBIN04AC9W: Image watermarking in the presence
of geometric attacks: theoretical analysis and develop-
ment of practical algorithm.

APPENDIX

Algorithm 1 LPCD model
1. Read image to be attacked Y, read size of the window

∆, read level of resolution L
2. dim = size(image)

2L {size of the low resolution displace-
ment field}

3. Initialize matrices δh and δv of horizontal and vertical
displacement fields to 0

4. for i = 1 : dim do
5. for j = 1 : dim do
6. if (i < ∆ + 1) or (j < ∆ + 1) then
7. δh(i, j) and δv(i, j) are randomly chosen

in [−(min(i, j)− 1); (min(i, j)− 1)]
8. else if (i > dim−∆) or (j > dim−∆) then
9. δh(i, j) and δv(i, j) are randomly chosen

in [−(dim−max(i, j)); (dim−max(i, j))]
10. else
11. δh(i, j) and δv(i, j) are randomly chosen

in [−∆;∆]
12. end if
13. end for
14. end for
15. Resize the displacement fields given by δh and δv to

the image size through bicubic interpolation provided
by the matlab function imresize{to obtain the high
resolution displacement fields ∆h an ∆v}

16. for i = 1 : size(image) do
17. for j = 1 : size(image) do
18. Z(i, j) = Y (i+ ∆h(i, j), j + ∆v(i, j)) {Apply

the displacement fields to the image, to ob-
tain the attacked image Z, by means of bicu-
bic interpolation}

19. end for
20. end for
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Algorithm 2 Constrained LPCD model (modified ver-
sion)
1. Read image to be attacked, read size of the window ∆,

read level of resolution L
2. dim = size(image)

2L {size of the low resolution displace-
ment field}

3. Initialize matrices δh and δv of horizontal and vertical
displacement fields to 0

4. for i = 1 : dim do
5. for j = 1 : dim do
6. if (i < ∆ + 1) or (j < ∆ + 1) then
7. δh(i, j) and δv(i, j) are randomly chosen

in [−(min(i, j)− 1); (min(i, j)− 1)]
8. else if (i > dim−∆) or (j > dim−∆) then
9. δh(i, j) and δv(i, j) are randomly chosen

in [−(dim−max(i, j)); (dim−max(i, j))]
10. else
11. δh(i, j) is chosen in Ix = [max(∆, δh(i−

1, j) − 1),∆] with a distribution vector
P = [1− size(Ix)−1

∆ ; 1
∆ ; ..; 1

∆ ]
12. δv(i, j) is chosen in Iy = [max(∆, δv(i −

1, j) − 1),∆] with a distribution vector
P = [1− size(Iy)−1

∆ ; 1
∆ ; ..; 1

∆ ]
13. end if
14. end for
15. end for
16. Resize the displacement fields given by δh and δv to

the image size through bicubic interpolation provided
by the matlab function imresize{to obtain the high
resolution displacement fields ∆h an ∆v}

17. for i = 1 : size(image) do
18. for j = 1 : size(image) do
19. Z(i, j) = Y (i+ ∆h(i, j), j + ∆v(i, j)) {Apply

the displacement fields to the image, to ob-
tain the attacked image Z, by means of bicu-
bic interpolation}

20. end for
21. end for

Algorithm 3 MF-DA based model
1. Read image to be attacked, read level of resolution L,

read standard deviation σ, read c
2. dim = size(image)

2L {size of the low resolution displace-
ment fields δh and δv}

3. Initialize matrices δh and δv with random values in the
interval [−c, c]

4. diffh = δh
5. diffv = δv
6. while diffh and diffv are 6= 0 do
7. temph = δh
8. tempv = δv
9. row=randperm(dim);
10. col=randperm(dim);
11. for k = 1 : dim do
12. for h = 1 : dim do
13. i=col(1,k);
14. j=row(1,h)
15. [sx, sy] = Vopt(i, j, δh, δv, σ,dim) {Find

the optimum displacements sx and sy,
i.e. the ones minimizing the potential
function}

16. δh(i, j) = sx
17. δv(i, j) = sy
18. end for
19. end for
20. diffh = δh − temph
21. diffv = δv − tempv
22. end while
23. Resize the displacement fields given by δh and δv to

the image size through bicubic interpolation provided
by the matlab function imresize{to obtain the high
resolution displacement fields ∆h an ∆v}

24. for i = 1 : size(image) do
25. for j = 1 : size(image) do
26. Z(i, j) = Y (i+ ∆h(i, j), j + ∆v(i, j)) {Apply

the displacement fields to the image, to ob-
tain the attacked image Z, by means of bicu-
bic interpolation}

27. end for
28. end for
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Algorithm 4 Function Vopt(i, j, δh, δv, σ, dim)
1. Read position of the pixel (i, j), matrices of displace-

ment fields δh and δv, standard deviation σ
2. sxtemp = δh(i, j)
3. sytemp = δv(i, j)
4. Vinit = Gibbs(i, j, sx, sy, δh, δv){Initial potential}
5. for sx = −i+ 1 : dim− i do
6. for sy = −j + 1 : dim− j do
7. Vtemp = Gibbs(i, j, sx, sy, δh, δv)
8. if Vtemp < Vinit then
9. Vinit = Vtemp
10. sxtemp = sx
11. sytemp = sy
12. end if
13. end for
14. end for
15. sx = sxtemp
16. sy = sytemp
17. return sx and sy

Algorithm 5 Potential funtion Gibbs(i, j, sx, sy, δh, δv)
1. Read position of the pixel (i, j), displacements sx and
sy, matrices of displacement fields δh and δv

2. N(i, j) = [(i−1, j); (i+1, j); (i, j−1); (i, j+1)] {N(i, j)
is a first order neighborhood system associated with the
pixel (i, j)}

3. V((i,j),(̃i,j̃)) = 1
2πσxσy exp

{
−
[

(sx−δh (̃i,j̃))2

2σ2
x

+ (sy−δv (̃i,j̃))2

2σ2
y

]}

4. Potential =
∑

(̃i,j̃)∈N(i,j)
V((i,j),(̃i,j̃))

5. return Potential

Algorithm 6 DCT domain watermarking: embedding
1. Read image to be watermarked, length of the water-

mark nb, energy of the watermark k, seed key, L, M
2. Generate a random nb long message
3. Perform full frame DCT
4. Reorder the DCT coefficients into a zig-zag scan
5. Select the coefficients: TL+M

L =
{t(L), t(L+ 1), ..., t(L+M)} {middle frequency
coefficients to be watermarked}

6. for bit=1:nb do
7. Generate an antipodal PN sequence of length

lbit = M/nb
8. a = (bit−1)∗ lbit+1 and b = (bit−1)∗ lbit+ lbit
9. if bit=0 then
10. T̂ ba = T ba + kPN
11. else
12. T̂ ba = T ba − kPN
13. end if
14. end for
15. Reinsert the vector T̂ in the zig-zag scan
16. Perform inverse scan
17. Perform inverse full frame DCT
18. Save watermarked image and message

Algorithm 7 DCT domain watermarking: decoding
1. Read watermarked image, seed key, length of the wa-

termark nb and load inserted message {needed to eval-
uate bit error rate}

2. Perform full frame DCT transform
3. Reorder the DCT coefficients into a zig-zag scan
4. Select the coefficients: T ∗L+M

L =
{t(L), t(L+ 1), ..., t(L+M)} {middle frequency
watermarked coefficients}

5. for bit=1:nb do
6. Generate an antipodal PN sequence of length

lbit = M/nb
7. Compute the correlation coefficient as expressed

in equation (20) between PN and T ∗ba where a =
(bit− 1) ∗ lbit + 1 and b = (bit− 1) ∗ lbit + lbit

8. end for
9. for bit=1:nb do
10. if correlation(bit) >0 then
11. extracted_message(bit)=0
12. else
13. extracted_message(bit)=1
14. end if
15. end for
16. return Bit Error Rate

Algorithm 8 DWT domain watermarking: embedding
1. Read image to be watermarked, length of the water-

mark nb, energy of the watermark k, seed key
2. Generate a random nb long message
3. Perform a one step wavelet decomposition using Haar

filter
4. Reorder the LH, HL and HH components into a vector
T

5. for bit=1:nb do
6. Generate an antipodal PN sequence of length

lbit = size(T )/nb
7. a = (bit−1)∗ lbit+1 and b = (bit−1)∗ lbit+ lbit
8. if bit=0 then
9. T̂ ba = T ba + kPN
10. else
11. T̂ ba = T ba − kPN
12. end if
13. end for
14. Perform a one step inverse wavelet decomposition us-

ing Haar filter
15. Save watermarked image and message
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Algorithm 9 DWT domain watermarking: decoding
1. Read watermarked image, seed key, length of the wa-

termark nb and load inserted message {needed to eval-
uate bit error rate}

2. Perform a one step wavelet decomposition using Haar
filter

3. Reorder the LH, HL and HH components into a vector
T ∗

4. for bit=1:nb do
5. Generate an antipodal PN sequence of length

lbit = size(T )/nb
6. Compute the correlation coefficient as expressed

in equation (20) between PN and T ∗ba where a =
(bit− 1) ∗ lbit + 1 and b = (bit− 1) ∗ lbit + lbit

7. end for
8. for bit=1:nb do
9. if correlation(bit) >0 then
10. extracted_message(bit)=0
11. else
12. extracted_message(bit)=1
13. end if
14. end for
15. return Bit Error Rate
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